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We consider the free boundary problem for the evolution of a nearly straight slender
fibre of viscous fluid. The motion is driven by prescribing the velocity of the ends of
the fibre, and the free surface evolves under the action of surface tension, inertia and
gravity. The three-dimensional Navier–Stokes equations and free-surface boundary
conditions are analysed asymptotically, using the fact that the inverse aspect ratio,
defined to be the ratio between a typical fibre radius and the initial fibre length, is
small. This first part of the paper follows earlier work on the stretching of a slender
viscous fibre with negligible surface tension effects. The inclusion of surface tension
seriously complicates the problem for the evolution of the shape of the cross-section.
We adapt ideas applied previously to two-dimensional Stokes flow to show that the
shape of the cross-section can be described by means of a conformal map which
depends on time and distance along the fibre axis. We give some examples of suitable
relevant conformal maps and present numerical solutions of the resulting equations.
We also use analytic methods to examine the coupling between stretching and the
evolution of the cross-section shape.

1. Introduction

There is a large body of literature on the flow of slender viscous jets. Most
of the previous work is motivated by the processes of optical or synthetic fibre
draw-down, shown schematically in figure 1. Here a liquid fibre is extruded from a
nozzle and stretched under the tension applied at its other end. The flow in such
a process is typically (i) axisymmetric and (ii) steady, and the emphasis of previous
modelling efforts has tended to reflect these properties. Thus, (i) the axisymmetric
Navier–Stokes equations (or suitable generalization if the fibre is non-Newtonian)
and free-surface conditions are usually taken as a starting point in the analysis,
and (ii) time dependence is often only considered when determining the stability or
otherwise of a particular steady state. The reader is referred to Howell (1994) for a
more comprehensive overview of fibre-drawing processes.

Even when these assumptions are adopted, the axisymmetric free-boundary problem
is formidable in general, and the other property of fibre draw-down that makes it
ripe for mathematical simplification is the slenderness of the geometry. This can
be characterized by the inverse aspect ratio ǫ, defined to be the ratio between a

† Present address: Laboratoire de Physique Statistique, École Normale Supérieure, 75231 Paris
Cedex 05, France.
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Figure 1. Schematic diagram of a fibre draw-down process.

Figure 2. Schematic diagram of an optical fibre coupling process.

characteristic cross-sectional radius of the fibre and a typical length. When ǫ is small
(it may be O(10−3) for a draw-down process), greatly simplified models can be derived
by expanding the governing (e.g. Navier–Stokes) equations and free-surface conditions
in powers of ǫ – see for example Schultz & Davis (1982) or Ting & Keller (1990).

The original motivation for the current work is the manufacture of optical fibre
couplers, shown schematically in figure 2. These are designed to allow signals carried
by several different optical fibres to interact. Typically, they are produced by combining
two or more strands of optical fibre which are then heated, twisted and/or stretched.
Once the glass has melted, surface tension causes the fibres to coalesce, eventually
forming a single axisymmetric fibre – a phenomenon known as viscous sintering. It is
clear that in such a process the flow is inherently both non-axisymmetric and unsteady.
However, it does have a small inverse aspect ratio, and this fact can still be used to
obtain a simplified model from the three-dimensional Navier–Stokes equations and
free-surface conditions.
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This work follows the papers of Dewynne, Ockendon & Wilmott (1992) and
Dewynne, Howell & Wilmott (1994), in which systematic asymptotic methods are
used to derive equations governing the evolution of a slender, non-axisymmetric,
Newtonian viscous fibre. In Dewynne et al. (1992) the analysis is restricted to viscous
effects, while Dewynne et al. (1994) include the effects of inertia and gravity. In the
latter paper, surface tension is also briefly considered, but only in the limit of large
capillary number (in a sense to be defined later), in which it is shown to be negligible.
In both papers, it is found that each material cross-section of the fibre preserves its
shape as the fibre evolves, while undergoing a lateral translation, rotation and affine
scaling in size. Indeed, this property is crucial for the solution procedure adopted for
finding the twist of the fibre about its axis, namely transforming to a suitably scaled
Lagrangian frame in which the geometry of the fibre is fixed.

It is clear that this shape-preserving property does not apply to the fibre-coupling
process outlined above. In fact the change in shape of the cross-section, as it evolves
towards a circle under surface tension, is crucial to the success of the process. Therefore
in §§ 2–3 of this paper we extend the work of Dewynne et al. (1994) to flows where
the capillary number is somewhat smaller (again, in a sense to be clarified later)
and surface tension effects cannot be neglected. Several serious extra complications
result, not least the fact that the shape of the cross-section is no longer known in
advance: we have to obtain and solve a free-boundary problem for its evolution. This
is particularly bothersome since we find that the shape of the cross-section enters
the equations governing the axial stretching of the fibre. Moreover, since the option
of transforming to a frame in which the fibre has fixed shape is no longer available,
there are serious mathematical difficulties in finding the lateral translation and twist
of the fibre, which we have thus far been unable to overcome.

However, in § 4 we show that the evolution of the shape of the cross-section
decouples from these transverse motions, and is governed by a quasi-two-dimensional
free-boundary problem similar to two-dimensional Stokes flow with a surface-tension-
driven boundary. Thus we are able to exploit the complex-variable methods pioneered
by Hopper (1990) and Richardson (1992) to find remarkably simple equations for
the evolution of a large class of cross-section shapes; two examples are given in § 5.
Further simplification of the method is obtained in § 6 by considering a fibre whose
cross-section is nearly circular. This enables us to make some general statements
about the final stages of the sintering process. Then in § 7 we present some sample
numerical solutions which illustrate the various effects of surface tension, viscosity,
inertia and gravity on the fibre evolution.

A Lagrangian coordinate transformation is employed in § 8 to elucidate the coupling
between stretching and sintering of the fibre. The difficulty of the problem for
lateral translation and rotation of the fibre is described further in § 9, and our final
conclusions and a discussion of the implications of our numerical results are given in
§ 10. Details of certain manipulations are given in the Appendices.

2. The three-dimensional mathematical model

We consider the flow of a jet or fibre of viscous liquid like that shown schematically
in figure 3. In setting up the problem we follow Dewynne et al. (1992, 1994), and
use much the same notation. The fluid flow within the fibre is governed by the
Navier–Stokes equations,

ρ(ut + (u · ∇)u) = −∇p+ µ∇2u + ρg(cos β, sin β, 0), (2.1a)

∇ · u = 0, (2.1b)
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Figure 3. Definition sketch of a slender viscous fibre. The dotted line is the centre-line of the fibre,
and the two ends are given by x = s1(t), s2(t).

where ρ and µ are the (constant) fluid density and viscosity, p and u = (u, v, w) are the
pressure and fluid velocity, and g is the acceleration due to gravity (assumed to act
at an angle β to the x-axis). If the free surface of the fibre is given by G(x, y, z, t) = 0,
then the kinematic and stress boundary conditions may be written as

Gt + u · ∇G = 0, σ · ∇G = −γκ∇G, on G = 0, (2.2)

where γ is the coefficient of surface tension, κ is the mean curvature of the interface,
and σ = {σij} is the usual Newtonian stress tensor, given by

σij = −pδij + µ

(

∂ui

∂xj
+
∂uj

∂xi

)

.

Initially the fibre shape and fluid velocity must be specified; the problem is then
closed by prescribing the velocities of the two ends of the fibre, say

u = u∗
1 at x = s1(t), u = u∗

2 at x = s2(t). (2.3)

For example, we might imagine the two ends of the fibre to be attached to rigid
planes perpendicular to the x-axis. In this case, the components v∗

i and w∗
i define a

rigid-body motion corresponding to the lateral translation and twist applied at the
ends, and u∗

i = ṡi.
The equations are non-dimensionalized in the obvious manner, assuming that the

‘slenderness parameter’ ǫ= (typical fibre radius)/(initial fibre length, L), is small. We
set

(x, y, z) = L(x̄, ǫȳ, ǫz̄), t =
L

U
t̄,

u = U(ū, ǫv̄, ǫw̄), p =
µU

L
p̄, κ =

1

ǫL
κ̄,

where U is a typical pulling speed. Notice that by applying these scalings we also
implicitly assume that the fibre is nearly straight, and choose the x-axis to lie
approximately along its centre-line (as shown in figure 3). For a fibre where the
curvature of the centre-line is not small, a fixed Cartesian coordinate system fails
to capture the geometry, and curvilinear coordinates fixed in the moving fibre are
preferable – see Howell (1994).
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The important dimensionless parameters are the Reynolds, capillary and Stokes
numbers, given by

Re =
ρUL

µ
, Ca =

µU

γ
, St =

ρL2g

µU
.

In all the derivations to follow we assume that Re and St are both O(1), so that
viscous stresses, inertia and the axial component of gravity are all balanced. Notice,
however, that a typical (dimensional) transverse displacement of the fibre due to
gravity is

y ∼ StL sin β.

This scaling estimate can be obtained from a transverse force balance on the fibre
as a whole: (tension) × (curvature) ∼ (gravity) where, if S is the area of the fibre
cross-section, tension ∼ µSU/L, curvature ∼ y/L2 and gravity ∼ ρgS sin β. Since in
this paper we assume that y ∼ ǫL we must either have small gravity (St = O(ǫ)), in
which case the axial component of gravity is negligible, or take the axis of the fibre
to be almost vertical: β = O(ǫ).

For the capillary number, Dewynne et al. (1994) assume Ca = O(ǫ−3), so surface
tension effects appear only at O(ǫ2) and do not affect the leading-order problem.
Here we consider the case where Ca = O(ǫ−1), and surface tension does enter the
leading-order problem. We thus define a dimensionless surface tension coefficient,

γ∗ =
1

ǫCa
= O(1).

In summary, the scaling assumptions employed in this paper, namely

Re = O(1), Ca = O(ǫ−1), St = O(1), β = O(ǫ), (2.4)

are chosen such that a leading-order balance is obtained between all the desired effects
of viscosity, surface tension, inertia and gravity. Thus we obtain the most general
leading-order model, which should be applicable to a wide variety of slender-jet flows.
If in practice the scalings are different from (2.4) then we can deduce that one or
more of these physical effects is negligible, and the correct leading-order equations
can be obtained from our model by letting the appropriate parameters tend to zero
or to infinity. For example, Howell (1994) gives the following approximate scalings
for the optical fibre coupling process:

ǫ ∼ 10−3, Re ∼ 10−7, Ca ∼ 103, St ∼ 10−2. (2.5)

Hence for this process, there is a leading-order balance between viscosity and surface
tension, but we can probably neglect inertia and gravity (i.e. set Re = St = 0).

Before moving on to the asymptotic analysis we quote the following transport
theorems, introduced in Dewynne et al. (1992), which will be used in § 3 to simplify
the equations:

∂

∂t

∫ ∫

S

φ dy dz =

∫ ∫

S

∂φ

∂t
dy dz −

∮

∂S

Gtφ ds

(G2
y + G2

z)
1/2
, (2.6a)

∂

∂x

∫ ∫

S

φ dy dz =

∫ ∫

S

∂φ

∂x
dy dz −

∮

∂S

Gxφ ds

(G2
y + G2

z)
1/2
, (2.6b)
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∫ ∫

S

∂φ

∂y
dy dz =

∮

∂S

y
(Gyφy + Gzφz) ds

(G2
y + G2

z)
1/2

−
∫ ∫

S

y(φyy + φzz) dy dz, (2.6c)

∫ ∫

S

∂φ

∂z
dy dz =

∮

∂S

z
(Gyφy + Gzφz) ds

(G2
y + G2

z)
1/2

−
∫ ∫

S

z(φyy + φzz) dy dz. (2.6d)

Here S is any cross-sectional slice of the fibre in the (y, z)-plane and φ(x, y, z, t) is
any twice continuously differentiable function.

3. Asymptotic analysis and one-dimensional model

The asymptotic analysis is very similar to that of Dewynne et al. (1994), and we omit
unnecessary details. After non-dimensionalizing (2.1) and (2.2) acording to (1), we
drop the overbars and expand each of the unknown functions (including the a priori
unknown free boundary G(x, y, z, t)) as power series in ǫ2 (e.g. u ∼ u0+ǫ

2u1+ǫ
4u2+· · ·).

The leading-order Navier–Stokes equations, kinematic and stress boundary conditions
are easily seen to be

u0yy + u0zz = 0, (3.1a)

v0yy + v0zz = p0y , (3.1b)

w0yy + w0zz = p0z , (3.1c)

u0x + v0y + w0z = 0, (3.1d)

G0t + u0G0x + v0G0y + w0G0z = 0 on G0 = 0, (3.1e)

G0yu0y + G0zu0z = 0 on G0 = 0, (3.1f)

G0xu0y + G0y (−p0 + 2v0y ) + G0z (v0z + w0y ) = −γ∗κ0G0y on G0 = 0, (3.1g)

G0xu0z + G0y (v0z + w0y ) + G0z (−p0 + 2w0z ) = −γ∗κ0G0z on G0 = 0. (3.1h)

The leading-order axial velocity u0 satisfies a homogeneous Neumann problem
(3.1a, f) which implies that it is independent of y and z, that is

u0 = u0(x, t). (3.2)

Then, exactly as in Dewynne et al. (1994), by applying the transport theorems (2.6a, b)
to the leading-order kinematic condition (3.1e), we obtain an equation representing
global conservation of mass:

S0t + (u0S0)x = 0, (3.3)

where S0 is the leading-order cross-sectional area,

S0 =

∫ ∫

S0

dy dz.

The cross-flow components of the stress boundary condition (3.1g, h) differ from
those found by Dewynne et al. (1994) because of the surface tension terms on the right-
hand sides. The general solution of the leading-order cross-flow problem with zero
surface tension ((3.1b, c, d, g, h) with γ∗ ≡ 0) was found by Dewynne et al. (1994) to be

PZST = −u0x , (3.4a)

VZST = y∗
t + u0y

∗
x − 1

2
u0x(y − y∗) + c(x, t)(z − z∗), (3.4b)

WZST = z∗
t + u0z

∗
x − 1

2
u0x(z − z∗) − c(x, t)(y − y∗), (3.4c)
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where y∗(x, t), z∗(x, t) and c(x, t) are arbitrary functions. Physically, (y∗, z∗) represents
the centre-line of the fibre, defined to be the line joining the centre of mass of each
cross-section,

r∗(x, t) =

(

y∗(x, t)
z∗(x, t)

)

=
1

S0

∫ ∫

S0

(

y
z

)

dy dz,

while c corresponds to rotation in the (y, z)-plane:

c =
1

I

∫ ∫

S0

(z − z∗)v0 − (y − y∗)w0 dy dz, (3.5)

where I is the moment of inertia of the cross-section,

I =

∫ ∫

S0

(y − y∗)2 + (z − z∗)2 dy dz. (3.6)

The subscripts ZST refer to the fact that (3.4) is a solution of the leading-order
zero-surface-tension problem. As noted in Dewynne et al. (1994), from this form of
the transverse velocity field, one can deduce that each material cross-section of the
fibre maintains its shape, while undergoing lateral translation, twist and affine scaling.

For non-zero γ∗, (3.4) is no longer a solution (though we make use of it in § 4)
so this shape-preserving property is lost. We instead proceed by rewriting equations
(3.1b, c) in the form

(−p0 + 2v0y )y + (v0z + w0y )z = 0,

(v0z + w0y )y + (−p0 + 2w0z )z = 0,

so that we may introduce an Airy stress function A for the cross-flow, such that

−p0 + 2v0y = Azz , (3.7a)

v0z + w0y = −Ayz , (3.7b)

−p0 + 2w0z = Ayy . (3.7c)

The problem satisfied by A is

∇̂4A = 0 in S0; A = 0,
∂A
∂n̂

= −γ∗ on ∂S0, (3.8)

where ∇̂ = (0, ∂y , ∂z) is the two-dimensional gradient operator, and n̂ = ∇̂G0/|∇̂G0| is
the two-dimensional normal to the cross-section.† If G0 is known then A is given
uniquely by (3.8); in particular, A ≡ 0 if and only if γ∗ = 0. However in general
the boundary-value problem for A must be solved anew at each time-step as the
cross-section evolves according to the kinematic condition (3.1e).

Once A is known the leading-order pressure and transverse velocity gradients are
found using (3.7):

p0 = − 1
2
(Ayy + Azz) − u0x , (3.9a)

† The problem (3.8) has been simplified in the usual way using the fact that A is only defined
up to a linear function of y and z. By substituting (3.7) into the boundary conditions (3.1g, h) one

can readily deduce that ∇̂A + γ∗n̂ is constant on the boundary. However, this constant vector may
without loss of generality be set to zero, resulting in ∂A/∂n̂ = −γ∗, A = constant. Finally, this
constant may also be chosen to be zero, resulting in the standard boundary conditions (3.8).



368 L. J. Cummings and P. D. Howell

v0y = 1
4
(Azz − Ayy) − 1

2
u0x , (3.9b)

w0z = 1
4
(Ayy − Azz) − 1

2
u0x . (3.9c)

However, these do not determine v0 and w0 uniquely, for the zero-surface-tension
solution (3.4) serves as an eigenfunction of the homogeneous problem ((3.9) with
A ≡ 0). The lack of uniqueness in the leading-order cross-flow corresponds to the
property of two-dimensional Stokes flow with surface tension that an arbitrary rigid-
body motion can be added to the flow. To determine v0 and w0 uniquely we must
proceed to higher order and find three equations governing the lateral motion and
rotation of the cross-section (i.e. the three arbitrary functions y∗, z∗ and c).

The problem for the first-order axial velocity is simply the x-component of the
Navier–Stokes equation and stress boundary condition at order ǫ2, namely†

u1yy + u1zz = Re(u0t + u0u0x) + p0x − u0xx − St cos β in S0; (3.10a)

u1yG0y + u1zG0z = G0x(p0 − 2u0x − γ∗κ0) − G0yv0x − G0zw0x on ∂S0. (3.10b)

Now we apply the solvability condition, which for this inhomogeneous Neumann
problem is just the identity

∫ ∫

S0

∇̂2u1 dy dz =

∮

∂S0

∂u1

∂n̂
ds. (3.11)

The evaluation of the integrals involves some tedious manipulations, the details of
which can be found in Appendix A. Denoting by Γ0 the leading-order circumference
of the cross-section,

Γ0 =

∮

∂S0

ds,

the resulting equation is

(3S0u0x)x = ReS0(u0t + u0u0x) − S0St cos β − 1
2
γ∗Γ0x , (3.12)

which is an axial stress balance for the fibre (identical to equation (16) of Dewynne et
al. (1994) when γ∗ ≡ 0). Once this solvability condition has been satisfied, assuming
G0 is known (3.10) determines u1 up to an arbitrary function of x and t.

To recap, thus far we have two equations (3.3), (3.12) for the leading-order axial
velocity u0, cross-sectional area S0 and circumference Γ0 of the fibre. In the zero-
surface-tension limit γ∗ → 0, we retrieve the closed system for u0 and S0 found by
Dewynne et al. (1994). Alternatively, if the cross-section is assumed to be circular, then
we have Γ0 = 2

√
πS0 and so again a closed problem for u0 and S0 is obtained (indeed

this model has been used previously to model axisymmetric fibres, for example by
Eggers & Dupont (1994)). However, in general to make further progress with (3.3)
and (3.12) we need to know how Γ0 and S0 are related, that is we must determine
how the shape of the cross-section evolves.

Before attempting to do so, we derive equations for the lateral translation and twist
of the fibre from solvability conditions for the first-order cross-flow. The equations

† Note that in this and other similar equations to come, we do not assume G1 = 0; it would be
inconsistent to do so since according to the O(ǫ2) term in (2.2) G1 evolves subject to the first-order
velocity components. It simply transpires that the coefficients of terms involving G1 are identically
zero.
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and boundary conditions at O(ǫ2) are

u1x + v1y + w1z = 0, (3.13a)

Re(v0t + u0v0x + v0v0y + w0v0z ) = St sin β/ǫ− p1y + v0xx + v1yy + v1zz , (3.13b)

Re(w0t + u0w0x + v0w0y + w0w0z ) = −p1z + w0xx + w1yy + w1zz , (3.13c)

G0x(u1y + v0x) + G0y (−p1 + 2v1y ) + G0z (v1z + w1y ) = −γ∗κ1G0y on∂S0, (3.13d)

G0x(u1z + w0x) + G0y (v1z + w1y ) + G0z (−p1 + 2w1z ) = −γ∗κ1G0z on ∂S0, (3.13e)

where κ1 is the first-order perturbation to the mean curvature of the free surface.
Integration of (3.13b) and (3.13c) over the cross-section with the boundary conditions
(3.13d) and (3.13e) gives the lateral force balance. One can use the equations and
boundary conditions satisfied by u1, v0, w0 and p0 to eliminate them from the integrated
equations, and thus write the surface tension terms in a form which depends only on
the shape of the cross-section. Further details of the required calculation are given in
Appendix B; their result is the following equation for the motion of the centre-line
r∗(x, t):

(Reu2
0 − 3u0x)r

∗
xx + 2Reu0r∗

xt + Rer∗
tt − (St sin β/ǫ)j + St cos βr∗

x

= − γ∗

S0

{

Γ0

2
r∗
xx + Γ0xr

∗
x +

1

2

∂2

∂x2

∮

∂S0

(r − r∗)ds

+
∂

∂x

∮

∂S0

(r − r∗)κ0G0xds
√

G2
0y

+ G2
0z

+

∮

∂S0

κ1n̂ds

}

, (3.14)

where j is (as usual) the unit vector in the y-direction. This equation should be
compared with its zero-surface-tension counterpart, (22) in Dewynne et al. (1994),
and the details of the derivation are similar. Note from the inhomogeneous terms on
the right-hand side that if ∂S0 lacks symmetry then surface tension can impart lateral
momentum to the cross-section, that is r∗ ≡ 0 may not be a solution.

An equation for the twist of the fibre about its axis can also be obtained by taking
moments of (3.13b) and (3.13c), before integrating over the cross-section S0. Further
details are given in Appendix C, where the following equation is obtained:

∂

∂x

∫ ∫

S0

{y(w0x + u1z ) − z(v0x + u1y )} dy dz = ReS0(L0t + u0L0x)

− S0Stz
∗ sin β

ǫ
+ γ∗

∮

∂S0

κ1(yG0z − zG0y )ds
√

G2
0y

+ G2
0z

, (3.15)

where L0 is the average (leading-order) angular momentum of the cross-section,

L0 =
1

S0

∫ ∫

S0

(yw0 − zv0) dy dz.

In general the problem must be solved as follows. Given the shape of the cross-
section at some time, the axial velocity u0 may be found from (3.12). Then (3.8) must
be solved for A, in terms of which v0 and w0 are determined up to an arbitrary
rigid-body motion. The rigid-body translation is given by (3.14) and the rotation by
(3.15), which also requires the solution of the Neumann problem (3.10) for u1. Once
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u0, v0 and w0 have been found, the evolution of the cross-section is given by the
kinematic boundary condition (3.1e).

Clearly, a complete solution of the leading-order problem is a formidable task in
general, and one which we shall not attempt. For example, the equation (3.15) for the
twist of the fibre involves the solution u1 of a Neumann problem (3.10) which must be
evaluated anew at each time-step as the cross-section evolves. Dewynne et al. (1994)
showed that when γ∗ = 0 the problem can be greatly simplified by transforming to
suitably defined Lagrangian variables, in which the geometry of the fibre is fixed,
so that the Neumann problem (3.10) need only be solved once. The success of this
approach relies on the shape-preserving property of zero-surface-tension fibres noted
earlier. With γ∗ 6= 0 this property is lost, so the twisting problem does not appear to
be significantly simplified by a Lagrangian approach.

An even greater hurdle is the presence of the first-order free-surface curvature κ1

in equations (3.14), (3.15); we discuss the implications of this further in § 9. Therefore
in this paper we do not attempt to solve for the lateral motion and twist of the
fibre. Nonetheless significant progress can still be made, since in the following Section
we show that the evolution of the shape of the cross-section can be determined
independently of the translation and twist.

4. The use of complex-variable methods to determine the evolution

of the shape of the cross-section

Throughout this section we drop the suffices on the leading-order variables, so
that G0, κ0, S0, p0, u0, . . . are replaced by G, κ, S , p, u, . . . . Consider the problem for
the leading-order cross-flow, (3.1b–d), with boundary conditions (3.1e, g, h). We first
subtract off the zero-surface-tension eigensolution (3.4), setting

p = PZST + p̃, v = VZST + ṽ, w = WZST + w̃.

As a result of this definition, ṽ and w̃ satisfy
∫ ∫

S

(

ṽ
w̃

)

dy dz = 0,

and the function c(x, t) is chosen to account for the net rotation of the cross-section,
so that

∫ ∫

S

((y − y∗)w̃ − (z − z∗)ṽ) dy dz = 0. (4.1)

Hence with respect to the tilded variables, the cross-section has no linear or angular
momentum.

In terms of these new variables the cross-flow problem becomes

ṽy + w̃z = 0, (4.2a)

ṽyy + ṽzz = p̃y , (4.2b)

w̃yy + w̃zz = p̃z , (4.2c)

Gy(−p̃+ 2ṽy) + Gz(ṽz + w̃y) = −γ∗κGy on G = 0, (4.2d)

Gy(ṽz + w̃y) + Gz(−p̃+ 2w̃z) = −γ∗κGz on G = 0, (4.2e)

which is the same as the problem of two-dimensional Stokes flow with a surface
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tension driven boundary, though with a modified kinematic condition:

Gt + ṽGy + w̃Gz = −uGx − (y∗
t + uy∗

x)Gy − (z∗
t + uz∗

x)Gz

+ 1
2
ux((y − y∗)Gy + (z − z∗)Gz) + c((y − y∗)Gz − (z − z∗)Gy) on G = 0. (4.3)

In the classical two-dimensional Stokes flow problem, the right-hand side of (4.3) is
zero. The extra terms in our problem arise from (i) flow between adjoining cross-
sections (the terms involving the axial velocity u) and (ii) the translation and rotation
of the cross-section (represented by y∗, z∗ and c). If, in (4.3), the axial velocity u is
set to zero, the well-known invariance of the two-dimensional Stokes flow problem
and (stress) boundary conditions with respect to any rigid-body motion can be used
to eliminate y∗, z∗ and c so that the right-hand side of (4.3) is identically zero and
the classical two-dimensional Stokes flow problem is recovered. Hopper (1990) and
Richardson (1992) showed that in many cases exact solutions to this problem may
be found in terms of a time-dependent univalent map f(ζ, t) from the unit disc
{|ζ| 6 1} onto the cross-section, and Richardson (1992) gave a general procedure for
constructing such solutions when the mapping function is rational. In this Section we
closely follow the approach of that paper, showing how the ideas can be adapted to
our problem.

We write the velocity components ṽ, w̃ in terms of a streamfunction ψ:

ṽ = ψz , w̃ = −ψy .
As a consequence of (4.2b, c), ψ must satisfy the biharmonic equation and so, using
the Goursat representation of biharmonic functions, may be expressed in the form

ψ = −Im
{

Z̄φ(Z) + χ(Z)
}

,

where φ and χ are analytic functions of the complex variable Z = y+iz for (y, z) ∈ S .
These ‘Goursat functions’ provide a complete description of the flow, and all physical
quantities of interest may be written in terms of them; for instance the velocity
components and pressure are given by

ṽ + iw̃ = φ(Z) − Zφ′(Z) − χ′(Z),

p̃ = −4Re {φ′(Z)} .
The stress boundary conditions (4.2d, e) are easily seen to combine to give the single

complex boundary condition

φ(Z) + Zφ′(Z) + χ′(Z) =
iγ∗

2

dZ
ds
, (4.4)

where s is arclength around the cross-section (measured in the anticlockwise sense in
the (y, z)-plane).

Assuming that the boundary is an analytic curve, the cross-section S(x, t) may be
described as the image of the unit disc {|ζ| 6 1} under a univalent map f : ζ 7→ Z
which depends on distance x along the fibre, and on t. For simplicity we first eliminate
rotation and translation of S and write

Z = Z∗(x, t) + f(ζ; x, t)e−iα(x,t),

where Z∗ = y∗ + iz∗ is the centre-line of the fibre and α(x, t), which represents the
rotation, is related to the function c(x, t) by

αt + uαx = c. (4.5)



372 L. J. Cummings and P. D. Howell

Henceforth the dependence of the various functions on x and t will be implicit; we
shall denote fζ(ζ, x, t) by f′(ζ), and so on.

Following Richardson (1992) we observe that dZ/ds in (4.4) has the representation

dZ
ds

= iζ
f′(ζ)

(

f̄′(1/ζ)f′(ζ)
)1/2

on |ζ| = 1,

in terms of ζ. One then splits up the square-root term in the denominator of the
right-hand side as

(

f′(ζ)f̄′(1/ζ)
)−1/2

= F+(ζ) − F−(ζ), (4.6)

where F+(ζ) is analytic inside the unit circle, and F−(ζ) is analytic outside the unit
circle, and decays to zero at infinity (this latter condition ensures the uniqueness of
the decomposition (4.6); explicit formulae for the functions F+, F− are given in
Richardson 1992).

Defining the complex functions†
Φ(ζ) = φ(f(ζ)), X(ζ) = χ(f(ζ)),

the stress boundary condition (4.4) holding on ∂S in the Z-plane can then be
transferred to the unit circle in the ζ-plane and written in the form (analogous to
equation (2.18) of Richardson 1992)

Φ(ζ) +
γ∗

2
F+(ζ)ζf′(ζ) = −(Z∗ + f(ζ)e−iα)

Φ̄′(1/ζ)

f̄′(1/ζ)

−eiα X̄′(1/ζ)

f̄′(1/ζ)
+
γ∗

2
F−(ζ)ζf′(ζ). (4.7)

This equation holds not only on |ζ| = 1, but everywhere these functions are defined
in the ζ-plane, by analytic continuation. The kinematic boundary condition (4.3) may
also be translated into complex-variable notation. The result (which is analogous to
the second equation on p. 199 in Richardson 1992) is

Re

{

1

ζf′(ζ)

[

2Φ(ζ)eiα − (ft(ζ) + ufx(ζ) + 1
2
uxf(ζ))

]

+ γ∗F+(ζ)

}

=
γ∗

2
F+(0), (4.8)

holding on |ζ| = 1.
In the two-dimensional problem of Richardson (1992), symmetry of the fluid

domain about the x-axis (our y-axis) is assumed, which enables (4.8) to be simplified.
The equivalent assumption in our analysis is that the cross-section be symmetric
about some axis which rotates with the angular speed c of the fibre. Insisting that
this symmetry is preserved ensures that the angular momentum of the cross-section
in the rotating frame is zero (as required by (4.1)). Without loss of generality then
we may take f(ζ) and Φ(ζ)eiα to be real whenever ζ is real. We also assume that
the centre-line coordinate Z∗ is everywhere inside the cross-section S , so that as in
Richardson (1992) we may take f(0; x, t) = 0 and Φ(0; x, t) = 0 for all x and t. With
these assumptions the argument presented in Richardson (1992) follows through here,
and we deduce that the function in curly brackets on the left-hand side of (4.8) is a
real constant equal to the one on the right-hand side. That is, we may simply remove
the ‘Re’ from the left-hand side and thus obtain a second globally holding equation
(analogous to (2.19) in Richardson 1992).

† NB: There is a slight difference between our notation and that of Richardson (1992); he defines
a function X(ζ) = χ′(f(ζ)). This is related to our function X(ζ) by X(ζ) = X′(ζ)/f′(ζ).
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We can substitute for Φ(ζ) from this equation in (4.7) (if we first replace ζ by 1/ζ in
(4.7) and take the complex conjugate). This yields a functional equation for X′(ζ) in
terms of quantities which depend only on the mapping function f and the axial velocity
u. When doing this it is helpful to define the differential operators D := ∂t + u∂x + ux,
and E := ∂t+u∂x+ux/2, where the ux terms are understood only to multiply whatever
function the operator is acting on (so for example D[ · ] = ( · )t + (u · )x). The result is

D[f′(ζ)f̄(1/ζ)] + e−iαZ̄∗ ∂

∂ζ

[

E[f(ζ)] +
γ∗

2
ζf′(ζ)G(ζ)

]

+ 2e−iαX′(ζ)

=
γ∗

2

∂

∂ζ
[ζf′(ζ)f̄(1/ζ)G(ζ)], (4.9)

where G(ζ) := 2F+(ζ)−F+(0). The explicit formula for G follows from the expression
for F+ given in Richardson (1992), and is

G(ζ) =
1

2πi

∮

|τ|=1

1

|f′(τ)|

(

τ+ ζ

τ− ζ

)

dτ

τ
, |ζ| 6 1, (4.10)

the analytic continuation of this function being understood if we wish to extend (4.9)
outside the unit disc.

The solution procedure is to propose a suitable rational map f whose coefficients
depend on x and t, and then to equate the singularities within the unit disc on either
side of equation (4.9), using the fact that X(ζ) must be analytic there. This procedure
yields a system of partial differential equations for the coefficients of f, which depend
also on the axial velocity u(x, t). The system of PDEs is closed by the axial stress
balance (3.12), and the solution is completed by solving the coupled system. Once
the coefficients of the map have been found, the evolution of the cross-section is
determined.

4.1. Conservation laws for viscous fibres

It is interesting to note that the complex-variable formulation of § 4 allows a quick
alternative derivation of some of the results of Dewynne et al. (1992, 1994). There,
surface tension effects are assumed to be negligible (and Dewynne et al. 1992 also
neglect inertia and gravity). Consider the quantities Ck(x, t) defined (for integers k > 0)
by the integrals over the cross-section,

Ck(x, t) :=

∫ ∫

S

ζ(z)k dy dz. (4.11)

Applying Green’s theorem in complex form (see Nehari 1975 for example) we can
express the Ck as integrals around the boundary ∂S , and hence as integrals around
the unit circle in the ζ-plane:

Ck =
1

2i

∮

∂S

ζk z̄dz =
1

2i

∮

|ζ|=1

ζkf′(ζ)f̄(1/ζ)dζ.

Then, multiplying equation (4.9) (with γ∗ = 0) through by ζk and integrating around
the unit circle yields the infinite system of conservation laws,

D[Ck] = 0 (k > 0), (4.12)

where D is the operator defined earlier. Thus the quantities Ck(x, t) are all conserved
with respect to the operator D. This is analogous to the usual two-dimensional result
that zero-surface-tension Stokes flow is completely trivial in the absence of driving
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singularities (see Cummings, Howison & King 1997 for the two-dimensional case
of this analysis, with a driving singularity). The k = 0 equation is exactly the mass
conservation result (3.3).

In terms of the usual convective derivative, (4.12) reads

1

Ck

DCk
Dt = −ux, (4.13)

which shows that for each material cross-section of the fibre, all of the quantities Ck
evolve at the same rate: the local rate of extension. This is equivalent to the shape-
preserving property of zero-surface-tension fibres noted by Dewynne et al. (1992,
1994).

A similar system of equations for the Ck may be written down for the non-zero-
surface-tension case, and is

D[Ck] =











0 (k = 0),

−kγ
∗

2

∞
∑

r=0

G(r)(0)

r!
Ck+r (k > 1).

(4.14)

The above result holds when all physical effects considered in this paper are included;
however the notation employed (suppressing the x and t dependence) makes it look
deceptively simple. The function G is defined in (4.10) in terms of an integral involving
the univalent map, which will in general be difficult to evaluate explicitly. Hence even
if we assume a polynomial form for f (in which case only a finite number of the Ck
are non-zero) it is very difficult to make analytical progress with the resulting system.

5. Two families of explicit solutions

We now consider specific examples of mapping functions f(ζ; x, t). The choices
made (a polynomial and a rational mapping function) are sufficiently simple to allow
analytical progress, and yield two classes of solutions. To determine fully the evolution,
the resulting systems of PDEs for the coefficients must be solved numerically. For
reasons of space we present sample numerical results only for the first class of
solutions (§ 7); however it is clear that there is considerable potential for (and in fact
the authors have performed) many more simulations.

Example 1

We begin with the family of simple polynomial maps (this same family was considered
by Howison & Richardson (1995) for the two-dimensional Stokes flow problem with
suction/injection)

f(ζ; x, t) = a(x, t)

(

ζ − b(x, t)

n
ζn
)

, (5.1)

for integers n > 2. We assume a(x, t) > 0 without loss of generality; the map is
then univalent provided |b(x, t)| < 1. When b = 1 the map loses univalency via the
formation of (n− 1) cusps in the boundary of the cross-section.

The only singularity of (4.9) is at ζ = 0, and we can evaluate the behaviour there
explicitly. On the right-hand side we find

γ∗

2

∂

∂ζ
[ζf′(ζ)f̄(1/ζ)G(ζ)] =

γ∗(n− 1)ab

nπζn
K(b) + O(1) near ζ = 0,
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where K( · ) denotes the complete elliptic integral of the first kind (see for example
Byrd & Friedman 1971 or Gradshteyn & Ryzhik 1980), while on the left-hand side

D[f′(ζ)f̄(1/ζ)] = −D[a2b]

nζn
+ D

[

a2(1 + b2/n)
] 1

ζ
+ O(1) near ζ = 0.

Hence matching these singularities we find two PDEs governing the evolution of
a(x, t), b(x, t):

D[πa2(1 + b2/n)] ≡ D[S] = 0, (5.2)

D[a2b] = −γ
∗(n− 1)ab

π
K(b). (5.3)

(Note that this system is a special case of (4.14).) The dependence on u(x, t) is through
the differential operator D. The third equation we need is the axial stress balance
(3.12), for which we need to compute the circumference of the cross-section, Γ (x, t).
We have

Γ =

∮

∂S

ds =

∮

∂S

|dZ| =

∫ 2π

0

|f′(eiθ)|dθ

= 4a(2E(b) − (1 − b2)K(b)), (5.4)

where E( · ) is the complete elliptic integral of the second kind, and using identities
given in Gradshteyn & Ryzhik 1980 we find

∂Γ

∂x
=

4(a2b)x
ab

E(b) − 4(1 − b2)(ab)x
b

K(b).

Hence the axial stress balance (3.12) reduces to

(3Sux)x = ReS(ut + uux) − StS cos β − 2γ∗(a2b)x
ab

E(b)

+2γ∗(1/b− b)(ab)xK(b). (5.5)

Equations (5.2), (5.3), (5.5), subject to boundary conditions on u(x, t) and initial condi-
tions on a(x, t), b(x, t), together determine the cross-sectional evolution. This represents
a considerable simplification of the full three-dimensional, and even the quasi-one-
dimensional problems, but any further progress necessitates numerical work; this is
carried out in § 7.

Example 2

The other family of mapping functions we consider consists of simple rational maps,

f(ζ; x, t) =
na(x, t)b(x, t)ζ

1 − b(x, t)nζn
, (5.6)

where n > 2 is an integer, 0 < b < bc = (n − 1)−1/n to ensure univalency of the
map, and a > 0 without loss of generality. The limit b → 0, a → ∞ describes a
circular cross-section, and for n > 3 the limit b → bc describes cross-sections with
n inward-pointing cusps (rather similar to the (n + 1)-degree polynomial solution);
however for n = 2, bc = 1 and the limit b → 1 describes a cross-section consisting
of two equal circles touching at a single point – such a configuration is of particular
interest in the manufacture of optical fibre couplers.
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Equation (4.9) now has singularities at points ζ = 0 and ζ = b within the unit disc,
which must be matched. Matching at ζ = 0 simply gives the mass conservation result,

D[S] = 0, where S =
πn2a2b2(1 + (n− 1)b2n)

(1 − b2n)2
(5.7)

(a straightforward integration verifies the latter equality), while matching at ζ = b
yields a second PDE,

∂b

∂t
+ u

∂b

∂x
= −γ

∗b(1 − b2n)

nπab
K ((n− 1)bn) . (5.8)

In deriving this simple form for the right-hand side use was made of the formula (see
Byrd & Friedman 1971 for example)

1

1 + (n− 1)bn
K

(

2bn/2(n− 1)1/2

1 + (n− 1)bn

)

= K((n− 1)bn).

The problem is again closed by the axial stress balance (3.12), with the circumference
Γ given by (5.4) as

Γ =
4n(n− 1)ab

1 + (n− 1)bn

{

n(1 + (n− 1)b2n)

(n− 1)(1 − bn)2
Π

( −4bn

(1 − bn)2
, k

)

−K(k)

}

,

where k = 2bn/2(n − 1)1/2/(1 + (n − 1)bn) and Π( · , · ) denotes the complete elliptic
integral of the third kind (see Byrd & Friedman 1971 or Gradshteyn & Ryzhik 1980
for a definition).

Again, equations (5.7), (5.8) and (3.12) (with Γ as above), subject to boundary
conditions on u(x, t) and initial conditions on a(x, t), b(x, t), determine the cross-
sectional evolution.

6. Linear theory for a nearly circular cross-section

One problem with the complex-variable formulation of § 4 is that, without posing a
particular form of the map f, it is difficult to infer general properties of the solution
from equation (4.9). Some further intuition is gained by considering a fibre whose
cross-section is nearly circular (this will eventually be true of any fibre after a sufficient
time). We therefore consider maps of the form

f = a(x, t) (ζ + δη(ζ; x, t)) , (6.1)

where |δ| ≪ 1 and linearize (4.9) with respect to δ. When δ = 0, (6.1) corresponds to
a circle of radius a centred at the origin. We set

S0 = πa2,

and so require changes in cross-section area and centre of mass due to the perturbation
δ to be zero.

First notice that

(

f′(ζ)f̄′(1/ζ)
)−1/2 ∼ 1

a
− δ

2a
(η′(ζ) + η̄′(1/ζ)),

so from (4.6) we can read off F± and hence obtain

G(ζ) ∼ 1

a

(

1 + δ
η′(0)

2
− δη′(ζ)

)

. (6.2)
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Now considering (4.9) at order one (i.e. setting δ = 0), and eliminating the 1/ζ
singularity on the left-hand side, we recover the usual mass-conservation result:

D[a2] = 0. (6.3)

Then, considering the problem at order δ, we obtain the equation

D

[

a2

(

η̄(1/ζ) +
η′(ζ)

ζ

)]

=
γ∗a

2

∂

∂ζ
{ζη̄(1/ζ)}+{function analytic in |ζ| < 1}, (6.4)

in which singularities must match within the unit disc.
As noted in § 4, if the cross-section possesses an axis of symmetry, then we can

assume that f(ζ) is real whenever ζ is real, which allows us to pose the following
form for η:

η(ζ; x, t) =

∞
∑

k=3

dk(x, t)ζ
k , (6.5)

where dk ∈ R. The constant term in the series is set to zero via the normalizing
assumption f(0) = 0; preserving the area and centre of mass of the cross-section
dictates that the coefficients of ζ and ζ2 respectively be zero. Within the linear theory,
(6.5) can be related directly to a polar-coordinates description of the cross-section:

r = a

(

1 +

∞
∑

k=2

dk+1 cos(kθ)

)

.

Now we simply substitute (6.5) into (6.4) and equate the principal parts of the left-
and right-hand sides at the pole ζ = 0. The result is a set of decoupled equations for
the coefficients dk which, using the fact that D[a2] = 0, can be written in the form

1

dk

Ddk
Dt = −γ

∗(k − 1)

2a
. (6.6)

This result could alternatively have been obtained by linearizing (4.14).
The circumference of the cross-section is given by

Γ0 =

∫ 2π

0

|f′(eiθ)|dθ ∼ 2πa
{

1 + O
(

|δ|2
)}

(the O(δ) term integrates to zero) and so, within the linear theory the problem (3.3),
(3.12) for S0 and u0 also decouples from (6.6). In summary, we have

(

a2
)

t
+
(

ua2
)

x
= 0, (6.7)

Re a2 (ut + uux) =
(

3a2ux
)

x
+ St a2 + γ∗ax (6.8)

(for simplicity absorbing cos β into St) to determine a and u; then the evolution of
the cross-section shape is given by (6.6).

This simple linearized system confirms that the predictions of the complex-variable
analysis given in § 4 agree with what might have been anticipated on physical grounds.
In particular, (6.6) shows that (i) a circular cross section is linearly stable, (ii) the
decay rate increases as the cross-section shrinks (i.e. as a decreases), (iii) the higher
modes decay faster.
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7. Numerical results

We now present several numerical solutions of the fibre evolution for Example 1 of
§ 5. The same initial geometry is used for each of our calculations, this being a four-
lobed cross-section, with a longitudinal sinusoidal perturbation imposed. Admittedly
such initial geometry is contrived, to say the least; however this configuration serves
well to illustrate the different effects of surface tension (the smoothing of the lobes to
a circular cross-section), and axial inertia and gravity (the distortion of the initially
regular sinusoidal profile). Several different scenarios are given, and the results are
discussed further in § 10.1.

7.1. Evolution with surface tension, but no axial inertia or gravity

The simplest non-trivial case which has not yet been studied is obtained by setting
Re = 0 and St cos β = 0 in (5.5), corresponding to zero axial inertia and gravity
respectively. That is, we are neglecting the component of gravity along the axis of the
fibre. Gravity may still act perpendicular to the axis, which will not affect the evolution
of the shape of the cross-section, but may influence the motion of the centre-line,
and hence the twisting of the fibre, as can be seen from equations (3.14) and (3.15).
We do not solve those problems in this paper. We assume in addition that the fibre
is symmetric about its centre-plane x = 0, and that it is being stretched by means
of rigid planes attached to its ends pulling at constant speeds in opposite directions,
hence the boundary condition on u is just that it is constant at the endpoints. (An
alternative equivalent scenario is that one end of the fibre is attached to a fixed rigid
plate at x = 0 while the other end is being pulled in opposition.)

The numerical scheme is especially simple in this case. With a(x, 0), b(x, 0) given
we solve the boundary-value problem (5.5) (just a second-order ODE) for u(x, 0). We
can then step forward in time using (5.2) and (5.3) to find a and b at the next time-
step. The scheme used here involves integration along characteristics, this method
being particularly appropriate for conservative systems. After readjusting the mesh
to account for the changing length of the fibre, we return to (5.5) and solve for u at
this time-step, and so on.

Figure 4 shows the evolution of the cross-section of a fibre being pulled from each
end with unit speed, for an initial fibre shape given by

a(x, 0) = 0.2(1 + 0.1 cos(5πx)), b(x, 0) = 0.95 (0 < x < 1).

The initial data a(x, 0) describes the longitudinal variation. As commented earlier,
the sinusoidal dependence is chosen for illustrative purposes only, and may easily be
changed to describe a more physically realistic fibre. The parameter n is taken to be 5
in the conformal map, giving a four-lobed cross-section. The fact that b(x, 0) is close
to unity means that these four lobes are initially very pronounced. Only one half of
the fibre (in x > 0) is shown, and the time-steps illustrated are t = 0, 0.3, 0.75. Note
that the true evolution of the fibre will have the centre-line motion and twisting as
determined by (3.14) and (3.15) superimposed onto this motion, a comment which
applies to all of our numerical solutions.

7.2. Evolution with surface tension and axial inertia, but no axial gravity

It is also not difficult to solve for the case of non-zero Reynolds number in (5.5). In
this case however a slightly different approach is needed; in particular, we must now
postulate some kind of start-up procedure for the fibre-drawing, because equation
(5.5) now has explicit time dependence. We consider the simple scenario in which the
fibre (again symmetric about the plane x = 0) is initially at rest, and its ends are
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Figure 4. Evolution of a viscous fibre pulled with constant speed from each end, with no axial
inertia or gravity. The configuration is symmetric about the plane x = 0, hence only half the fibre
is shown. The value of the surface tension parameter γ∗ is 0.04π.

accelerated smoothly from rest according to the law u∗
i = ±t2 (t > 0) (in the notation

of (2.3)).
Again the initial fibre shape a(x, 0), b(x, 0) is prescribed. We step forwards in time

in equations (5.2) and (5.3) using a simple upwind scheme (in conservation form) to
solve for a and b at the next time-step. After a mesh readjustment to account for the
changed fibre length, we use these values to solve the parabolic PDE (5.5) for u at
this time-step, using a semi-implicit method. With the new values for u we return to
(5.2) and (5.3) and again step forwards in time, and so on.

Figure 5 shows the evolution of a fibre with this start-up procedure for the same
initial geometry as § 7.1 (i.e. as shown in figure 4a), at times t = 1, 1.4.

7.3. Evolution with surface tension, axial inertia, and axial gravity

This is a simple extension of the example in § 7.2 above, and we may solve for the
same start-up procedure and geometry. However, the fibre cannot now be symmetric
about the plane x = 0 because gravity acts only in one direction along the fibre axis.
Thus in this example we interpret x = 0 as a fixed stationary plate to which one end
of the fibre is attached, the other end being pulled away from this plate. Gravity may
act either towards or away from the plate, and an example of each case is shown in
figure 6. In this figure, (a) and (b) show the later stages for evolution in which the
right-hand end of the fibre is being pulled to the right, and gravity acts along the
fibre axis to the left. This may be thought of as pulling a fibre upwards from one
end, the other end being stuck to a horizontal table. In (c) and (d) of figure 6 gravity
acts along the fibre axis to the right, which we may think of as pulling a fibre down
from a horizontal ceiling. In either case, the times shown are t = 1, 1.3.
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Figure 5. Evolution of fibres with surface tension and axial inertia. The value of the surface
tension parameter γ∗ is 0.02π, Re = 1.0, and St cos β = 0.

0

0.5

1.0

1.5

–0.4

0

–0.2

0.2

–0.2

0

0.2

0.4

(a)

0

0.5

1.0

1.5

–0.4

0

–0.2

0.2

–0.2

0

0.2

0.4

(b)

0

0.5

1.0

1.5

–0.4

0

–0.2

0.2

–0.2

0

0.2

0.4

(c)

0

0.5

1.0

1.5

–0.4

0

–0.2

0.2

–0.2

0

0.2

0.4

(d)

Figure 6. Evolution of fibres with surface tension, axial inertia, and axial gravity. Gravity acts to the
left along the fibre axis in (a) and (b), and to the right in (c) and (d). The surface tension parameter
is γ∗ = 0.02π, and Re = 1.0 for both cases. In (a, b) St cos β = −1.5, and in (c, d) St cos β = +1.5.

8. Transformation to Lagrangian variables

We have seen in § 7 that for many interesting initial shapes, the system of par-
tial differential equations governing the evolution of the fibre can readily be solved
numerically (certainly more readily than the three-dimensional Navier–Stokes equa-
tions!). However, without running very many such simulations one cannot deduce
much general qualitative information from purely numerical results. Moreover we
have already noted that the complex-variable formulation of the evolution problem
(4.9), although elegant, is not particularly helpful when seeking insight into the be-
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haviour of solutions in general. For example, in § 6 we showed that stretching and
sintering decouple for nearly circular fibres, but otherwise the relation between the
two processes is far from clear from (4.9) alone.†

In this Section we use a coordinate transformation to clarify the mutual influence
between stretching and sintering. Dewynne et al. (1994) used suitably defined La-
grangian variables to simplify the problem ((3.15) with γ∗ = 0) for the twist of the
fibre. Although in this paper we do not attempt to solve for the twist, we find that
a similar transformation can be used to reduce the leading-order cross-flow problem
(3.1b, c, d) with boundary conditions (3.1e, g, h) to the classical two-dimensional Stokes
flow problem.

The first step is to transform to coordinates that convect with the fluid in the
x-direction, and (i) translate with the centre-line r∗, (ii) scale with the size of the
cross-section and (iii) rotate with the mean angular velocity of the cross-section, in
the (y, z)-plane. Thus we set (dropping the zero subscripts throughout)

t = t̃, (8.1a)

x = X(x̃, t̃), (8.1b)

y − y∗ =
√
S(ỹ cos α+ z̃ sin α), (8.1c)

z − z∗ =
√
S(z̃ cos α− ỹ sin α), (8.1d)

where the functions X(x̃, t̃) and α(x̃, t̃) are given by

∂X

∂t̃
= u(X, t̃), X(x̃, 0) = x̃, (8.2a)

∂α

∂t̃
= c(X, t̃), α(x̃, 0) = 0, (8.2b)

with c as defined in (3.5). This is similar to the transformation employed in § 4; for
example the definition of α is identical to (4.5). Notice that the rescaling of y and z
means that in the transformed (ỹ, z̃)-plane, the cross-section (say S̃) always has unit
area.

When transforming the dependent variables to these rotating coordinates, we
simultaneously subtract the zero-surface-tension eigensolution (3.4) and rescale the
velocity and pressure, thus

p = PZST +
γ∗

√
S
p̃, (8.3a)

v = VZST + γ∗ (ṽ cos α+ w̃ sin α) , (8.3b)

w = WZST + γ∗ (w̃ cos α− ṽ sin α) . (8.3c)

As a result of these definitions, ṽ and w̃ satisfy
∫ ∫

S

(

ṽ
w̃

)

dỹ dz̃ = 0,

∫ ∫

S

(ỹw̃ − z̃ṽ) dỹ dz̃ = 0, (8.4)

that is, with respect to the tilded variables, the cross-section has no linear or angular
momentum.

† We are grateful to a referee of the first draft of this paper for bringing this point to our
attention.
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Substituting (8.1)–(8.3) into the cross-flow problem (3.1b, e, g, h) we find that

ṽỹ + w̃z̃ = 0, (8.5a)

ṽỹỹ + ṽz̃z̃ = p̃ỹ , (8.5b)

w̃ỹỹ + w̃z̃z̃ = p̃z̃ , (8.5c)

(
√
S/γ∗)Gt̃ + ṽGỹ + w̃Gz̃ = 0 on G = 0, (8.5d)

Gỹ(−p̃+ 2ṽỹ) + Gz̃(ṽz̃ + w̃ỹ) = −κ̃Gỹ on G = 0, (8.5e)

Gỹ(ṽz̃ + w̃ỹ) + Gz̃(−p̃+ 2w̃z) = −κ̃Gz̃ on G = 0. (8.5f)

This can now be transformed into the two-dimensional Stokes flow problem (with
unit surface tension) by defining the reduced time τ:

τ = γ∗
∫ t̃

0

d̃t√
S
. (8.6)

This has some striking, although perhaps with hindsight not unexpected, implica-
tions. Suppose at time zero we pick a particular cross-section of the fibre; then, as
the fibre evolves over time we follow this section as it convects, translates and rotates.
What we have shown is that its shape evolves according to a classical two-dimensional
Stokes flow free-boundary problem. We can solve this problem, either numerically or
analytically (see § 4) ‘once and for all’, starting from the given initial shape of the
cross-section. From such a calculation we can obtain the circumference Γ̃ (τ). Finally,
this can be transformed back to the physical (but still Lagrangian) plane via

Γ (x̃, t̃) =
√
S Γ̃ (τ),

with τ given by (8.6). By performing this procedure for each Lagrangian cross-section
(i.e. for each x̃) we obtain the relation between Γ and S required to close the system
(3.3), (3.12) for S and u.

In summary, we have succeeded in partially decoupling stretching from sinter-
ing. Stretching only affects sintering by decreasing the cross-section area S , which
accelerates sintering through (8.6). Conversely the effect of sintering on the stretch-
ing problem comes in only through the function Γ̃ (τ), which satisfies a canonical
two-dimensional Stokes flow problem.

We verify this result in figure 7, for the numerical solution shown in figure 4. We
could have used any of the solutions presented in § 7, but the numerical method applied
in this case (effectively using Lagrangian variables) made it the most convenient. We
pick two material cross-sections with different initial areas and plot the evolution of
b (which parametrizes the shape of the cross-section) with time in figure 7(a). It is
clear that the shape evolves faster for one cross-section (the thinner one) than for
the other. However, in figure 7(b) we plot both versus reduced time τ, as well as
the evolution of b for the two-dimensional Stokes flow problem. The seemingly exact
agreement between the three curves confirms both the theory of this Section and the
accuracy of our numerical solution.

9. Motion of the centre-line, and the twisting problem

We now briefly outline, but do not attempt to solve, the problems that determine
in principle the lateral motion and twist of the fibre. It is instructive to compare
these with the corresponding zero-surface-tension problems obtained by Dewynne et
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Figure 7. The shape parameter b versus time for the numerical solution shown in figure 4; (a)
shows the evolution for two cross-sections with different initial areas. In (b) the two are plotted
against reduced time τ, along with the solution of the two-dimensional Stokes flow problem; all
three graphs collapse onto one curve.

al. (1994). First consider the axial force balance (3.12), which was obtained from the
solvability condition for the Neumann problem (3.10) for the first-order axial velocity
u1. If γ∗ is set to zero, (3.12) and (3.3) constitute a closed system that determines S0

and u0. However when surface tension is included, more information is required to
close the problem, namely the evolution of the shape of the fibre cross-section. To
determine this, we have to solve for the leading-order cross-flow, i.e. v0 and w0.

Now consider the lateral force balance (3.14), which was obtained from the solvabil-
ity condition for the problem (3.13b, e) for the first-order cross-flow (v1, w1). Again, if
γ∗ = 0, once u0 is known (from the solution of (3.3) and (3.12)), (3.14) determines the
evolution of the centre-line r∗. For non-zero surface tension, the analysis of § 4 allows
us to determine the leading-order shape of the cross-section as a function of x and t.
Thus, all the integrals except the last on the right-hand side of (3.14) can be calculated
(this may be facilitated by use of the complex-variable description of S0 introduced
in § 4). However, to evaluate the final integral we need to know κ1; that is we must
determine the first-order shape of the cross-section. Since this evolves according to the
first-order transverse velocities, we must solve for the first-order cross-flow (v1, w1):
the solvability condition is not sufficient to obtain a closed problem for the motion
of the centre-line. It is this additional complication that makes (3.14) so much more
difficult to solve when surface tension is included.

The same difficulty arises in the problem (3.15) for the twist of the fibre. Here,
even when γ∗ = 0 one must solve the Neumann problem (3.10) for u1, but since in
this limit the shape of the cross-section is fixed, if one transforms to a Lagrangian
frame one need solve this problem only once – see Dewynne et al. (1994). Even when
surface tension is included, so that the cross-section evolves in time and space, our
complex-variable description of S0 allows in principle all except the final integral in
(3.15) to be determined in terms of the x- and t-dependent conformal map f. Thus
it is again the appearance of κ1 in the final term that seriously hinders any further
analytical progress.

10. Discussion

We have derived leading-order equations governing the evolution of an axially
stretched slender viscous fibre under surface tension, gravity and inertia. This rep-
resents a generalisation of earlier work by Dewynne et al. (1994) in which surface
tension was ignored. A greatly simplifying property of the zero-surface-tension solu-
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tion is that each cross-section of the fibre retains its shape. We presented a method
whereby the considerable extra complication that arises when surface tension is in-
cluded, and this property is lost, may be tackled using complex-variable techniques
previously applied to purely two-dimensional Stokes flow by Hopper (1990) and
Richardson (1992). Thus for many shapes of potential practical interest, one can
obtain a relatively simple system of partial differential equations in one space and
one time variable, governing the evolution of the axial velocity u, the cross-sectional
area S , and one or more parameters describing the shape of the cross-section. This
represents a huge simplification of the full Navier–Stokes free-boundary problem.

In § 8 we showed that in fact the problem for the cross-flow (that is flow perpendic-
ular to the axis of the fibre) can, by a suitable Lagrangian coordinate transformation,
be reduced to exactly the two-dimensional Stokes flow problem. This enabled us
to infer some interesting general properties of the coupling between stretching and
sintering. We note that this offers an alternative route to the application of the
techniques from Hopper (1990) and Richardson (1992). However, we opted for the
direct conversion of the cross-flow problem into complex-variable form rather than
the lengthier transformation Eulerian → Lagrangian → complex-variable.

We found that surface tension effects make it considerably harder to determine
the fibre centre-line and twist, and for that reason we did not attempt to do so in
this paper. It is fortunate that the problems decouple; that is, the fact that we have
been (thus far) unable to solve for the centre-line and twist does not prevent us
from finding the evolution of the cross-section shape, since in many applications it is
this shape, in particular S and the degree to which sintering has occurred, that is of
paramount importance.

10.1. Comments on numerical results

The initial configurations used for our numerical calculations are somewhat idealized
and, in particular, the axial variations are greatly exaggerated compared to what
might be expected in practical situations. This allows us to highlight some physically
important features of the fibre evolution, including the following.

It was found numerically that the sintering process takes place extremely rapidly.
That is, the evolution of the cross-section towards a circular shape appears to be
significantly accelerated by axial stretching (compared with the planar solutions of
Richardson 1992 for example). Hence small values of the dimensionless surface tension
coefficient γ∗ were chosen so that the sintering could be observed over an appreciable
timescale. This does suggest that some processes might be decomposed into an initial
rapid sintering stage, in which stretching and twisting are negligible, followed by a
stretching/twisting phase in which the fibre has an effectively circular cross-section.
Such an approach, if valid, would further simplify the solution procedure.

As is typical in fibre-drawing processes, the thinnest points in the initial configu-
ration tend to neck first. Since surface tension becomes increasingly important as S
decreases, one can observe that, while the thinnest points rapidly approach a circular
shape, the sintering of the fatter portions of the fibre lags behind (figure 7a).

Since as just noted, the cross-section rapidly becomes circular as S becomes small,
the local behaviour for small S can be inferred from axisymmetric calculations. These
show that with surface tension (in contrast to the zero-surface-tension limit considered
by Dewynne et al. 1994), there are solutions in which S → 0, i.e. the fibre breaks up,
in finite time – see Eggers (1993).

Moreover, in glass-fibre sintering processes, the parameters Re and St are often
small enough that inertia and gravity may safely be neglected. Again, we have used
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relatively (maybe unphysically) large values in our calculations to emphasize the
influence of each of these effects, and can deduce the following.

With neither inertia nor gravity, any axial symmetries in the initial configuration
are preserved by the stretching process (figure 4).

This symmetry is lost when inertia is significant. In figure 5 one can observe the
diffusion of momentum through the fibre, starting at the moving end.

The most important effect of inertia is that more of the fluid in the fibre is ‘left
behind’ in the centre as the ends are stretched, with the pulled ends ‘thinning out’. If
this is undesirable, the ends must be pulled slowly, giving a small (axial) Reynolds
number, and hence negligible inertial effects.

Not surprisingly, gravity similarly induces loss of symmetry, with fluid tending to
‘pile up’ at the lower end. This effect may be eliminated by stretching the fibre in a
horizontal plane.

If one wishes to make the fibre as uniform as possible, the effects of inertia
and gravity can be made partially to cancel each other out if the fibre is stretched
downwards – see figure 6 (a, b) ((c) and (d) in this figure show the opposite situation
in which the effects combine, giving a highly non-uniform fibre).

Sometimes these effects may be desired – for example, glass artists can utilize such
phenomena to create tapering structures.

In this paper we have drawn heavily on the previous literature on two-dimensional
viscous sintering. This has received much attention because of the remarkable exact
solutions that can be found using complex-variable techniques. In practice, of course
there is no such thing as a purely two-dimensional flow, and we have shown how
the same ideas and techniques can be applied to a more physically realistic three-
dimensional (albeit slowly varying) geometry. A possible application of our work is to
quantify three-dimensional effects in experiments on the sintering of finite cylinders.

P. D. H. gratefully acknowledges the financial support of a Junior Research Fellow-
ship from Christ Church, Oxford. L. J. C. was in receipt of a Postdoctoral Research
Fellowship funded by the Israel Council for higher Education, at the Technion, Haifa.

Appendix A. The axial force balance

First we show how to obtain the axial force balance (3.12) by substituting the right-
hand side of the Neumann problem (3.10) into the identity (3.11). When performing
the integrations, we use the transport theorem (2.6b) and the divergence theorem on
the right-hand side of (3.10b) and then substitute for v0 from (3.1d ) to obtain

(3S0u0x)x − ReS0(u0t + u0u0x) + S0St cos β

= −1

2

∂

∂x

∫ ∫

S0

∇̂2A dy dz + γ∗
∮

∂S0

κ0G0x ds
√

G2
0y

+ G2
0z

. (A 1)

For the first integral we simply apply the divergence theorem followed by the boundary
condition (3.8) satisfied by A, which gives

∫ ∫

S0

∇̂2A dy dz = −γ∗
∮

∂S0

ds = −γ∗Γ0, (A 2)

where as in the text Γ0 denotes the circumference of the cross-section.
The second integral on the right-hand side of (A 1) is most readily simplified by
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writing the free surface in parametric form (using arclength s as the parameter):
(

y
z

)

=

(

Y (s; x, t)
Z(s; x, t)

)

.

In this notation,
∮

∂S0

κ0G0x ds
√

G2
0y

+ G2
0z

=

∫ Γ0

0

κ0(YsZx − ZsYx) ds =

∫ Γ0

0

(YssYx + ZssZx) ds

=

∫ Γ0

0

(YsYx + ZsZx)s ds = [YsYx + ZsZx]
Γ0

0 , (A 3)

using successively the Serret–Frenet formulae and the identity

Y 2
s + Z2

s ≡ 1 ⇒ YsYsx + ZsZsx ≡ 0.

Now, Y , Z and their s-derivatives are periodic, with period Γ0, but the x-derivatives
are not, for

Y (Γ0; x, t) = Y (0; x, t) ⇒ Yx(Γ0; x, t) − Yx(0; x, t) = −Γ0xYs(0; x, t),

and similarly for Z . Thus, substituting this into (A 3) we finally obtain
∮

∂S0

κ0G0x ds
√

G2
0y

+ G2
0z

= −∂Γ0

∂x
. (A 4)

Then (3.12) follows trivially from (A 1).

Appendix B. The transverse force balance

Now we derive the transverse force balance (3.14), which results from integration
of (3.13b, c) over the cross-section, by establishing a series of simpler results. We start
by applying the transport equations (2.6a, b) and kinematic boundary condition (3.1e)
to obtain

D
Dt
(

S0y
∗) = −

∮

∂S0

y(G0t + u0G0x) ds
√

G2
0y

+ G2
0z

=

∮

∂S0

y(v0G0y + w0G0z ) ds
√

G2
0y

+ G2
0z

,

where D/Dt = ∂/∂t + u0∂/∂x is the usual convective derivative. Then we apply the
divergence theorem to the right-hand side and substitute for v0 and w0 from (3.1d):

D
Dt
(

S0y
∗) =

∫ ∫

S0

v0 dy dz − y∗S0u0x .

An analogous result holds for z∗, and these may be rearranged to the useful identity

Dr∗

Dt =
1

S0

∫ ∫

S0

(

v0
w0

)

dy dz. (B 1)

Similarly, consideration of

D
Dt

∫ ∫

S0

v0 dy dz
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leads to the identity

D
Dt

[

1

S0

∫ ∫

S0

(

v0
w0

)

dy dz

]

=
1

S0

∫ ∫

S0

(

v0t + u0v0x + v0v0y + w0v0z
w0t + u0w0x + v0w0y + w0w0z

)

dy dz.

(B 2)

This takes care of the left-hand sides of (3.13b, c). For the right-hand sides we
rearrange and use the divergence theorem to obtain

∫ ∫

S0

(−p1y + v0xx + v1yy + v1zz ) dy dz

=

∫ ∫

S0

(−p1 + 2v1y )y + (v1z + w1y )z + (u1y + v0x)x dy dz

=

∫ ∫

(u1y + v0x)x dy dz +

∮

∂S0

(−p1 + 2v1y )G0y + (v1z + w1y )G0z ds
√

G2
0y

+ G2
0z

.

Now we substitute from (3.13d ) into the boundary integral and use the transport
theorem (2.6b), resulting in
∫ ∫

S0

(−p1y + v0xx + v1yy + v1zz ) dy dz=
∂

∂x

∫ ∫

S0

(u1y + v0x) dy dz − γ∗
∮

∂S0

κ1G0y ds
√

G2
0y

+ G2
0z

.

An analogous result holds for the z-component, and so integration of (3.13b, c) over
S0 and use of (B 1), (B 2) leads to

ReS0

D2r∗

Dt2 =
S0St sin β

ǫ
j +

∂

∂x

∫ ∫

S0

(

u1y + v0x
u1z + w0x

)

dy dz − γ∗
∮

∂S0

κ1n̂ ds, (B 3)

where j = (1, 0)T is the unit vector in the y-direction.
Use of the transport theorem (2.6c), followed by substitution from (3.10) leads to
∫ ∫

S0

u1ydy dz =

∮

∂S0

[G0x(p0 − 2u0x − γ∗κ0) − G0yv0x − G0zw0x]y ds
√

G2
0y

+ G2
0z

+y∗S0

[

St cos β + u0xx − Re(u0t + u0u0x)
]

−
∫ ∫

S0

yp0xdy dz.

We use (2.6b) on the first part of the boundary integral and the divergence theorem
on the rest before substituting from (3.1d), to obtain

∫ ∫

S0

(u1y + v0x)dy dz = − ∂

∂x

∫ ∫

S0

yp0 dy dz − γ∗
∮

∂S0

κ0G0xy ds
√

G2
0y

+ G2
0z

+2
(

S0y
∗u0x

)

x
− y∗S0

[

Re(u0t + u0u0x) − St cos β
]

. (B 4)

But p0 is given in terms of the Airy stress function A by (3.9a). Thus we can
apply (2.6c) and then use the boundary conditions (3.8) satisfied by A to simplify the
resulting integrals, and arrive at the result

∫ ∫

S0

yp0 dy dz = −S0y
∗u0x +

γ∗

2

∮

∂S0

y ds. (B 5)

We substitute (B 5) into (B 4) and rearrange, using the axial force balance (3.12), to
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end up with
∫ ∫

S0

(

u1y + v0x
u1z + w0x

)

dy dz = r∗
x

(

3S0u0x − γ∗Γ0

2

)

− γ∗
∮

∂S0

(r − r∗)κ0G0xds
√

G2
0y

+ G2
0z

−γ
∗

2

∂

∂x

∮

∂S0

(

r − r∗) ds. (B 6)

It is then a simple matter to substitute (B 6) into (B 3) and rearrange, once again
using (3.12) to arrive at the transverse force balance (3.14).

Appendix C. The twist equation

The equation (3.15) for the twist of the fibre about its centre-line is obtained by
integrating {y× (3.13c)−z× (3.13b)} over S0. The steps involved are similar to those
used in Appendix B, so we omit more of the details. First, the transport theorems
(2.6a, b), followed by the kinematic boundary condition (3.1e) give rise to the identity

1

S0

∫ ∫

S0

y(w0t + u0w0x + v0w0y + w0w0z ) − z(v0t + u0v0x + v0v0y + w0v0z ) dy dz

=
D
Dt

{

1

S0

∫ ∫

S0

yw0 − zv0dy dz

}

. (C 1)

Secondly, a rearrangement of the right-hand side (as in Appendix B), followed by
the divergence theorem and then use of the boundary conditions (3.13d, e) leads to

∫ ∫

S0

y(−p1z + w0zz + w1yy + w1zz ) − z(−p1y + v0zz + v1yy + v1zz ) dy dz

=
∂

∂x

∫ ∫

S0

y(w0x + u1z ) − z(v0x + u1y ) dy dz

+γ∗
∮

∂S0

κ1

(

zG0y − yG0z

)

ds
√

G2
0y

+ G2
0z

. (C 2)
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