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On the Exactness of an S-Shaped Bifurcation CurvePhilip KormanDepartment of Mathematical SciencesUniversity of CincinnatiCincinnati Ohio 45221-0025andYi LiDepartment of MathematicsUniversity of IowaIowa City Iowa 52242AbstractFor a class of two-point boundary value problems we prove exact-ness of S-shaped bifurcation curve. Our result applies to a problemfrom combustion theory, which involves nonlinearities like eau=(u+a)for a > 0.Key words and phrases: S-shaped bifurcation curve, Crandall-Rabinowitztheorem.AMS subject classi�cation: 34B15.1 IntroductionWe consider positive solutions ofu00 + �f(u) = 0 on (�1; 1); u(�1) = u(1) = 0:(1.1)Here � is a positive parameter, and we wish to describe all solutions of(1.1) for all values of �. Our main example will be f(u) = e auu+a . Thisnonlinearity is connected with steady state of gas combustion accordingto the Arhenius law, see e.g. J. Bebernes and D. Eberly [2], and it has1



been studied before, see K.J. Brown, M.M.A. Ibrahim and R. Shivaji [3], R.Shivaji [9] and A. Castro and R. Shivaji [4]. For the above nonlinearity it wasshown that for a � 4 there exists a unique positive solution for all �, whilefor a large the solution diagram is roughly S-shaped, i.e. there is a rangeof � for which there exist at least three solutions. Moreover, uniqueness ofsolution was proved for small and for large �. In this paper we show thatsolution diagram consists of exactly one curve, which is exactly S-shaped,for a class of nonlinearities which includes the one above for a > a0, wherea0 is de�ned below (a0 ' 4:35). The bifurcation diagram is given in Pic.1(a). A similar result was proved by S.-H. Wang [10] using the quadraturetechnique. In addition to obtaining an alternative proof, we do not requirethe boundness of f(u), as was the case in [10]. This brings up a possibilityof another type of S-shaped solution curves, as in Pic. 1(b). Moreover,when verifying the conditions of the theorem for f(u) = e auu+a , we introduceanother technical improvement, which shortens the proof and produces abetter critical constant.We use tools from bifurcation theory, particularly the M.G. Crandall-P.H. Rabinowitz bifurcation theorem, which is recalled below, and the tech-niques from P. Korman, Y. Li and T. Ouyang [7].We assume that f(u) 2 C2[0; �u] for some 0 < �u � 1 and it satis�esf(u) > 0 for all 0 � u < �u;(1.2)and there is � 2 (0; �u) such thatf 00(u) > 0 for u 2 (0; �); f 00(u) < 0 for u 2 (�; �u):(1.3)We also assume that f(u) is \sublinear", i.e. either �u is �nite and f(�u) = 0,or else limu!1 f(u)u = 0:(1.4)Remark. We denote F (u) = R u0 f(t) dt. If u(x) is a positive solution of(1.1) then necessarily F (u(0)) > 0 and f(u(0)) > 0. Therefore, if conditionf(�u) = 0 holds, then all possible u(0) must lie in a single interval (0; �u).For f(u) = e auu+a one computes � = 12a2 � a. In Theorem 2.1 below wemake a further assumption on f(u), which in particular implies that it is\su�ciently convex" in the beginning.Next we recall the bifurcation theorem of M.G. Crandall and P.H. Ra-binowitz [5]. 2



Theorem 1.1 [5] LetX and Y be Banach spaces. Let (�; x) 2 R�X and letF be a continuously di�erentiable mapping of an open neighborhood of (�; x)into Y . Let the null-space N(Fx(�; x)) = span fx0g be one-dimensional andcodim R(Fx(�; x)) = 1. Let F�(�; x) 62 R(Fx(�; x)). If Z is a complement ofspan fx0g in X, then the solutions of F (�; x) = F (�; x) near (�; x) form acurve (�(s); x(s)) = (�+�(s); x+sx0+z(s)), where s! (�(s); z(s)) 2 R�Zis a continuously di�erentiable function near s = 0 and �(0) = � 0(0) = 0,z(0) = 0, z0(0) = 0.We shall write u(x; �) to denote solution of (1.1). Notice that taking theinterval (�1; 1) does not restrict the generality for the autonomous equation(1.1).2 The Global Solution CurveWe consider positive solutions ofu00 + �f(u) = 0 on (�1; 1); u(�1) = u(1) = 0:(2.1)Our main example will be f(u) = e auu+a . Here a is a �xed positive constant,and � a positive parameter. We wish to describe all positive solutions of(2.1) as the parameter � varies.The linearized equation corresponding to (2.1) isw00 + �f 0(u)w = 0 on (�1; 1); w(�1) = w(1) = 0:(2.2)If (2.2) has nontrivial solutions at some solution u(x) of (2.1), we refer to(�; u) as a critical point of (2.1).Assume there is � � � such thatf2(�)� 2F (�)f 0(�) > 0:(2.3)The following lemma is an adaptation of Lemma 2.5 in [7].Lemma 2.1 Assume that f(u) satis�es the condition (1.2), (1.3) and (1.4).Let (�; u) be any critical point of (2.1), with u(0) � �, and w(x) is thecorresponding solution of (2.2). ThenZ 10 f 00(u)uxw2dx > 0:(2.4) 3



Proof. We shall derive a convenient expression for the integral in (2.4).Di�erentiating (2.2) givesw00x + �f 0(u)wx + �f 00(u)uxw = 0:(2.5)From the equations (2.2) and (2.5)(ww0x � w02)0 + �f 00(u)uxw2 = 0:Integrating, we express� Z 10 f 00(u)uxw2dx = �(ww00 � w02)j10(2.6) = w02(1)� �w2(0)f 0(u(0)):Di�erentiating (2.1) gives u00x + �f 0(u)ux = 0:(2.7)From (2.2) and (2.7) (wu00 � u0w0)0 = 0:This means that the quantity wu00�u0w0 is constant over [�1; 1]. Evaluatingit at x = 0, we concludew(x)u00(x)� u0(x)w0(x) = ��w(0)f(u(0)) for all x 2 [�1; 1]:Evaluating this expression at x = 1 givesw0(1) = �w(0)f(u(0))u0(1) :(2.8)Multiplying (2.1) by u0, and integrating over (0; x), we obtainu02(x) = 2�[F (u(0))� F (u(x))]:Setting here x = 1, and using the resulting formula in (2.8), we expressw02(1) = �w2(0)f2(u(0))2F (u(0)) :Using this in (2.6) we �nally obtainZ 10 f 00(u)uxw2dx = w2(0)2F (�) I(�);4



where we denote � = u(0), andI(�) = f2(�)� 2F (�)f 0(�):To prove the lemma we need to show that I(�) > 0 for any � � �. ComputeI 0(�) = �2F (�)f 00(�) � 0 for � � �;and the lemma follows by the assumption (2.3).In order to prove our main result we need to understand precisely howthe solution curve changes its direction, which is determined by the functionh(u) = 2F (u)� uf(u):(2.9)We state our main result next.Theorem 2.1 Assume that f(u) satis�es the conditions (1.2), (1.3) and(1.4). With h(u) � 2F (u)� uf(u) assume thath(�) < 0:(2.10)Then the solution curve of (2.1) is exactly S-shaped, i.e. it starts at � = 0,u = 0 it makes exactly two turns, and then continues for all � > 0 withoutany more turns.Proof. By the implicit function theorem there is a curve of positive so-lution of (2.1) starting at � = 0, u = 0. This curve continues for increasing� until a possible singular solution (�0; u) (i.e. (2.2) has nontrivial solu-tions), at which the Crandall-Rabinowitz Theorem 1.1 applies. A standardcalculation shows that the function �(s) de�ned in that theorem satis�es� 00(0) = ��0 R 10 f 00(u)w3dxR 10 f(u)wdx :(2.11)Indeed, di�erentiating the equation (2.1) twice in s, we haveu00ss + �f 0(u)uss + 2�0f 0(u)us + �f 00(u)us2 + �00f(u) = 0:Setting here s = 0, and using that � 0(0) = 0 and usjs=0 = w(x), we getu00ss + �0f 0(u)uss + �0f 00(u)w2 + � 00(0)f(u) = 0:(2.12) 5



Multiplying (2.12) by w, and the equation (2.2) by uss, subtracting andintegrating, we obtain (2.11). In P. Korman, Y. Li and T. Ouyang [7]. weshowed that one may assume w(x) to be positive on (�1; 1), and that thedenominator in (2.11) is positive. It follows by (2.11) that when u(0) <� only turns to the left in (�; u) \plane" are possible. Next we need aformula that gives the direction in which solution curve travels, derived inK.J. Brown, M.M.A. Ibrahim and R. Shivaji, [3]. With � = u(0) and h(u)as de�ned previously, they show thatdd��(�)1=2 = 1p2 Z 10 h(�)� h(�v)[F (�)� F (�v)]3=2dv:(2.13)We see that d�d� < 0 and the curve travels to the left, providedh(�) < h(s) for all s 2 (0; �):(2.14)We now discuss the function h(u). Sinceh0(u) = f(u)� uf 0; h00(u) = �uf 00;it follows that the function h0(u) is decreasing on (0; �) and increasing on(�;1). Since h(0) = 0, h0(0) = f(0) > 0, it follows that there exist u1 andu2, with u1 < � < u2, such that h0(u1) = h0(u2) = 0 andh0 = f(u)� uf 0(u) > 0 for u 2 (0; u1) [ (u2;1);(2.15) h0 = f(u)� uf 0(u) < 0 for u 2 (u1; u2):(2.16)Indeed, existence of the �rst root u1 < � follows immediately by (2.10). Asfor the second root u2, if it did not exist, we would havef(u) < uf 0(u) for all u > �:(2.17)Integrating (2.17), we would havef(u) > f(�)� u for all u > �;contradicting the assumption (1.4), in case �u =1. If �u <1, then we get acontradiction by plugging �u into this inequality. Returning to the functionh(u), we notice that h(0) = 0 and h(u) is concave on (0; �). By (2.15)h(u) is decreasing on (�; u2), at u2 it takes its absolute minimum, and thenincreases for all u > u2. The graph of h(u) is given by Pic. 2. One sees that6



the condition (2.14) holds for all u 2 (�; u2) i.e. so long as � < u(0; �) < u2the solution curve travels to the left.We now claim that for � = u2 the condition (2.3) holds. Indeed, sinceh(u2) < 0, we have f(u2)u2 > 2F (u2):Hence f2(u2)� 2F (u2)f 0(u2) > f2(u2)� f(u2)u2f 0(u2) = 0;and the claim follows.We conclude that for u(0) > u2 the Lemma 1 applies. We show nextthat this implies that only turns to the right in (�; u) plane are possible. Weproceed similarly to P. Korman, Y. Li and T. Ouyang [7]. Let (�0; u0(x))be a critical point of (2.1) with u0(0) > u2. The function f 00(u0(x)) changessign exactly once on (0; 1), say at x0 > 0. Clearlyf 00(u0(x)) < 0 for x 2 (0; x0); f 00(u0(x)) > 0 for x 2 (x0; 1):(2.18)By stretching the function w(x) we may assume that the functions w(x)and �u00(x) intersect at x0. We claim that x0 is the only point on (0; 1)where they intersect. Indeed, the functions w(x) and �u00 are solutions ofthe same linear equation (2.2). If x1 is another intersection point, adjacentto x0, then we can �nd a constant � 6= 1 and a point x 2 (x0; x1) so that�w(x) = �u0(x) and �w0(x) = �u00(x), i.e. two distinct solutions with thesame initial conditions, a contradiction. By Lemma 1 it follows thatZ 10 f 00(u0(x))w2wdx < Z 10 f 00(u0(x))w2(�ux)dx < 0:(2.19)Indeed, �ux > w where f 00 > 0, and �ux < w where f 00 < 0. Hence theintegrand on the right is pointwise greater than the one on the left. By(2.19) the numerator in (2.11) is negative, which means that only turns tothe right are possible for u > u2.We now return to the curve of solutions, which started at � = 0, u = 0.It is well-known that u(0; �) is increasing on this curve for all �, see e.g.E.N. Dancer [6]. By the time u(0; �) reaches �, the curve already travels tothe left. Since f 00(u) > 0 for u < � it follows by (2.11) that only turns to theleft are possible before u(0; �) reaches �, and hence exactly one such turnoccurred. As u(0; �) keeps increasing between � and u2, the function h(u)keeps decreasing, and hence (2.14) continues to hold, and so the solutioncurve keeps travelling to the left until u(0; �) reaches u2. When u(0; �) > u27



only turns to the right are possible, and indeed exactly one such turn willoccur, for if the curve kept travelling to the left it would have nowhere togo (solutions of (2.1) are bounded for bounded �). Hence solution curve isexactly S-shaped.Finally, there is only one solution curve, since (in case f(u) > 0 for allu) on our curve of solutions the value u(0) varies from 0 to 1, while thevalue of u(0) uniquely identi�es the solution, see e.g., E.N. Dancer, [6]. (Incase f(u) vanishes at some �u one argues similarly.)Next we discuss a generalization of Theorem 2.1, obtained by replacingthe sublinearity condition (1.4) by the following \weak sublinearity condi-tion" �f(u)u �0 � 0 for some u = u0 > �:(2.20)Theorem 2.2 Assume that f(u) satis�es the conditions (1.2), (1.3) and(2.20). Then the solution curve of (2.1) is either exactly S-shaped as de-scribed in the previous theorem, or else after exactly two turns it tends toin�nity at some �nite �� > 0.Proof. We begin by observing that our conditions allow f(u) to be asymp-totically linear as u ! 1. Indeed, starting with any f(u) satisfying (1.2)and (1.3) we may by adding a large constant obtain a function satisfyingthe condition (2.20) as well, at any u0 > �. This leaves f(u) free to haveany behavior at in�nity, which is consistent with concavity, in particular itcan be asymptotically linear. This implies that solution curve may go toin�nity at some �nite � = ��.The proof proceeds similarly to the previous theorem. When it comesto the existence of u2, the second root of h(u), we observe that if it did notexist, we would have f(u) < uf 0(u) for all u > �;contradicting the assumption (2.20). As before, the curve makes preciselyone turn before u(0) reaches �. We claim that the curve cannot go to in�nityas it travels to the left. Indeed, setting w(u) = � f(u)u �0, we observe that by(2.20) w(u0) � 0. Sincew0(u) + 2uw(u) = f 00(u)u < 0;8



we obtain by integrating the above equationu2w(u) = u20w(u0) + Z uu0 sf 00(s) ds < 0 for all u � u0:We conclude that f(u)u is decreasing for all u > u0. Hence if f(u) is asymp-totical to au + b, with constant a and b, then b > 0. This implies thatbifurcation from in�nity is to the left, see e.g. [1]. We conclude that thesolution curve cannot go to in�nity on its way to the left.Hence as before the curve will make exactly one more turn to the right,and then it may go to in�nity at some �nite ��, see Pic. 1(b).3 ApplicationsAs our �rst application, we now consider f(u) = e auu+a . Then f 0(u) > 0 for allu > 0, f 00(u) > 0 for 0 < u < 12a(a� 2), f 00(u) < 0 for u > 12a(a� 2). If 0 <a � 4, it was noticed previously, see e.g. R. Shivaji [9] that f(u) > uf 0(u)for all u > 0, and hence for any � the problem (2.1) has a unique solution.(The previous writers were using the formula (2.13) to conclude uniquenessin this case. Alternatively, one could use Sturm comparison theorem toconclude that the linearized equation (2.2) can have no nontrivial solutions,and so the solution curve cannot turn).Next we need the following lemma.Lemma 3.1 Let a0 > 4 be solution of1� 2a = 4 Z a2 e��+2�2 d�:(3.1)(Numerical evaluation shows that a0 ' 4:35). Then in case f(u) = e auu+a wehave for all a > a0 h(�) < 0:(3.2)Proof. First of all notice that for all a > a01� 2a > 4 Z a2 e��+2�2 d�:(3.3)Indeed, denoting by d(a) the di�erence between the left and right sides in(3.3), we have that d(a0) = 0 andd0(a) = 2a2 � 4e�a+2a2 > 0 for a > 4:9



This justi�es (3.3) and also shows that the equation (3.1) has exactly onesolution in a > 4 range. Computeh(�) = 2 Z 12a2�a0 e ass+ads� �12a2 � a� ea�2 � �ea�2a22 H;where H = 1� 2a � 4a2 Z 12a2�a0 e ass+a�a+2ds= 1� 2a � 4a2 Z 12a2�a0 e� a2a+s+2ds:We make a change of variables � = a2a+s , i.e. s = a2� � a, ds = �a2�2d� . Itfollows that H = 1� 2a + 4 Z 2a e��+2�2 > 0(3.4)in view of (3.3), and hence h(�) < 0.Remark. If the reader is uncomfortable with a (routine) use of computerto solve the equation (3.1), one can proceed as follows. In (3.4) set t = ��2.Then H = 1� 2a � 4 Z a�20 e�t(t+ 2)2dt= 1� 2a � 4 Z a�20 e�t � 1(t+ 2)2 � 14�� Z a�20 e�tdt= �2a + e�a+2 + Z a�20 e�t 4t + t2(t+ 2)2dt;which is positive for large a.If a > 4 then h0(u) has roots and in fact, u1; u2 = 12a2 � a� a2pa2 � 4a.If a > a0 ' 4:35 then by Lemma 3.1 the condition (2.10) is satis�ed, andhence the solution curve is exactly S-shaped. This is an improvement of thecritical constant a0 ' 4:4967 obtained by S.H. Wang [10]. We have thusproved the following theorem.Theorem 3.1 If a > a0 then the solution curve for the problemu00 + �e auu+a = 0 on (�1; 1), u(�1) = u(1) = 0is exactly S-shaped. 10



Our second example involves f(u) = 1 + u2 � �up, with constants p > 2,and � > 0. We compute h(u) = u � 13u3 + �p�1p+1up+1, and � = h 2�p(p�1)i 1p�2 .It followsh(�) = � 2�p(p� 1)� 1p�2 � 13 � 2�p(p� 1)� 3p�2 + �p� 1p+ 1 � 2�p(p� 1)� p+1p�2 :For � small the leading terms in � are second and third, and they have thesame order in �. We will have h(�) < 0 for small �, provided13 � 2p(p� 1)� 3p�2 > p� 1p+ 1 � 2p(p� 1)� p+1p�2 :This is equivalent to 13 > 2p(p+ 1) ;which is true for p > 2. We conclude that for � small, i.e. if� 2p�2 < 13 � 2p(p� 1)� 2p�2 � p� 1p+ 1 � 2p(p� 1)� pp�2(3.5)the solution curve is exactly S-shaped.Theorem 3.2 Assume that p > 2 and � satis�es (3.5). Then the solutioncurve foru00 + �(1 + u2 � �up) = 0 on (�1; 1), u(�1) = u(1) = 0is exactly S-shaped.Acknowledgement. We wish to thank the Institute for Mathematics andits Applications at the University of Minnesota (IMA) for supporting ourvisits there, which made this work possible. We thank R. Shivaji for pointingout the reference [10] to us.References[1] A. Ambrosetti and P. Hess, Positive solutions of asymptotically linearelliptic eigenvalue problems, J. Math. Anal. Applic. 73, 411-422 (1980).11
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