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Abstract
In this manuscript, the application of the extended sinh-Gordon equation expansion method to the Davey-Stewartson equa-
tion and the (2+1)-dimensional nonlinear complex coupled Maccari system is presented. The Davey-Stewartson equation
arises as a result of multiple-scale analysis of modulated nonlinear surface gravity waves propagating over a horizon-
tal seabed and the (2+1)-dimensional nonlinear complex coupled Maccari equation describes the motion of the isolated
waves, localized in a small part of space, in many fields such as hydrodynamic, plasma physics, nonlinear optics. We
successfully construct some soliton, singular soliton and singular periodic wave solutions to these two nonlinear complex
models. The 2D, 3D and contour graphs to some of the obtained solutions are presented.
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1 Introduction

For the past two decades, the investigations of various travelling wave solutions to the nonlinear evolution
equations have attracted the attentions of many scientist from all over the world. Nonlinear evolution equa-
tions (NLEEs) are used in describing many complex phenomena the arise on daily basis in the various fields
of nonlinear sciences, such as; plasmas physics, quantum mechanics, biosciences, chemistry, water waves
and so on. Various mathematical approaches have been formulated to tackle such type of problems, such
as; the extended Conte’s truncation method [1], the Hirota method [2], the local fractional Riccati differen-
tial equation method [3], the improved tan(ϕ/2)-expansion method [4], the generalized algebraic method [5],
the simplified Hirota’s method [6], the extended Jacobi elliptic function expansion method [7], the tanh func-
tion method [8], the generalized Kudryashov method [9], the sine-cosine method [10], the complex hyper-
bolic function method [11], the spectral-homotopy analysis method [12], the improved Bernoulli sub-equation
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function method [13], the modified exp (−φ(ξ ))-expansion function method [14–16], sine-Gordon expansion
method [17], the Adomian decomposition method [18], the Riccati equation method [19], the extended general-
ized Riccati equation mapping method [20] and many more other methods [21–51].

However, in this study, we present the application of the extended sinh-Gordon equation expansion method
(ShGEEM) [52] to the Davey-Stewartson equation [53] and the (2+1)-dimensional nonlinear complex coupled
Maccari system [54, 55].

The Davey-Stewartson equation reads

iut +a(uxx +uyy)+b|u|2u−αuv = 0,
vxx + vyy−β (|u|2)xx = 0.

(1.1)

Eq. (1.1) arises as a result of multiple-scale analysis of modulated nonlinear surface gravity waves propagating
over a horizontal seabed [53]. Eq. (1.1) may also be used in modelling long-wave, short-wave resonances and
other patterns of propagating waves [56–58]. Various studies have been conducted on Eq. (1.1) [59–61].

The (2+1)-dimensional nonlinear complex coupled Maccari equation reads

iut +uxx +uv = 0,
vt + vy +(|u|2)x = 0,

(1.2)

where i =
√
−1.

Eq. (1.2) describes the motion of the isolated waves, localized in a small part of space, in many fields
such as hydrodynamic, plasma physics, nonlinear optics etc. Eq. (1.2) was derived from the well known
two-dimensional generalizations of the KdV equation [62, 63]. Several attempts by different scientists have
been made to investigate Eq. (1.2) [64-71].

2 The Extended ShGEEM

In this sections, the general facts of the sinh-Gordon equation expansion method are presented.

To apply the ShGEEM, the following steps are followed:

Step-1: Consider the following nonlinear partial differential equation and the travelling wave transfor-
mation:

P(ux, u2uxx, ut , uxt , . . .) = 0, (2.1)

where P is a polynomial in u, the subscripts indicate the partial derivative of u with respect to x or t, and

u = Ψ(η), η = x− ct, (2.2)

respectively.

Substituting Eq. (2.2) into Eq. (2.1), we get the following nonlinear ordinary differential equation (NODE):

Q(Ψ, Ψ
′
, Ψ

′′
, Ψ

2
Ψ
′
, . . .) = 0, (2.3)

where Q is a polynomial in Ψ and the superscripts indicate the ordinary derivative of Ψ with respect to η .
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Step-2: Eq. (2.3) is assumed to have solution of the form

Ψ(w) =
m

∑
j=1

[
B jsinh(w)+A jcosh(w)

] j
+A0, (2.4)

where A0, A j, B j ( j = 1, 2, . . . , n) are constants to be determine later and w is a function of η that satisfies the
following ordinary differential equations:

w
′
= sinh(w) (2.5)

and
w
′
= cosh(w) (2.6)

To obtain the value of m, the homogeneous balance principle is used on the highest derivatives and highest
power nonlinear term in Eq. (2.3).

Eqs. (2.5) and (2.6) have been extracted from the popularly known sinh-Gordon equation [52] given
as

uxt = λ sinh(u). (2.7)

Eq. (2.5) has the following solutions [52]:

sinh(w) =±csch(η) or sinh(w) =± i sech(η) (2.8)

and
cosh(w) =±coth(η) or cosh(w) =± tanh(η), (2.9)

where i =
√
−1.

Eq. (2.6) posses the following solutions [52]:

sinh(w) = tan(η) or sinh(w) =−cot(η) (2.10)

and
cosh(w) =±sec(η) or cosh(w) =± csc(η). (2.11)

Step-3: With fixed value of m, we substitute Eq. (2.4), its derivative along with Eq. (2.5) or (2.6) into Eq. (2.3)
to obtain a polynomial equation in w

′ssinhi(w)cosh j(w) (s = 0,1 and i, j = 0, 1, 2, . . .). We collect a set of
over-determined nonlinear algebraic equations in A0, A j, B j, c by setting the coefficients of w

′ssinhi(w)cosh j(w)
to zero.

Step-4: The obtained set of over-determined nonlinear algebraic equations is then solved with aid of
symbolic software to determine the values of the parameters A0, A j, B j, c.

Step-5: Based on Eqs. (2.8), (2.9) and (2.10) and (2.11) solutions of Eq. (2.1) have the following
forms:

Ψ(η) =
m

∑
j=1

[
± iB j sech(η)±A jtanh(η)

] j
+A0, (2.12)

Ψ(η) =
m

∑
j=1

[
±B j csch(η)±A jcoth(η)

] j
+A0. (2.13)
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Ψ(η) =
m

∑
j=1

[
±B jsec(η)+A jtan(η)

] j
+A0 (2.14)

and

Ψ(η) =
m

∑
j=1

[
±B jcsc(η)−A j cot(η)

] j
+A0. (2.15)

3 Application

In this section, the application of the extended ShGEEM to the Davey-Stewartson equation and the (2+1)-
dimensional nonlinear complex coupled Maccari system is presented.

1. Consider the Davey-Stewartson equation [53] given in (1.1).

Substituting the complex travelling wave transformation

u(x,y, t) = eiθ
Ψ(η), v(x,y, t) =V (η), η = x+ y+ ct, θ = σx+ny+ rt (3.1)

into (1.1), gives the following NODEs:

(−r−a(n2 +σ
2))Ψ+bΨ

3−αΨV +2aΨ
′′
= 0, (3.2)

β (Ψ
′
)2 +βΨΨ

′′
+V

′′
= 0, (3.3)

from the real part, and the relation

c =−2a(n+σ). (3.4)

Integrating Eq. (3.3) once, one can get

V =−β

2
Ψ

2. (3.5)

Substituting Eq. (3.5) into Eq. (3.2), we get

2(−r−a(n2 +σ
2))Ψ+(2b+αβ )Ψ3 +4aΨ

′′
= 0. (3.6)

Balancing Ψ3 and Ψ
′′
, we get m = 1.

With m = 1, Eqs. (2.4), (2.12), (2.13), (2.14) and (2.15) take the forms

Ψ(w) = B1sinh(w)+A1cosh(w)+A0, (3.7)

Ψ(η) =±iB1 sech(η)±A1tanh(η)+A0, (3.8)

Ψ(η) =±B1 csch(η)±A1coth(η)+A0, (3.9)
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Ψ(η) =±B1sec(η)+A1tan(η)+A0 (3.10)

and

Ψ(η) =±B1csc(η)−A1 cot(η)+A0, (3.11)

respectively.

Putting Eq. (3.7) and its second derivative along with Eq. (2.5) or (2.6) into Eq. (3.6), yields a
polynomial in the power of hyperbolic functions. We collect a set of algebraic equations from the
polynomial by equating each summations of the coefficients of the hyperbolic functions with the same
power to zero. To obtain the values of the parameters involved, we simplify the set of the algebraic
equations with aid of symbolic software. To get the new solutions to Eq. (1.1), we put the secured values
of the parameters in each case into Eqs. (3.8), (3.9), (3.10) and (3.11), then into Eq. (3.1).

Case-1: When

A0 = 0, A1 =−

√
2a

−(2b+αβ )
, B1 = A1, r =−a(1+n2 +σ

2),

we get the following solutions:

u1(x,y, t) =

√
2a

−(2b+αβ )

(
± i sech[x+ y−2a(n+σ)t]

±tanh[x+ y−2a(n+σ)t]
)

ei(σx+ny−a(1+n2+σ2)t),

(3.12)

v1(x,y, t) =
aβ

2b+αβ

(
± i sech[x+ y−2a(n+σ)t]± tanh[x+ y−2a(n+σ)t]

)2
(3.13)

and

u2(x,y, t) =

√
2a

−(2b+αβ )
tanh

[1
2

(
x+ y−2a(n+σ)t

)]
ei(σx+ny−a(1+n2+σ2)t), (3.14)

v2(x,y, t) =
aβ

2b+αβ
tanh2

[1
2

(
x+ y−2a(n+σ)t

)]
. (3.15)

Case-2: When

A0 = 0, A1 = 2

√
2a

−(2b+αβ )
, B1 = 0, r =−a(4+n2 +σ

2),

we get the following solutions:
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u3(x,y, t) =±2

√
2a

−(2b+αβ )
tanh[x+ y−2a(n+σ)t]ei(σx+ny−a(4+n2+σ2)t), (3.16)

v3(x,y, t) =
4aβ

2b+αβ
tanh2[x+ y−2a(n+σ)t] (3.17)

and

u4(x,y, t) =±2

√
2a

−(2b+αβ )
coth[x+ y−2a(n+σ)t]ei(σx+ny−a(4+n2+σ2)t), (3.18)

v4(x,y, t) =
4aβ

2b+αβ
coth2[x+ y−2a(n+σ)t]. (3.19)

Case-3: When

A0 = 0, A1 = 0, B1 =−2

√
2a

−(2b+αβ )
, r =−a(n2 +σ

2−2),

we get the following solutions:

u5(x,y, t) =±2

√
2a

2b+αβ
sech[x+ y−2a(n+σ)t]ei(σx+ny−a(n2+σ2−2)t), (3.20)

v5(x,y, t) =−
4aβ

2b+αβ
sech2[x+ y−2a(n+σ)t] (3.21)

and

u6(x,y, t) =±2

√
2a

−(2b+αβ )
csch[x+ y−2a(n+σ)t]ei(σx+ny−a(n2+σ2−2)t), (3.22)

v6(x,y, t) =
4aβ

2b+αβ
csch2[x+ y−2a(n+σ)t]. (3.23)

Case-4: When

A0 = 0, A1 =−

√
2a

−(2b+αβ )
, B1 = A1, r =−a(n2 +σ

2−1),

we get the following solutions:
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u7(x,y, t) =

√
2a

−(2b+αβ )

(
± sec[x+ y−2a(n+σ)t]

±tan[x+ y−2a(n+σ)t]
)

ei(σx+ny−a(n2+σ2−1)t),

(3.24)

v7(x,y, t) =
aβ

2b+αβ

(
± sec[x+ y−2a(n+σ)t]± tan[x+ y−2a(n+σ)t]

)2
(3.25)

and

u8(x,y, t) =

√
2a

−(2b+αβ )
cot
[1

2

(
x+ y−2a(n+σ)t

)]
ei(σx+ny−a(n2+σ2−1)t), (3.26)

v8(x,y, t) =
aβ

2b+αβ
cot2

[1
2

(
x+ y−2a(n+σ)t

)]
. (3.27)

2. Consider the (2+1)-dimensional nonlinear complex coupled Maccari equation [55] given in Eq. (1.2).

Substituting the complex wave transformation

u(x,y, t) = eiθ
Ψ(η), v(x,y, t) =V (η), η = x+ y+ ct, θ = ax+by+ rt (3.28)

into Eq. (1.2), gives the following NODEs:

Ψ
′′
+ΨV − (a2 + r)Ψ = 0, (3.29)

2ΨΨ
′
+(1+ c)V

′
= 0 (3.30)

from the real part and the relation

c =−2a (3.31)

from the imaginary part.

Integrating Eq. (3.30) once, we obtain

V =− 1
1+ c

Ψ. (3.32)

Substituting Eq. (3.32) into Eq. (3.29), we have the following single NODE:

Ψ
3 +(1+ c)(a2 + r)Ψ− (1+ c)Ψ

′′
, (3.33)

Balancing the terms Ψ3 and Ψ
′′

in Eq. (3.33), yields m = 1.
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Proceedings as before, we obtained the following solutions for Eq. (1.2):

Case-1: When

A0 = 0, A1 =−
√

1+
√
−2−4r√
2

, B1 = A1, a =−
√
−1

2
− r,

we get the following solutions:

u1(x,y, t) =

√
1+
√
−2−4r√
2

(
± i sech

[
2

√
−1

2
− r t + x+ y

]
±tanh

[
2

√
−1

2
− r t + x+ y

])
e

i

(
rt−
√
− 1

2−r x+by

)
,

(3.34)

v1(x,y, t) =−

(
1+
√
−2−4r

)
2
(

1+2
√
−1

2 − r
)(± i sech

[
2

√
−1

2
− r t + x+ y

]

±tanh
[
2

√
−1

2
− r t + x+ y

])2
(3.35)

and

u2(x,y, t) =±
√

1+
√
−2−4r√
2

(
coth

[
2

√
−1

2
− r t + x+ y

]
csch

[
2

√
−1

2
− r t + x+ y

])
e

i

(
rt−
√
− 1

2−r x+by

)
,

(3.36)

v2(x,y, t) =−

(
1+
√
−2−4r

)
2
(

1+2
√
−1

2 − r
)(± coth

[
2

√
−1

2
− r t + x+ y

]

±csch
[
2

√
−1

2
− r t + x+ y

])2

.

(3.37)

Case-2: When

A0 = 0, A1 =−
√

2+4
√
−2− r, B1 = 0, a =−

√
−2− r,

we get the following solutions:

u3(x,y, t) =±
√

2+4
√
−2− r tanh

[
2
√
−2− r t + x+ y

]
e

i

(
rt−
√
−2−r x+by

)
, (3.38)
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v3(x,y, t) =−

(
2+4

√
−2− r

)
1+2

√
−2− r

tanh2
[
2
√
−2− r t + x+ y

]
(3.39)

and

u4(x,y, t) =±
√

2+4
√
−2− r coth

[
2
√
−2− r t + x+ y

]
e

i

(
rt−
√
−2−r x+by

)
, (3.40)

v4(x,y, t) =−

(
2+4

√
−2− r

)
1+2

√
−2− r

coth2
[
2
√
−2− r t + x+ y

]
. (3.41)

Case-3: When

A0 = 0, A1 = 0, B1 =−
√

2+4
√

1− r, a =−
√

1− r,

we get the following solutions:

u5(x,y, t) =±
√

2+4
√

1− ri sech
[
2
√

1− r t + x+ y
]
e

i

(
rt−
√

1−r x+by

)
, (3.42)

v5(x,y, t) =
2+4

√
1− r

1+2
√

1− r
sech2

[
2
√

1− r t + x+ y
]

(3.43)

and

u6(x,y, t) =±
√

2+4
√

1− rcsch
[
2
√

1− r t + x+ y
]
e

i

(
rt−
√

1−r x+by

)
, (3.44)

v6(x,y, t) =−

(
2+4

√
1− r

)
1+2

√
1− r

csch2
[
2
√

1− r t + x+ y
]
. (3.45)

Case-4: When

A0 = 0, A1 =−
√

1+
√

2−4r√
2

, B1 = 0, a =−
√

1
2
− r,

we get the following solutions:
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u7(x,y, t) =

√
1+
√

2−4r√
2

(
sec
[
2

√
1
2
− r t + x+ y

]
−tan

[
2

√
1
2
− r t + x+ y

])
e

i

(
rt−
√

1
2−r x+by

)
,

(3.46)

v7(x,y, t) =−

(
1+
√

2−4r
)

2
(

1+2
√

1
2 − r

)(sec
[
2

√
1
2
− r t + x+ y

]

−tan
[
2

√
1
2
− r t + x+ y

])2
(3.47)

and

u8(x,y, t) =

√
1+
√

2−4r√
2

(
cot
[
2

√
1
2
− r t + x+ y

]
+csc

[
2

√
1
2
− r t + x+ y

])
e

i

(
rt−
√

1
2−r x+by

)
,

(3.48)

v8(x,y, t) =−

(
1+
√

2−4r
)

2
(

1+2
√

1
2 − r

)(cot
[
2

√
1
2
− r t + x+ y

]

+csc
[
2

√
1
2
− r t + x+ y

])2

.

(3.49)
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Figure 1 The (a) 3D, 2D surfaces (b) contour plot of Eq. (3.16).
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Figure 2 The (a) 3D, 2D surfaces (b) contour plot of Eq. (3.20).
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Figure 3 The (a) 3D, 2D surfaces (b) contour plot of Eq. (3.36).

4 Conclusion

In this study, we successfully constructed some soliton, singular soliton and singular periodic wave solutions
to the Davey-Stewartson equation and the (2+1)-dimensional nonlinear complex coupled Maccari system by
using the extended sinh-Gordon equation expansion method. Under the choice of suitable parameters, the 2D,
3D and contour graphs to some of the obtained solutions are presented. The reported results in this study have
some physical meanings, for instance; the hyperbolic tangent arises in the calculation of magnetic moment and
rapidity of special relativity, the hyperbolic secant arises in the profile of a laminar jet, and hyperbolic cotangent
arises in the Langevin function for magnetic polarization [72]. In order to have clear and good understanding of
the physical properties of the reported topological, non-topological, singular solitons and singular periodic wave
solutions, under the choice of the suitable values of parameters, the 3D, 2D and the contour graphs are plotted.
The perspective view of the topological Eq. (3.16), non-topological Eq. (3.20) and mixed singular solitons Eq.
(3.36) can be seen in the 3D graphs which appear in the (a) parts of figs. 1, 2 and 3, respectively. The propagation
pattern of the wave along the x-axis for Eq. is illustrated in the 2D graphs which is located at the top right corner
of the (a) parts of figs. 1, 2 and 3. The contour graphs is an alternative of the 3D plots. The the contour graph
in the (b) part of fig. 1 illustrates the unstable propagation of the exact toplogical soliton and contour graphs
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in the (b) parts of fig. 2 illustrates the stable propagation of the exact fundamental non-toplogical soliton. The
extended sinh-Gordon equation expansion method is powerful and efficient mathematical approach that can be
used for investigating various nonlinear physical models. To the best of our knowledge the applications of the
extended sinh-Gordon equation expansion method to the Davey-Stewartson equation and the (2+1)-dimensional
nonlinear complex coupled Maccari system have not been submitted to the literature beforehand.
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