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Summary. The purpose of this paper is to investigate the weakly non-linear
stage in the evolution of adiabatic density fluctuations. It is shown that tidal
processes may lead to the disruption of large scale inhomogeneities into
smaller units. This phenomenon may change significantly the Doroshkevich,
Sunyaev & Zeldovich scenario for development of structure in the expanding
Universe. Accurate N-body experiments are necessary to decide whether the
approach used in this paper is reasonable.

1 Introduction

In the standard gravitational instability picture, galaxies and clusters condense from small
but finite amplitude density fluctuations, existing at the epoch of recombination. The fluc-
tuations may be either adiabatic, isothermal, or some combination of both (for a review see
Rees 1978; Zeldovich & Novikov 1975, hereafter ZN). It is generally assumed that linear
stability analysis of the Friedmann models provides an adequate description of the growth of
the fluctuations up to the redshift Z¢, when the relative density contrast § p/p reaches unity.
This is a reasonable assumption at early epochs, when the perturbations are small. However,
it is not so at Z 2 Z¢, when 8 p/p is only slightly smaller than 1; the validity of the linear
approach must be proved in this regime. As yet such a proof exists only for the model in
which the primordial fluctuations are purely isothermal (Zeldovich 1965; Peebles 1974;
Doroshkevich & Zeldovich 1975).

The aim of this work is to investigate the effect of non-linear phenomena, occurring at
Z 2 Zs, on the behaviour of purely adiabatic fluctuations. In Section 2 the main assumptions
and approximations used in the calculation are given and the equations of motion derived in
Section 3. In Section 4 it is shown that non-linear interaction between the long wave
adiabatic perturbations acts as a source of short wave perturbations and in Section 5 possible
consequences of this effect for the theory of galaxy formation are described.

2 Assumptions

A number of assumptions and approximations are used in the calculation. In an effort to
minimize confusion I list the main points here.
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(i) I assume that the cosmological model is the standard Friedmann model with the
present Hubble constant Hy = S0km s™ Mpc™ and density parameter Q2 = 871G po/3Hg= 0.1,
where p, is the present mean density of matter in the Universe. These values of Hy and Q
are suggested by a number of different lines of evidence (Gott et al. 1974).For Zo. > Z >
Q7! where Z,. = 103 is the redshift of recombination, the expansion of the Universe may be
approximated by the Einstein—de Sitter model, so that

RdR/dt = (87Gp[3)"2=2/3¢, (1)

where ¢ is the proper cosmic time, p is the mean density and R is the expansion parameter.

(if) The large scale matter distribution can be treated as a perfect pressureless fluid. The
typical length scale for matter irregularities is assumed to be small compared with the particle
horizon so the non-relativistic (Newtonian) approximation may be used to describe the
irregularities.

(iii) I assume that the density fluctuations can be approximated as a homogeneous and
isotropic Gaussian field. Let p*(x, ) be the density of matter at the comoving position x in
a frame expanding with the unperturbed model. The density contrast u = (po* —p)/p can be
represented by a stochastic Fourier integral (Yaglom 1962)

ulx,0)= J‘exp (ik ‘x)a(k, )k, 2

where different Fourier components are not statistically correlated with each other. This
assumption plays a crucial role for the interpretation of the results obtained in this paper

and will be discussed in more detail in Section 5. The power spectrum of the fluctuations is
defined by

(ak,p)a(l, ) =Sk,N83k +1), 3)

where the angle brackets denote the average over the ensemble of all possible density fluc-
tuations.

Let M (k) be the mass within a sphere of diameter 27 R/k. Then we may write the variance
of the density fluctuations as

oo +o0
<u2)=47rJ‘ Skzdk=f (5 p/p)2d(InM),

0 —o0
where

Splp = (4nk3S/3)"? 4)

is the contribution to the variance for unit increment of the logarithm of mass, or the ‘rms
value of the density contrast on mass scale M(k)’. Following the generally accepted conven-
tion I will use this quantity as a description of the degree of inhomogeneity of the matter
distribution on different scales.

(iv) I will assume that primordial density fluctuations are purely adiabatic. Moreover,
at sufficiently early times, corresponding to Z > Z their spectrum is of power form S o«
k™2 or §p/p < M G*™I6 where n is a parameter. Prior to and during the recombination
epoch, adiabatic perturbations on all scales below the Silk mass Mp = 3 x 1012 (QA%)4 M,,
where h=H,/50kms™ Mpc™, are damped by the photon viscosity (Silk 1974). The resulting
spectrum at Z = Z . is (Doroshkevich, Sunyaev & Zeldovich 1974)

QM/Mp) G*mIs for M > M;

5
Q(M/Mp) C*™/6 exp[— (Mp/M)*?] for M < Mj ®)
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where Q is constant and My = 10" (k%) ™M, is the Jeans mass before recombination. For
the cosmological model with QA% = 0.1, the Silk and the Jeans masses are Mp = 5 x 102 M,
and My = 10" M,,, respectively.

These small fluctuations can form bound systems on mass scales 2 My, which correspond
to galaxy clusters in low §2 models, only if their amplitude at recombination is of the order
of (Z¢+ 1)/(Ziee +1) = 102Q7! (cf. Rees 1978, pp. 289—-290). This condition yields the
value of the constant Q in (5). In the present paper the initial spectrum is normalized so that
the maximum value of § p/p at Z,. is 107227 = 1072, thus

Q=107 [4e/(n +3)] ®+3. (6)

I consider initial spectra with n =—1,n =0 and n = 2. The n = —1 spectrum has the virtue
that the amplitude of the metric fluctuations is scale-independent (ZN, Section 23.9), while
n =0 corresponds to ‘white noise’ or a Poisson distribution of particles.

3 Equations of motion

In comoving coordinates, the equations of motion for the pressureless self-gravitating fluid
are (Peebles 1971, pp. 213-225)

ov 1dR +V¢>_ (v-V)v

—+ v , 7
9t R dt R R M
V2¢ — 4nGpR*u=0, (8)
du V.v  V.(vu

eI T ©)

at R R

Here v(x,?) is the peculiar velocity (i.e. velocity relative to an observer at fixed x) and
Vo(x,t)/R is the gravitational acceleration at x.

In the standard formulation of the gravitational instability theory, all non-linear terms on
the right hand side of equations (7) and (9) are neglected (Peebles 1971; ZN). This is equiv-
alent to the assumption that the growth of irregularities on a given scale is governed by the
density irregularities and the matter currents on that same scale. In the present paper I
consider weakly non-linear density fluctuations which can be treated in a second order
perturbation calculation, in contrast to the ‘strongly non-linear’ fluctuations at Z < Zg
when 6 p/p > 1 and the perturbation theory is inapplicable. Using this technique I investigate
the evolution of the perturbations at Z 2 Z¢, when their amplitudes are only slightly smaller
than one, and the interaction between different scales may not be negligible.

The perturbation series for u and v may be written as

p=p® +u® 4 y=vOey@ g (10)

where u®, v® are of order . Substituting (10) into the system of equations (7)—(9), then
taking divergence of both sides of equation (7), using (8) and (9) to eliminate v and p from
the left hand side of (7) and collecting terms of the same order, one finds

[82 +2 dR 90 AnG MW =g 1
atsztat_ﬂp]“ =Y

32 2dR D Vi/d 2dR O . gyy®

[_ +————41TGp] u(2>=__[(_+_)v(1)u(n_(" )V_]. (12)
at* R dt ot RL\otr R dt R
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These equations taken together with the first-order continuity equation,
9 #(1) v .y
+
ot R

define a complete system of three equations in three unknowns, i.e. all that is necessary to
describe the time evolution of the density fluctuations to the second order in their amplitude.

=0 (13)

4 The non-linear growth of small scale inhomogeneities
4.1 THE SHAPE OF THE SPECTRUM

Solving equations (11) and (13) and retaining only the growing modes in the solution (that
is assuming ¢ > Z,ec), One has

Q) = (1) 2/3
Y (x,8) = u (%) (#/trec) ™, (14)

2
b 1) = o) ik K 3580,
Here

b® k,7) = (2n)3 f v (x,7) exp (—ik -x)d3x .

Similarly, af =a® (k,#,.) is the inverse Fourier transform of the initial function u® (x).
When the solution (14) is substituted into the Fourier-transformed equation (12), the result
is

92 2 9 2 1 J'

() — -2/3 ,~4/3 (1) (1) 43

—t+t— ——la ) =—t7°¢ JK,Lk — DotV oy d°1, 15
[aﬁ 3t 0t 3z2] A TR Yt di= (13)
where ¢® (k,?) is the inverse Fourier transform of u® (x,1), and
J(,l,m)=2k*(1-m)(Im)2+5(k -1)[72. (16)

The quantities p and R in (12) were eliminated from (15) with the help of equation (1). The
solution of equation (15) at ¢ > f.. has the form

a® k,r) = ag) (t/trec)4/3 ’ an
where

1
o = 14 J-J(k’l,k —DafPaf) | a®1. (18)

The power spectrum S(k,#) may be expanded in perturbation series

S(k,1) =SB (t/trec)> + S (t/teee)> + . . ., (19)

where S = (@ a®)y;8=1, 2. The first term in (19), which dominates at Z > Z;, describes
the evolution of the fluctuations in the linear regime, when the inhomogeneities on different
scales grow independently of each other. At this stage the shape of the spectrum is preserved
and the rate of growth of the density contrast is the same for all scales. The second term is
expected to become comparable with the first-order term at redshifts close to Zg, when
8p/p < 1. At this stage the interaction between different scales may lead to the change of
the shape of the spectrum and a redistribution of binding energy between different scales.
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The quantity Sl((‘) in (19) is defined by the initial spectrum. From equation (5) and (6)
one finds

SO = (3x 1074/4nkd) [4e/(n + 3)] I f(k/kp) (20)
where

n+2 fi <0017,
) = | o 1)

ly" exp(—2y?) fory > 0.017.

The wavenumber kp in equation (20) corresponds to the damping mass, or to the comoving
length scale 2n/kp (Z + 1) = 24 Mpc (Z + 1)™. The wavenumber 0.017kp, corresponds to the
comoving Jeans mass My = 10"° M.

Multiplying both sides of equation (18) by af?) and averaging, one has

1
(@@ a®)y=sP) = 7 f J&K,Lk — 1) <afVaf  a®)y d®1=

= (14)? f f Jk,Lk —1)J(k,m,k — m) (@ af 1a®,a_ »d®ld®m. (22)
The assumption that the fluctuations are Gaussian gives (Yaglom 1962)

@ af)  a®, a®_ =85OS {531 -m)+83k —1-m)}, (23)
and thus

S = (14)2 f J&k,Lk — 1) {J(k,Lk — D) +J(k,k — L)} S s | g31. (24)

Making use of equations (19), (20), (21) and (24) one is now able to describe the time
development of the power spectrum S(k,#) with a precision up to the second order in the
perturbation theory.

The integral (24) was evaluated numerically for spectral indices » = —1, 0 and 2 and for
wavenumbers 0.017 < k/kp < 17, corresponding to mass scales 10'® > M/M, > 10'°. The
curves, plotted in Figs 1-3 show the resulting spectra of the rms density fluctuations at
Z= Zf =10:

4 k3 1/2
5ofp = {% [SO (k, 1) + 5@ (k,tf)l} 25)

Also shown for comparison are the spectra corresponding to the expectations of the linear
theory,

47Tk3 1/2
(8 0/PVtinear = {—3— SO (k, rf)} (26)

For all values of n considered here the differences between the linear and weakly non-linear
theories are similar. In the linear theory the shape of the spectrum does not change in the
epoch Z,.. > Z > Zg, i.e. the matter distribution on scales < My, is kept uniform, whereas,
taking into account the second-order terms in the equations of motion results at Z 2 Zy in
the appearance of short wave perturbations on scales Mp 2 M 2 0.1 M.

This phenomenon seems to have a simple physical explanation. The non-linear terms in
equations (7) and (9) describe tidal interactions between the neighbouring inhomogeneities.
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Figure 1. The spectrum of the rms density fluctuations at Z = Z¢ = 10 for n = 2. The solid curve corres-
ponds to the expectations of the weakly non-linear theory (equation 25). Also shown for comparison is
the spectrum expected in the linear theory (dashed curve) and the second-order contribution to the spec-
trum, i.e. the quantity (41rk3S(2) (k, t£)/3)"?, indicated by the dotted curve.

Thus the appearance of short wave components in the spectrum suggests that the clumps
with masses 2 Mp are tidally disrupted into smaller units. Moreover, the shift of the cut-off
in the spectrum from M = My, to a tenth of Mp seems to have a simple explanation. Consider
a Fourier series representing v(), and assume that the coefficients for k > kp all vanish,
i.e. there are only large scale matter currents in the first order. Substituting this expansion to
the non-inear term on the right hand side of equations (7) one finds easily that these currents
excite second-order currents on smaller scales, corresponding to kp < k < 2kp. Hence the
cut-off is shifted from M = Mp toM = 23Mp ~ 0.1 Mp.
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Figure 2. The weakly non-linear (solid curve) and linear (dashed curve) spectra of the rms density fluc-
tuations at Z = Z¢ for n = 0.
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Figure 3. As Fig. 2, but forn=—1.

4.2 THE EVOLUTION OF THE CORRELATION FUNCTION

The results of the previous section can also be expressed in terms of the pair correlation
function, defined by

E(r, ) = (u(x +r,0)u(x,0)) = 47TJM Sk,?) sin(kr) k*dk =
0 r
=£0 (1) (/1re )+ £9 (0) (t/10e)*”, @7
where
£0 () = 4n f sP (k )kde
0

It is well known (ZN, Section 12.2) that if there is any preferred scale in the distribution of
matter, then it corresponds roughly to the smallest value of 7 for which ¢ vanishes. In parti-
cular, when the power spectrum has the shape of a delta function, centred at k = kp, the
correlation function vanishes at 7 =n/kp. In this case there are only perturbations with
masses Mp and comoving diameters 27R/kp. Thus 7 = n/kp, corresponds to the ‘typical
radius’ of an inhomogeneity. For more realistic shapes of the power spectrum, when S is
smoothly distributed around k =kp, one expects the correlation function to vanish some-
where in the neighbourhood of 7 = n/kp . For the spectrum (20) with n = 2 one obtains

£ (1) =4.1x10512 — kB r?) exp (—k3 7*/8) . (28)
This function vanishes at
r=rp ~346/kp . (29)

The second-order contribution to the correlation function may be calculated by a numerical
evaluation of the integral E(‘) (r), where S is given by the equations (24), (20) and (21)
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Figure 4. The functions s(l) () (t§/trec)?? and 5(2) () (tt/trec)¥? for n = 2, indicated respectively by the
solid and dashed curve.

with n = 2. The result of this calculation is shown in Fig. 4. The function £®) () vanishes at
r=1.19kp ~ rp/2. (30)

Hence the typical length scale of the fragments produced by tidal disruption of large scale
protostructures is approximately rp/2, in full agreement with the simplified picture of the
fragmentation process given at the end of Section 4.1.

It is interesting also to compare the time evolution of the correlation function given by

equation (27) with that from linear theory. The evolution of both (for the n =2 case) is
shown in Figs 5 and 6.

5 Discussion

Taking into account second-order effects in the gravitational instability theory, I have shown
that the non-linear interaction between long wave adiabatic perturbations with wavenumbers
k < kp acts as a source of short wave harmonics with wavenumbers in the range kp < k <
2kp. Using arguments similar to those at the end of Section 4.1 one may show that the

k

-r

D

Figure 5. The time evolution of the linear correlation function (n = 2). Note that the typical length scale
of the inhomogeneities is the same for all values of Z.
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Figure 6. The time evolution of the weakly non-linear correlation function for n = 2. The typical length
scale decreases with time.

higher-order effects reduce the cut-off in the spectrum progressively (i.e. third-order effects
will shift the cut-off to k = 3kp, etc.). One possible interpretation of this phenomenon is
that we deal with tidally induced fragmentation of large scale inhomogeneities into smaller
units.

However, as it was pointed out by Doroshkevich & Zeldovich (1975), such an interpreta-
tion is correct only if the phases of the higher-order harmonics are statistically independent
from the phases of the first-order perturbations that created them. In the case of phase
coherence the breakdown of the spectrum to short waves is produced by the steepening of
the density profile inside of the inhomogeneities rather than by the formation of distinct
substructures on mass scales < Mp. Thus the validity of assumption (iii) in Section 2 plays
a crucial role for the interpretation of the results obtained in this paper.

It seems hopeless at present to prove or disprove on purely theoretical grounds the validity
of the random phase approximation in this context. It is probably more plausible to treat
this approximation as a statistical hypothesis and to test its validity indirectly, e.g. by com-
paring the predictions based on the random phase approximation with the results of numerical
simulations. The results of two-dimensional numerical simulations of the gravitational insta-
bility process, published recently by Doroshkevich et al. (1980) seem to confirm the results
obtained in the present paper. This is seen when one compares their Fig. 7(a) and (b), showing
two-dimensional distributions of particles obtained (a) according to the approximate theory
and (b) as a result of the numerical experiment (in both cases the initial conditions were
identical and the distribution of points is given for the same time). In their Fig. 7(a) there is
only one preferred scale of clustering (the matter distribution on mass scales < Mp remains
uniform), whereas in their Fig. 7(b) there appear to be density inhomogeneities on a scale
much smaller than Mp. These are seen as compact clusters of particles in regions where the
tidal interactions between the neighbours appear to dominate over their self-gravity, and
what is actually seen in Fig. 7(b) may be just the process of tidal fragmentation of large
scale inhomogeneities into smaller units. However, it might also be a consequence of discrete-
ness effects in the initial distribution of particles of the numerical experiment.

If the random phase approximation is valid one may expect serious departures from the
Doroshkevich et al. (1974; cf. also Zeldovich 1978) scenario for galaxy formation. In the
Qh?=0.1 cosmological model, favoured by these authors, the Silk mass is of the order of
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the masses of clusters of galaxies. After recombination perturbations on scales > Mp, which
survived damping, start to grow. It is assumed that their growth is well described by the
linear gravitational instability theory up to the redshift Z¢ = Q7!, when §p/p=1. At Z =
Zs the inhomogeneities cease to expand with the Hubble flow and start to contract in
aspherical manner. An approximate heuristic theory is used to describe their behaviour in
the non-linear stage of their collapse (Z < Z¢, § p/p > 1). This approximate theory does not
describe the interactions between the neighbouring perturbations, but only the self-gravity
of each perturbation alone. The matter distribution on mass scales <My, is kept uniform
(simply because all tidal effects are neglected). The presumed failure of gas to fragment
leads to the formation of shock fronts and caustic surfaces on scales 2 Mp and all proto-
cluster clouds are compressed into thin layers called ‘pancakes’. The infall energy is therm-
alized and radiated away. Galaxies form due to the fragmentation process, caused by the
thermal instability, which takes place after the collapse is completed. Thus galaxies form
later than their clusters.

The above picture changes when the tidal processes are taken into account. In this case,
large scale inhomogeneities start to fragment at Z > Z;, before the beginning of their collapse
and this prevents large scale shock formation. What one might expect to happen at Z < Zg,
is something between the N-body, or ‘stellar-dynamical’ picture (when the collapse of a
protocluster ends with the violent relaxation) and the ‘purely hydrodynamical’ picture of
the pancake theory. The fragmentation may be complete enough to avoid large scale shock
formation but not so complete to prevent cloud—cloud collisions between the fragments.
The large scale cellular structure of the matter distribution in the Universe, expected in the
standard version of the pancake theory (Zeldovich 1978) is probably weakened. The resulting
large scale distribution of matter in the Universe may then correspond to a compromise
between the hierarchical clustering (cf. Rees 1978) and the pancake picture. Accurate N-body
calculations are necessary to judge finally whether the phases are random or coherent and
whether tidal interaction really leads to fragmentation.
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