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Abstract We present a tight bound on the exact maximum complexity of Minkowski
sums of polytopes in R

3. In particular, we prove that the maximum number of facets
of the Minkowski sum of k polytopes with m1,m2, . . . ,mk facets, respectively, is
bounded from above by

∑
1≤i<j≤k(2mi − 5)(2mj − 5) + ∑

1≤i≤k mi + (
k
2

)
. Given

k positive integers m1,m2, . . . ,mk , we describe how to construct k polytopes with
corresponding number of facets, such that the number of facets of their Minkowski
sum is exactly

∑
1≤i<j≤k(2mi − 5)(2mj − 5) + ∑

1≤i≤k mi + (
k
2

)
. When k = 2, for

example, the expression above reduces to 4m1m2 − 9m1 − 9m2 + 26.
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1 Introduction

Let P and Q be two compact convex polyhedra in R
d . The Minkowski sum of P

and Q is the convex polyhedron, polytope for short, M = P ⊕ Q = {p + q |p ∈ P,

q ∈ Q}.
Minkowski-sum computation constitutes a fundamental task in computational

geometry. Minkowski sums are frequently used in areas such as robotics and motion
planing [13, 17] and many additional domains like solid modeling, design automa-
tion, manufacturing, assembly planning, virtual prototyping, etc., as Minkowski sums
are closely related to proximity queries [16]. For example, the minimum translation
separation-distance between two objects P and Q is equal to the minimum distance
between the origin and the boundary of P ⊕ (−Q), where −Q is the reflection of
Q through the origin [5]. Minkowski sums are also primary operations in some tech-
niques that morph three-dimensional objects [15].

The combinatorial complexity of the Minkowski sum of two polygons of m and
n vertices, respectively, is Θ(m2n2) (see, e.g., [1]). The corresponding tight bound
on the complexity of Minkowski sum of two polyhedra in R

3 with m and n vertices,
respectively, is Θ(m3n3). Various methods to compute the Minkowski sum of two
polyhedra in R

3 have been proposed. One common approach is to decompose each
polyhedron into convex pieces, compute pairwise Minkowski sums of pieces of the
two, and finally the union of the pairwise sums. Computing the Minkowski sum of
two convex polyhedra remains a key operation. The combinatorial complexity of the
sum can be as high as Θ(mn) when both polyhedra are convex. For the complexity
of the intermediate case, where only one polyhedron is convex, cf. [2, 17].

1.1 Minkowski Sums of Polytopes in R
3

One method to compute the Minkowski sum of two polytopes is to compute the con-
vex hull of the pairwise sum of the vertices of the two polytopes. While being simple
and easy to implement, the time complexity of this method is Ω(mn) regardless of
the size of the resulting sum, which can be as low as (m + n) (counting facets) for
degenerate cases.1 Several output sensitive algorithms to compute Minkowski sums
of polytopes in R

3 have been proposed. Basch et al. [3] extended the concept of
convolution introduced by Guibas et al. [12] and presented an algorithm to com-
pute the convolution in three dimensions. Gritzmann and Sturmfels [11] obtained a
polynomial-time algorithm in the input and output sizes for computing Minkowski
sums of k polytopes in R

d for a fixed dimension d , and Fukuda [7] provided an
output-sensitive polynomial-time algorithm for variables d and k. Ghosh [9] pre-
sented a unified algorithm for computing 2D and 3D Minkowski sums of both con-
vex and non-convex polyhedra based on a slope diagram representation. Bekker and
Roerdink [4] provided a few variations on the same idea.

Recently a few complete implementations of methods for computing exact
Minkowski sums (beyond the naive method mentioned above) have need introduced:

1It can be as low as m(= n) in the extremely-degenerate case of two similar polytopes with parallel facets.
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(i) a method based on Nef polyhedra embedded on the sphere [10], (ii) an imple-
mentation of Fukuda’s algorithm by Weibel [18], and (iii) a method based on the
cubical Gaussian-map data structure [6]. These methods exploit efficient innovative
techniques in the area of exact geometric computing to minimize the time it takes to
ensure exact results. However, even with the use of these techniques, the amortized
time of a single arithmetic operation is larger than the time it takes to carry out a
single arithmetic operation on native number types, such as floating point. Thus, the
constant that scales the dominant element in the expression of the time complexity of
these algorithms increases, which makes the question this paper attempts to answer,
“What is the exact maximum complexity of Minkowski sums of polytopes in R

3?”,
even more relevant.

Gritzmann and Sturmfels [11] also formulated an upper bound on the number of
features f d

i of any given dimension i of the Minkowski sum of many polytopes in d

dimensions: f d
i (P1 ⊕ P2 ⊕ · · · ⊕ Pk) ≤ 2

(
j
i

)∑d−i−1
h=0

(
j−i−1

h

)
for i = 0,1, . . . , d − 1,

where j denotes the number of non-parallel edges of P1,P2, . . . ,Pk . According to
this expression, the number of facets f 3

2 of the Minkowski sum of two polytopes in
R

3 is bounded from above by j (j −1). Fukuda and Weibel [8] obtained upper bounds
on the number of edges and facets of the Minkowski sum of two polytopes in R

3 in
terms of the number of vertices of the summands: f 3

2 (P1 ⊕ P2) ≤ f 3
0 (P1)f

3
0 (P2) +

f 3
0 (P1) + f 3

0 (P2) − 6. They also studied the properties of Minkowski sums of per-
fectly centered polytopes and their polars, and provided a tight bound on the number
of vertices of the sum of polytopes in any given dimension.

The main result of the paper follows.

Theorem 1 Let P1,P2, . . . ,Pk be a set of k polytopes in R
3, such that the number of

facets of Pi is mi for i = 1,2, . . . , k. The maximum number of facets of the Minkowski
sum P1 ⊕P2 ⊕· · ·⊕Pk is

∑
1≤i<j≤k(2mi −5)(2mj −5)+∑k

i=1 mi +
(
k
2

)
. This bound

is tight. Namely, given k positive integers m1,m2, . . . ,mk , it is possible to construct
k polytopes with corresponding number of facets, such that the number of facets of
their Minkowski sum is exactly the expression above.

In Sects. 2 and 3, we prove the special case k = 2, where the expression for the
bound reduces to 4m1m2 − 9m1 − 9m2 + 26. We prove the general case in Sect. 4.
Snapshots of several pre-constructed polytopes, the Minkowski sum of which is max-
imal, are available at http://www.cs.tau.ac.il/~efif/Mink. The polyhedra models and
an interactive program that computes their Minkowski sums and visualizes them can
be downloaded as well.

2 The Upper Bound for k = 2

The Gaussian Map G = G(P ) of a compact convex polyhedron P in Euclidean three-
dimensional space R

3 is a set-valued function from P to the unit sphere S
2, which

assigns to each point p the set of outward unit normals to support planes to P at p.
Thus, the whole of a facet f of P is mapped under G to a single point, representing
the outward unit normal to f . An edge e of P is mapped to a (geodesic) segment G(e)

http://www.cs.tau.ac.il/~efif/Mink
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Fig. 1 a A tetrahedron, b the Gaussian map of the tetrahedron, c a cube, d the Gaussian map of the cube,
e the Minkowski sum of the tetrahedron and the cube, and b the Gaussian map of the Minkowski sum

on S
2, whose length is easily seen to be the exterior-dihedral angle at e. A vertex v of

P is mapped by G to a spherical polygon G(v), whose sides are the images under G

of edges incident to v, and whose angles are the angles supplementary to the planar
angles of the facets incident to v; that is, G(e1) and G(e2) meet at angle π − α

whenever e1 and e2 meet at angle α [14].
The overlay of two planar subdivisions S1 and S2 is a planar subdivision S , such

that there is a face f in S if and only if there are faces f1 and f2 in S1 and S2, re-
spectively, such that f is a maximal connected subset of f1 ∩ f2. The overlay of two
(two-dimensional) subdivisions embedded on a sphere is defined similarly. The over-
lay of the Gaussian maps of two polytopes P and Q respectively identifies all pairs
of features of P and Q that have parallel supporting planes, as they occupy the same
space on the unit sphere, thus, identifying all the pairwise features that contribute to
the boundary of the Minkowski sum of P and Q. A facet of the Minkowski sum is
either a facet f of Q translated by a vertex of P supported by a plane parallel to f ,
or vice versa, or it is a facet parallel to the two parallel planes supporting an edge of
P and an edge of Q respectively. A vertex of the Minkowski sum is the sum of two
vertices of P and Q respectively supported by parallel planes.

The number of facets of the Minkowski sum M of two polytopes P and Q with
m and n facets respectively is equal to the number of vertices of the Gaussian map
G(M) of M . A vertex in G(M) is either due to a vertex in the Gaussian map of P ,
or due to a vertex in the Gaussian map of Q, or due to an intersection of exactly two
edges, one of the Gaussian map of P and the other of the Gaussian map of Q. Thus,
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the number of facets of M cannot exceed m + n + g(M), where g(M) is the number
of intersections of edges in G(M).2

Observation 2 The maximum exact number of edges in a Gaussian map G(P ) of a
polytope P with m facets is 3m − 6. The maximum exact number of faces is 2m − 4.
Both maxima occur at the same Gaussian maps.

The above can be obtained by a simple application of Euler’s formula for pla-
nar graphs to the Gaussian map G(P ). It can be used to trivially bound the ex-
act maximum number of facets of the Minkowski sum of two polytopes defined as
f (m,n) = max{f (P ⊕ Q) |f (P ) = m,f (Q) = n}, where f (P ) is the number of
facets of a polytope P . First, we can use the bound on the number of edges to ob-
tain: f (m,n) ≤ m + n + (3m − 6) · (3n − 6) = 9mn − 17m − 17n + 36. Better yet,
we can plug the bound on the number of dual faces, which is the number of primal
vertices, in the expression introduced by Fukuda and Weibel, see Sect. 1.1, to obtain:
f (m,n) ≤ (2m − 4) · (2n − 4) + (2m − 4) + (2n − 4) − 6 = 4mn − 6m − 6n + 2.
Still, we can improve the bound even further, but first we need to bound the number
of faces in G(M).

Lemma 3 Let G1 and G2 be two Gaussian maps of convex polytopes, and let G

be their overlay. Let f1, f2, and f denote the number of faces of G1, G2, and G,
respectively. Then, f ≤ f1 · f2.

Each face in the overlay is an intersection of a face of each map. Since these
faces are spherically convex (and smaller than hemispheres), the intersection is also
spherically convex (and thus connected).

We are ready to tackle the upper bound of Theorem 1 for the special case k = 2,
that is, prove that the number of facets of the Minkowski sum P ⊕Q of two polytopes
P and Q with m and n facets, respectively, cannot exceed 4mn − 9m − 9n + 26.

Proof Let v1, e1, f1 and v2, e2, f2 denote the number of vertices, edges, and faces of
G(P ) and G(Q), respectively. The number of vertices, edges, and faces of G(M) is
denoted as v, e, and f , respectively. Assume that P and Q are two polytopes such that
the number of facets of their Minkowski sum is maximal. Recall that the number of
facets of a polytope is equal to the number of vertices of its Gaussian map. Thus, we
have v1 = m, v2 = n, and v = f (m,n). First, we need to show that vertices of G(P ),
vertices of G(Q), and intersections between edges of G(P ) and edges of G(Q) do
not coincide. Assume to the contrary that some do. Then, one of the polytopes P or
Q or both can be slightly rotated to escape this degeneracy, but this would increase
the number of vertices v = f (m,n), contradicting the fact that f (m,n) is maximal.
Therefore, the number of vertices v is exactly equal to v1 +v2 +vx , where vx denotes
the number of intersections of edges of G(P ) and edges of G(Q) in G(M). Counting
the degrees of all vertices in G(M) implies that 2e1 + 2e2 + 4vx = 2e. Using Euler’s

2The number of facets is strictly equal to the given expression only when no degeneracies occur.



Discrete Comput Geom (2009) 42: 654–669 659

formula, we get e1 + e2 + 2vx = f + v1 + v2 + vx − 2. Applying Lemma 3, we can
bound vx from above vx ≤ f1f2 + v1 + v2 − 2 − e1 − e2.

Observation 2 sets an upper bound on the number of edges e1. Thus, e1 can be
expressed in terms of �1, a non-negative integer, as follows: e1 = 3v1 − 6 − �1. Ap-
plying Euler’s formula, the number of facets can be expressed in terms of �1 as
well: f1 = e1 + 2 − v1 = 2v1 − 4 − �1. Similarly, we have e2 = 3v2 − 6 − �2 and
f2 = 2v2 − 4 − �2 for some non-negative integer �2.

vx ≤ (2v1 − 4 − �1)(2v2 − 4 − �2)+v1 +v2 − 2− (3v1 − 6 − �1)− (3v2 − 6 − �2)

≤ 4v1v2 − 10v1 − 10v2 + 26 + h(�1, �2), (1)

where h(�1, �2) = �1�2 + 5�1 + 5�2 − 2v1�2 − 2v2�1.
G(P ) consists of a single connected component. Therefore, the number of edges

e1 must be at least v1 − 1. This is used to obtain an upper bound on �1 as follows:
v1 − 1 ≤ e1 = 3v1 − 6 − �1, which implies �1 ≤ 2v1 − 5, and similarly �2 ≤ 2v2 − 5.
Thus, we have:

h(�1, �2) = �1�2 + 5�1 + 5�2 − 2v1�2 − 2v2�1

= �1

(
�2

2
− (2v2 − 5)

)

+ �2

(
�1

2
− (2v1 − 5)

)

≤ 0.

From (1), we get that vx ≤ 4v1v2 − 10v1 − 10v2 + 26, and since f (m,n) = v1 +
v2 + vx , we conclude that f (m,n) ≤ 4v1v2 − 9v1 − 9v2 + 26. The maximum number
of facets can be reached when h(�1, �2) vanishes. This occurs when �1 = �2 = 0.
That is, when the number of edges of G(P ) and G(Q) is maximal. This concludes
the proof of the upper bound of Theorem 1 for the special case k = 2. �

Corollary 4 The maximum number of facets can be attained only when the number
of edges of each of P and Q is maximal for the given number of facets.

3 The Lower Bound for k = 2

Given two integers m ≥ 4 and n ≥ 4, we describe how to construct two polytopes
in R

3 with m and n facets, respectively, such that the number of facets of their
Minkowski sum is exactly 4mn − 9m − 9n + 26, establishing the lower bound of
Theorem 1 for the special case k = 2. More precisely, given i, we describe how to
construct a skeleton of a polytope Pi with i facets, 3i − 6 edges, and 2i − 4 vertices,
and prove that the number of facets of the Minkowski sum of Pm and Pn, properly
adjusted and oriented, is exactly 4mn − 9m − 9n + 26. As in the previous sections,
we mainly operate in the dual space of Gaussian maps. However, the construction
of the desired Gaussian maps described below is an involved task since not every
arrangement of arcs of great circles embedded on the unit sphere the faces of which
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are convex and the edges of which are strictly less than π long constitutes a valid
Gaussian map.

The Gaussian map of P5

We defer the treatment of the special case i = 4 to the sequel, and start with the
general case i ≥ 5. The figure above depicts the Gaussian map of P5. We use the
subscript letter i in all notations Xi to identify some object X with the polytope Pi .
For example, we give the Gaussian map G(Pi) of Pi a shorter notation Gi , but in this
paragraph we omit the subscript letter in all notations for clarity. First, we examine
the structure of the Gaussian map G of P to better understand the structure of P . Let
V denote the set of vertices of G. Recall that the number of vertices, edges, and faces
of G is i, 3i − 6, and 2i − 4, respectively. The unit sphere, where G is embedded
on, is divided by the plane y = 0 into two hemispheres H− ⊂ {(x, y, z) |y ≤ 0} and
H+ ⊂ {(x, y, z) |y > 0}. Three vertices, namely u, v, and w, lie in the plane x = 0.
u is located very close to the pole (0,0,−1). It is the only vertex (out of the i ver-
tices) that lies in H+. v is located exactly at the opposite pole (0,0,1), and w lies
in H− very close to v. None of the remaining i − 3 vertices in V \ {u,v,w} lie in
the plane x = 0; they are all concentrated near the pole (0,0,−1) and lie in H−. The
edge uv, which is contained in the plane x = 0, is the only edge whose interior is
entirely contained in H+. Every vertex in V \ {u,v,w} is connected by two edges
to v and w, respectively. These edges together with the edge uw, contained in the
plane x = 0, form a set of 2i − 5 edges, denoted as E′. The length of each of the
edges in E′ is almost π , due to the near proximity of u, v, and w to the respective
poles.

It is easy to verify that if the polytope P is not degenerate, namely, its affine hull is
3-space, then any edge of G(P ) is strictly less than π long. Bearing this in mind, the
main difficulty in arriving at a tight-bound construction is to force sufficient edges of
the Gaussian map of one polytope to intersect sufficient edges of the Gaussian map
of the other polytope, and on top of that force a pair of additional edges, one from
each Gaussian map, to intersect as well. As shown below, this is the best one can do
in terms of intersections.

The number of facets of the Minkowski sum of Pm and Pn is maximal, when
the number of vertices in the overlay of Gm and Gn is maximal. This occurs, for
example, when Gm and Gn are orthogonal, and one of them is rotated 90◦ about
the Y axis, as depicted in Fig. 2 for the case of m = n = 5. In this configuration,
all the 2m − 5 edges in E′

m intersect all the 2n − 5 edges in E′
n. All intersections

occur in H−. In addition, the edge uvm intersects the edge uvn. The intersection
point lies in H+ exactly at the pole (0,1,0). Counting all these intersections results
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Fig. 2 The overlay of G5 and
G′

5, where G′
5 is G5 rotated 90◦

about the Y axis

with (2m − 5)(2n − 5) + 1 = 4mn − 10m − 10n + 26. Adding the original vertices
of G(Pm) and G(Pn), yields the desired result.

Next, we explain how Pi, i ≥ 5, is constructed to match the description of Gi

above. The construction of Pi is guided by a cylinder. All the vertices of Pi lie on the
boundary of a cylinder the axis of which coincides with the Z axis. We start with the
case i = 5, and show how to generalize the construction for i > 5. The special case
i = 4 is explained last.

3.1 Constructing P5

Figure 3 shows various views of P5. Recall that P5 has 6 vertices, denoted as v0,
v1, . . . , v5, and 9 edges. We omit the subscript digit 5 in all the notations through
the rest of this subsection for clarity. Let v1v2 · · ·vn denote the face defined by the
sequence of vertices v1, v2, . . . , vn on the face boundary. The projection of all vertices
onto the plane z = 0 lie on the unit circle. As a matter of fact, the entire face f v =
v0v1v2v3 lies in the plane z = 0. It is mapped under G to the vertex v = G(f v).
Similarly, the faces f u = v5v4v2v1 and f w = v3v4v5v0 are mapped under G to the
vertices u = G(f u) and w = G(f w), respectively. Consider the projection of the
vertices onto the plane z = 0 best seen in Fig. 3b. Once the projection v′

5 of v5 is
determined as explained below, v0 is placed exactly on the bisector of ∠v′

5ov1. The
vertices v4, v3, and v2 are the reflection of the vertices v5, v0, and v1, respectively,
through the plane x = 0.

Two parameters govern the exact placement of v5 (and v4). One is the size of
the exterior-dihedral angle at the edge v0v3, denoted as α, that is, the length of the
geodesic-segment that is the mapping of the edge vw of G. This angle is best seen
in Fig. 3c. Notice, that the Z axis is scaled up for clarity, and the angle in practice is
much smaller. The other parameter is the size of the angle β = ∠v′

4ov′
5, where v′

4 and
v′

5 are the projections of v4 and v5, respectively, onto the plane z = 0. This is best
seen in Figs. 3b and e. Given m and n, these angles for each of Pm and Pn depend on
both m and n. For large values of m and n the values of α and β should be small. For
example, setting α = β = 10◦ is sufficient for the case m = n = 5 depicted in Fig. 2.
The actual setting is discussed below after the description of the general case i > 5.

3.2 Constructing Pi, i ≥ 5

We construct a polytope such that two facets are visible when looked at from
z = ∞, and i − 2 facets are visible when looked at from z = −∞. First, we place
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Fig. 3 Different views of P5. a and d are perspective views, while b, c, e, and f are orthogonal views.
Notice that the Z axis is scaled up for clarity

the projection of all vertices onto the plane z = 0 along the unit circle, and denote
the projection of a vertex v as v′. The projection of the vertices vj0 , vj1 , vj2 , vj3 ,
vj4 , and vj5 , where j0 = 0, j1 = �(i − 2)/2�, j2 = �(i − 2)/2� + 1, j3 = i − 2,
j4 = �(3i − 7)/2�, and j5 = �(3i − 7)/2� + 1, are placed at the same locations as
those of the corresponding vertices of P5, as depicted below. The projection of the

remaining vertices are placed on the arcs v̂′
j5

, vj0 , v̂j0, vj1 , v̂j2, vj3 , and v̂j3, v
′
j4

in
cyclic order.

A sketch of Pi, i ≥ 5

The angle γ = ∠vj0ovj1−1 is another parameter that governs the final configura-
tion of Pi . Once the placement of the projection of vj1−1 is determined, the projec-
tions of the vertices vj0+1, vj0+2, . . . , vj1−2 are arbitrarily spread along the open arc

̂vj0, vj1−1. The vertex placement along the arc v̂′
j5

, vj0 must be a symmetric reflection

of the vertex placement along the arc v̂j0, vj1 . This guarantees that all the quadrilateral
facets are planar. Similarly, the vertex placement along the arc v̂j2, vj3 is a symmetric

reflection of the vertex placement along the arc v̂j3, v
′
j4

. For large values of m and n,
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Fig. 4 a An orthogonal view of P10. b An orthogonal view of P11

the angle γ should be small as explained below, implying that the projection of the
vertices are concentrated near vj0 and vj3 (which lie on the bisectors of ∠vj1ov′

j5
and

∠vj2ov′
j4

, respectively). Figure 4 depicts the cases i = 10 and i = 11. In these exam-
ples, we force a regular placement, which is sufficient in many cases. As in the case
of i = 5, the face f v

i = v0v1 · · ·vi−2, represented by the vertex vi of Gi , lies in the
plane z = 0. The exterior-dihedral angle α at the edge vj0vj3 is made small so that
the vertex wi of Gi representing the adjacent face f w

i = vj3vj3+1 · · ·v2i−5v0 is kept
in close proximity to vi .

Given m and n, three parameters per polytope listed below govern the final con-
figurations of Pm and Pn:

1. The exterior-dihedral angle α at the edge vj0vj3

2. The angle β = ∠v′
j4

ov′
j5

3. The angle γ = ∠vj0ovj1−1

The settings of these angles must satisfy certain conditions which, in turn, enable
all the necessary intersections of edges in the Gaussian map of the Minkowski sum.
We denote the face vj5+1vj5vj1vj1−1 adjacent to f u by f x . The vertex x = G(f x)

is the nearest vertex to u. The y-coordinate of the vertex wn must be greater than
the y-coordinate of the edge xvm at z = 0 in Pm’s coordinate system. Similarly, the
y-coordinate of the vertex wm must be greater than the y-coordinate of the edge xvn

at z = 0 in Pn’s coordinate system.3 This is best seen in Fig. 5c. The values of the
y-coordinates of wn and wm are simply sin(αn) and sin(αm), respectively. The value
of the y-coordinate of the edge xvm at z = 0, however, depends on all the three pa-
rameters αm, βm, and γm. Similarly, the y-coordinate of the edge xvn at z = 0 in
the respective coordinate system depends on αn, βn, and γn. Instead of deriving an
expression that directly evaluates these y-coordinates, we suggest an iterative proce-
dure that decreases the angles at every iteration until the conditions above are met,
and argue that this procedure eventually terminates, because at the limit we are back
at the case where m = n = 5, for which valid settings exist.

3The rotation of, say Pn , is performed about the Y axis. Thus, it has no bearing on y-coordinates.
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Fig. 5 a The Minkowski sum M11,11 = P11 ⊕P ′
11, where P ′

11 is P11 rotated 90◦ about the Y axis. b The
Gaussian map of M11,11 looked at from z = ∞. c A scaled up view of the Gaussian map of M11,11 looked
at from z = ∞. d The Gaussian map of M11,11 looked at from y = −∞

3.3 Constructing P4

The Gaussian map of P4

Recall that P4 has 4 facets, 6 edges, and 4 vertices. Therefore, it cannot be con-
structed according to the prescription provided in the previous section. Applying the
same principles though, we place two vertices of G4 near the pole (0,0,−1), and two
vertices near the opposite pole (0,0,1). One edge, which connects a vertex near one
pole to a vertex near the other, lightly shaded in the figure above, is entirely contained
in H+. The other three edges that connect vertices near opposite poles mostly lie in
H−. They form a set of 2i − 5 = 3 edges, denoted as E′

4. The length of every edge in
E′

4 is almost π . In contrast to the case i ≥ 5, two out of the three edges in E′
4 cross

the plane y = 0. Namely, small sections of them lie in H+. As in the case i > 4, one
edge, the lightly shaded one, is entirely contained in H+.

A sketch of P4

We construct P4, such that the two facets f 1 = v0v1v2 and f 2 = v0v2v3 are visible
when looked at from z = ∞, and, when looked at from z = −∞, the remaining two
facets f 3 = v3v1v0 and f 4 = v3v2v1 are visible. As depicted above, the projection
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Fig. 6 The overlay of the
Gaussian maps of three
tetrahedra rotated about the Y

axis 0◦ , 60◦ , and 120◦ ,
respectively

of all four vertices onto the plane z = 0 lie on the unit circle. The vertices v0 and v2
lie on the plane z = 0, and the vertices v1 and v3 lie in a parallel plane. The distance
between the planes is small to form small exterior-dihedral angles at the edges v0v2
and v1v3.

As in the general case, two parameters govern the exact placement of v1, v2, and
v3. One is the size of the exterior-dihedral angle at the edge v0v2. The other parameter
is the size of the angle ∠v2ov′

3, where v′
3 is the projection of v3 onto the plane z = 0.

The sizes of these angles are determined by the same rationale as in the general case.
This concludes the proof of the lower bound of Theorem 1 for the special case

k = 2.

4 Maximum Complexity of Minkowski Sums of Many Polytopes

Let P1,P2, . . . ,Pk be a set of k polytopes in R
3, such that the number of facets of Pi

is mi for i = 1,2, . . . , k. In this section, we present a tight bound on the number of
facets of the Minkowski sum M = P1 ⊕ P2 ⊕ · · · ⊕ Pk , generalizing the arguments
presented above for k = 2. In the following subsections, we establish the lower bound
and prove the matching upper bound.

4.1 The Lower Bound

Given k positive integers m1,m2, . . . ,mk , such that mi ≥ 4, we describe how to con-
struct k polytopes in R

3 with corresponding number of facets, such that the num-
ber of facets of their Minkowski sum is exactly

∑
1≤i<j≤k(2mi − 5)(2mj − 5) +

∑k
i=1 mi + (

k
2

)
. More precisely, given i, we describe how to construct a skeleton of

a polytope Pi with i facets, 3i − 6 edges, and 2i − 4 vertices, and prove that the
number of facets of the Minkowski sum M = Pm1 ⊕ Pm2 ⊕ · · · ⊕ Pmk

of the k poly-
topes properly adjusted and oriented is exactly the expression above. We use the same
construction described in Sect. 3.

The number of facets in the Minkowski sum of Pi, i = 1,2, . . . , k, is maximal
when the number of vertices in the overlay of Gi, i = 1,2, . . . , k, is maximal. This
occurs, for example, when Gi is rotated 180◦(i − 1)/k about the Y axis for i =
1,2, . . . , k, as depicted in Fig. 6 for the case of m1 = m2 = m3 = 4. (Recall that
E′

i refers to the set of edges that span the lowest hemispheres, and its cardinality is
smaller than cardinality of E by one.) In this configuration, all the 2mi − 5 edges in
E′

i intersect all the 2mj − 5 edges in E′
j , for 1 ≤ i < j ≤ k. All intersections occur
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in H−. In addition, the edge uvmi
intersects the edge uvmj

for 1 ≤ i < j ≤ k. These
intersection points lie in H+ near the pole (0,1,0). Counting all these intersections
results with

∑
1≤i<j≤k(2mi − 5)(2mj − 5) + (

k
2

)
. Adding the original vertices of

G(Pi), i = 1,2, . . . , k, yields the bound asserted in Theorem 1.

4.2 The Upper Bound

We can apply the special case k = 2 of Theorem 1 to obtain

f (m1,m2, . . . ,mk) ≤ f
(
m1, f (m2,m3, . . . ,mk)

)

≤ 4m1f (m2,m3, . . . ,mk) − 9m1 − 9f (m2,m3, . . . ,mk) + 26

≤ 4k
k∏

i=1

mi + · · ·

However, we can apply a technique similar to the one used in Sect. 2 and improve
this upper bound, but first we must extend Lemma 3.

Lemma 5 Let G1,G2, . . . ,Gk be a set of k Gaussian maps of convex polytopes,
and let G be their overlay. Let fi denote the number of faces of Gi , and let f de-
note the number of faces of G. Then, f ≤ ∑

1≤i<j≤k fifj − (k − 2)
∑

1≤i≤k fi +
(k − 1)(k − 2).

Proof Let us choose two antipodal points on the sphere S
2, such that no arc of the

overlay is aligned with them. In particular, the points are in the interior of two distinct
faces. We consider these two points to be the North pole and South pole of the sphere,
and define the direction west to be the clockwise direction when looking from the
North pole toward the South pole. We define a western-most corner to be a pair of
a face and one of its vertices, which is to the west of all of its other vertices. Apart
from the two faces, which contain the poles, any face has a unique western-most
corner, since no edge is aligned with the poles, and all faces of any Gaussian map are
spherically convex. So for any overlay with f faces, there are f − 2 such western-
most corners.

The maximal number of faces is attained when the overlay G is non-degenerate.
Thus, a vertex of G is either the intersection of two edges of some distinct Gi and
Gj , or a vertex of some Gi . Therefore, a western-most corner for a face of G is
either a western-most corner for the overlay of some Gi and Gj , or a western-most
corner for some Gi , in which case it also is a western-most corner for any overlay
involving Gi . The number of western-most corners in the Gaussian map Gi is fi − 2,
and the maximal number of western-most corners in the overlay of some Gi and Gj

is fifj − 2.
We can therefore write:

f ≤
∑

1≤i<j≤k

(fifj − 2) − (k − 2)

k∑

i=1

(fi − 2) + 2.
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This corresponds to summing the western-most corners appearing in the overlay of
all pairs of Gaussian maps, and subtracting (k − 2) times the western-most corners
appearing in all original Gaussian maps, since each of them appeared (k − 1) times
in the first sum. Finally, we have:

∑

1≤i<j≤k

(fifj − 2) − (k − 2)

k∑

i=1

(fi − 2) + 2

=
∑

1≤i<j≤k

fifj − (k − 2)

k∑

i=1

fi + (k − 1)(k − 2).
�

Let P1,P2, . . . ,Pk be k polytopes in R
3 with m1,m2, . . . ,mk facets, respectively.

Let G(Pi) denote the Gaussian map of Pi , and let vi , ei , and fi denote the number
of vertices, edges, and faces of G(Pi), respectively. Let vx denote the number of
intersections of edges of G(Pi) and edges of G(Pj ), i = j in G(M). Applying the
same technique as in Sect. 2, that is, counting the total degrees of vertices in G(M)

implies that
∑k

i=1 ei + 2vx = e. Using Euler’s formula, we get
∑k

i=1 ei + 2vx =
f + v − 2. Applying Lemma 5 and respecting v = ∑

1≤i≤k vi + vx , we can bound vx

from above:

vx ≤
∑

1≤i<j≤k

fifj − (k − 2)

k∑

i=1

fi + (k − 1)(k − 2) +
k∑

i=1

(vi − ei) − 2. (2)

According to Corollary 4, the maximum number of facets of the Minkowski sum of
two polytopes is attained when the number of edges of each summand is maximal. We
need to establish a similar property for the general case. Generalizing the derivation
procedure in Sect. 2, we introduce k non-negative integers �i, i = 1,2, . . . , k, such
that ei = 3vi − 6 − �i and fi = 2vi − 4 − �i . Substituting ei in (2), we get:

vx ≤
∑

1≤i<j≤k

fifj − (k − 2)

k∑

i=1

fi + (k − 1)(k − 2) +
k∑

i=1

(vi − 3vi + 6 + �i) − 2

≤
∑

1≤i<j≤k

fifj − (k − 2)

k∑

i=1

fi −
k∑

i=1

(2vi − 5) +
k∑

i=1

�i + k2 − 2k. (3)

Substituting fi in (3), we get:

vx ≤
∑

1≤i<j≤k

(2vi − 4 − �i)(2vj − 4 − �j ) − (k − 2)

k∑

i=1

(2vi − 4 − �i)

−
k∑

i=1

(2vi − 5 − �i) + k2 − 2k

=
∑

1≤i<j≤k

(2vi − 5)(2vj − 5) +
(

k

2

)

+ h(�1, �2, . . . , �k),
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where

h(�1, �2, . . . , �k) =
∑

1≤i<j≤k

(
�i�j − �j (2vi − 5) − �i(2vj − 5)

)

=
k∑

i=1

�i

(∑

j =i

(
�j /2 − (2vj − 5)

)
)

.

Connectivity of G(Pi) implies that �i ≤ 2vi − 5, which, in turn, implies that
h(�1, �2, . . . , �k) ≤ 0. Thus, we have:

vx ≤
∑

1≤i<j≤k

(2vi − 5)(2vj − 5) +
(

k

2

)

. (4)

We conclude that the exact maximum number of facets of the Minkowski sum of
k polytopes cannot exceed

∑
1≤i<j≤k(2mi − 5)(2mj − 5)+∑

1≤i≤k mi +
(
k
2

)
, which

completes the proof of Theorem 1. For example, the exact maximum number of facets
of the Minkowski sum of k tetrahedra is 5k2 − k.
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