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soft theorems can arise either due to (I) unique structure of the fundamental vertex or (II)

presence of enhanced broken-symmetries. While the former is expected to be modified by

infrared or ultraviolet divergences, the latter should remain exact to all orders in pertur-

bation theory. Using current algebra, we clarify such distinction for spontaneously broken

(super) Poincaré and (super) conformal symmetry. We compute the UV divergences of

DBI, conformal DBI, and A-V theory to verify the exactness of type (II) soft theorems,

while type (I) are shown to be broken and the soft-modifying higher-dimensional operators

are identified. As further evidence for the exactness of type (II) soft theorems, we consider

the α′ expansion of both super and bosonic open strings amplitudes, and verify the valid-

ity of the translation symmetry breaking soft-theorems up to O(α′ 6). Thus the massless

S-matrix of string theory “knows” about the presence of D-branes.
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1 Introduction and motivations

Soft behaviour of the S-matrix for massless theories, where one considers an expansion in

small momenta for one or more external legs, exhibits universal behaviour that reflects the

underlying symmetry principle. Indeed the Ward identity from gauge invariance directly

leads to Weinberg’s soft theorem [1], while spontaneous broken symmetry (SBS) is reflected
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in Adler’s zero [2]. In other words, soft theorems are the on-shell avatar of the symmetry

constraints that protect the light degrees of freedom from quantum corrections.

Universality of the sub-leading expansion can arise from two origins. (I) First, the

symmetry principle that leads to the leading soft theorem will have sub-leading extensions

when combined with the specific structure of the lowest multiplicity vertex. More precisely,

focusing on the factorization diagrams with one fundamental vertex on one-side will give

the leading soft-limit behaviour. For sub-leading, although other diagrams also contributes,

the underlying symmetry principle can relate them to that of the factorization diagram.

Indeed this precisely was how the sub-leading photon and graviton soft theorems were

derived initially [3–7], and recently extended to SBS [8]. For these theories, one can show

that soft theorems are sufficient to determine the full tree-level S-matrix via recursion

relations [9, 10].1 More generally, soft theorems play important roles in constraining the

low-energy effective actions [14] (also see [15]), especially when combine with constraints

from supersymmetry [16]. The fact that soft-contributions factorizes is also crucial in the

exponentiation of soft emissions [17] in gauge theories, and has also been extended to

subleading corrections (see [18] for a comprehensive review).

(II) Second, if the Goldstone mode is associated with more than one broken generators

(“enhanced” broken symmetry), which occurs when the currents are derivatively related,

then the linear relation amongst the currents implies universal sub-leading soft behaviours.

More precisely, consider the case where there is a set of broken generators {Gi}, where the

algebra admits the following commutation relation:

[P,G1] ∼ G2 . (1.1)

Here P is the translation generator. The Goldstone mode associated with broken generator

G2 is then derivatively related to that of G1, and hence they should be identified. Since the

translation generator P is involved in the algebra, such scenarios occur for spontaneously

broken space-time symmetries. In the language of currents, one would schematically have

J1 ∼ xJ2, which in momentum space becomes

J̃1 ∼
∂

∂p
J̃2 , (1.2)

where J̃ ’s are the Fourier transformed currents. Thus as one applies Ward identities to

derive soft theorems, using J̃1 instead of J̃2 to excite the soft Goldstone mode would lead

to soft theorems that are sub-leading in the soft-momenta expansion. In other words, the

presence of sub-leading soft theorems reflect the enhanced broken symmetry associated

with the single Goldstone boson. Examples of such symmetry breaking pattern include

conformal symmetry and translation symmetry, where one identifies {G1, G2} as {K,D}

and {L̂, P̂} respectively [19],2 with L̂ the angular momentum and {K,D} being the special

conformal transformation and dilation generators. Indeed sub-leading single-soft theorems

for the dilaton were derived using the above approach in [20]. In short, type (I) soft

theorems depends on both the symmetry and detailed structure of the interaction vertex,

1In fact in some cases, the S-matrix is fixed simply by simultaneously impose soft theorems and locality

constraints [11–13].
2Here the hat indicates these are translation and rotation symmetries involving extra-dimensional direc-

tions that are spontaneously broken.
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whether it is tree-level or loop-level generated counter terms. Type (II) is determined by

symmetry alone.

Type (I) soft theorems are not expected to survive quantum corrections simply due to

the fact that IR or UV divergences can modify the structure of the fundamental vertex.

Indeed sub-leading graviton and photon soft theorems are modified at loop-level due to

IR divergences [7, 21], or UV divergences that introduce higher dimensional three-point

operators [22]. The modifications due to higher-dimensional operators were systematically

analysed in [23], where the relevant operators as well as the resulting modified soft theorems

were identified.

Since type (II) sub-leading soft theorems can be derived using symmetry principle

based current algebra, if the symmetry is not anomalous, it should hold to all orders and

irrespective of the details of the UV completion. The aim of this paper is two folds:

• Deriving sub-leading soft theorems from current algebra for spacetime symmetry

breaking. More precisely we derive the single- and double-soft theorems associated

with spontaneous conformal as well as Poincaré symmetry breaking. As one of the

consequences, we clarify which of sub-leading soft-theorems that were derived in [24],

for Dirac-Born-Infeld (DBI) are of type II.

• Via explicit computation of UV divergences for various effective field theories, we ver-

ify that type II soft theorems survive quantum corrections. Note that this closes a tiny

loop-hole in the discussion of counter terms in supergravity, where their compatibility

with duality symmetries are analysed via soft theorems [25–27]. In principle one has

to show that the regulated theory leaves the duality intact, which is not trivial since

the duality involves the electric magnetic duality of the photon fields, which is defined

strictly in four-dimensions. Through maximal susy, the duality symmetry is directly

related to the scalar sector where the duality implies explicit double-soft theorems.

We begin by re-deriving the double soft theorems associated with translational symme-

try up to order τ , where τ parameterises the soft momenta pi by pi → τpi, and conjecture

that the O(τ2) also has symmetry based origin. Similarly, double soft theorems for sponta-

neously broken conformal symmetry are derived up to the same order. This result indicates

that O(τ3) soft theorem found in [24] for the DBI action cannot be respected by its UV

divergences. As a check, we compute the one-loop UV divergences up to six points for DBI,

conformal DBI3 as well as that for the Akulov-Volkov (A-V) theory [28, 29], namely the ef-

fective action for spontaneously supersymmetry breaking. For the former, we have verified

that indeed the O(τ1) and O(τ2) soft theorems are respected, while the O(τ3) soft-theorem

is indeed broken. We have further identified the culprit of this violation to be the presence

of a new eight-derivative counter term in four-dimensions. In six-dimensions such counter

term does not arise, and the O(τ3) soft-theorem is restored. This confirms the claim that

O(τ3) soft-theorems are due to the structure of the tree-level four-point vertex. Similarly

we verified that the leading single- and double-soft theorems are also respected by the UV

divergences of A-V theory. We note that this is the first time the double-soft theorems

associated with non-linear symmetries are tested against non-trivial UV divergences.

3Here by conformal DBI we mean the DBI action in a AdS background.
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The fact that type (II) soft-theorems survive quantum corrections imply that it should

apply to any UV completion. As a test, we consider the super and bosonic open string theo-

ries which are the UV completions of the effective field theory of D-branes in flat space. We

consider the scalar modes that come from dimensionally reduced amplitudes. Since this sys-

tem corresponds to the Goldstone modes of D-branes, we should expect that the single and

double-soft theorems due to the (broken) translation symmetry are respected. We verify

this against the four and six-point abelianized open string amplitudes,4 and show that once

again the double-soft theorems are respected up to O(τ2), while the O(τ3) is broken. Thus

the S-matrix of string theory knows about the presence of D-branes. Note that since the pre-

vious analysis shows that eight-derivative four-point operators modify the O(τ3) soft theo-

rem, by power counting one would argue that the presence of six-derivative counter terms

would modify O(τ2) soft theorems. Indeed such operator does appear in the bosonic string

effective action. The fact that O(τ2) soft theorem is respected substantiate our claim that it

is symmetry protected. Finally, soft-theorems are related to the degeneracy of the vacuum

manifold, it would hold even if the vacuum is unstable, as is the case for the bosonic string.

This paper is organised as follows: in the next section 2, we review the derivation of

soft theorems from Ward identities of currents. We will argue that for degenerate currents,

in that one is related to the derivative of the other, soft theorems for the Goldstone bosons

can be derived up to order O(τ) for the single soft limit, and O(τ2) for the double soft

limit. In section 3, we compute the one-loop UV divergences up to six points in the theories

of DBI, conformal DBI as well as A-V theory, where we demonstrate that the symmetry

derived soft theorems are respected, while those derived in [24] that are not, are broken by

loop-level corrections. In section 4, we study massless amplitudes in open string theory, and

consider the dimensionally reduced amplitude where the modes are Goldstone bosons. We

show that the previously derived soft theorems are again satisfied. Finally, in section 5 we

present our conclusions and outlook. Some technical issues are discussed in the appendices.

Note added. In the final stages of this draft, the work of Paolo Di Vecchia, Raffaele

Marotta, and Matin Mojaza appeared on arXiv [30], where the conformal double-soft

theorems were also derived with similar methods.

2 Derivation of soft theorems

Here we review the derivation of soft theorems from current algebra, where we use the

currents associated with the broken symmetries to excite the Goldstone boson. Let us

begin with the Ward Identity:5

∫

dDxeiq·x
∏

i

[
∫

dDxie
iki·xi∂2

i

]

∂

∂xµ
〈0|jµA(x)j

µ1

A (x1)···j
µn

A (xn)|0〉 (2.1)

=
∑

i

∫

dDxie
i(ki+q)·xi∂2

i

∏

m 6=i

[
∫

dDxmeikm·xm∂2
m

]

∑

i

〈0|jµ1

A (x1)···δAj
µi

A (xi)···j
µn

A (xn)|0〉

4The lowest order in α′-expansion of abelianized open string amplitudes corresponds to the amplitudes

in DBI.
5We consider the Ward identity of jD first because it makes our calculation simpler.
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where we Fourier transform one of the legs with momentum q, while apply LSZ reduction

on the remaining ones. We will use the subscript A in jµi

A to indicate it is the current of

a broken generator jµi

A |0〉 6= 0. The broken current excites a Goldstone boson from the

vacuum, 〈π(p)|jµA(x)|0〉 ∼ Fpµeip·x and thus in a correlator one will find

〈0|jµA · · · |0〉 =

∫

p
〈0|jµA|π〉

1

p2
〈π| · · · |0〉 =

∫

p
Feip·x

pµ

p2
〈π| · · · |0〉 (2.2)

where 〈π| is the Goldstone boson interpolating field whose propagator is 1
p2
. The first line

of eq. (2.1) in the limit q → 0 becomes

M(πqπ1 · · ·πn)
n
∏

i=1

pµi

i +O(q1) . (2.3)

The second line now depends on whether δAj
σi

A produces a state in the physical spectrum.

For theories that do not produce such states, the result is 0 due to the projection of LSZ

reduction. This is the famous Adler’s zero. This is indeed the case for Non-Linear Sigma

Models, since

δAa
1
jAa2 = fa1a2b1jV b1 (2.4)

where ai label the distinct generators and jV b1 is a current of the unbroken invariant

subgroup and hence does not produce physical states in the spectrum, i.e. jµi

V |0〉 = 0.

For cases that it does produce physical states, then the single-soft limit no-longer is

zero. A prime example of the latter case is spontaneous broken conformal symmetry. First

of all, although both dilatation and conformal boost symmetries are broken, there is only

one Goldstone boson. This is because

[P,K] ∼ D (2.5)

and thus the Goldstone mode from K is derivatively related to that of D [19]. Indeed this

relation can be realised on the explicit form of the corresponding currents:

jµD = Tµνxν , jµKν = Tµλ(2xνxλ − δνλx
2) (2.6)

where Tµν is the stress tensor. Now since the current itself also transforms linearly under

both K, and D, the r.h.s. of eq. (2.1) no longer vanishes, i.e. one has non-zero soft limits.

Furthermore, the fact that the two currents associated with the same Goldstone boson

are derivatively related implies that soft theorems can be extended to the sub-leading level.

To see this, first note that:

∂µ〈j
µ
D · · · 〉 = 〈Tµ

µ · · · 〉+ xν∂µ〈T
µν · · · 〉 ,

∂µ〈j
µ
Kλ · · · 〉 = 2xλ〈T

µ
µ · · · 〉+ (2xνxλ − ηρνx

2)∂µ〈T
µν · · · 〉 . (2.7)

Now, since upon Fourier transform in momentum space ∂µ〈Tµν · · · 〉 generates a sum over

the momenta of the remaining fields, this term will not contribute. Thus we can effectively

equate:

∂µ〈j
µ
Kλ · · · 〉 ∼ 2xλ∂µ〈j

µ
D · · · 〉 . (2.8)
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Now consider the case where one uses jµKν in eq. (2.1) instead of jµD, then due to the extra

factor of x in the r.h.s. of eq. (2.8) the l.h.s. of eq. (2.1), again in the limit q → 0 yields:

∂

∂q
M(πqπ1 · · ·πn)

n
∏

i=1

pµi

i +O(q1) . (2.9)

This would then lead to soft theorems sub-leading in the soft momenta expansion.

For the double soft limits, one instead begins with

∏

i

[
∫

dDxie
iki·xi∂2

i

]
∫

dDy eip·y
∂

∂yν

∫

dDx eiq·x
∂

∂xµ
〈0|jµA(x)j

ν
A′(y) · · · |0〉 . (2.10)

The above equation can be evaluated in two ways. First, integrating by parts both the

derivatives in x and y and taking the momenta p, q to be soft, one obtains the double soft

limit of (n+2)-point amplitude. On the other hand, one can also employ the Ward identity,

which generates transformations on the other fields in the correlation function. Similar to

the single-soft discussion, the resulting double-soft limit depends on the nature of the

broken symmetry. There are two sources for non-vanishing results. The first is similar to

the single-soft limit, where one considers the variation of remaining fields under the broken

symmetries. The second is the variation of the current itself under the broken symmetry,

which will be proportional to the current of either an unbroken or broken symmetry. Non-

linear sigma models as well as broken translational and supersymmetry are of the former.

Broken (super) conformal will receive contributions for both cases. Finally as with the

single soft discussion, employing jµKν instead of jµD will lead to sub-leading soft theorems.

In the following, we will perform a detailed analysis for two types of space-time sym-

metry breaking, conformal as well as translation. For completeness, we will also derive the

double soft theorems for susy and conformal susy breaking in appendix A and appendix B.

2.1 Broken conformal symmetry

We begin by reviewing the results of the single soft limits of broken conformal symmetry,

which is given by,

Mn+1

∣

∣

pn+1→0
=

(

S(0) + S(1)
)

Mn(p1, · · ·, pn) +O(p2n+1) . (2.11)

The leading [31, 32] and sub-leading [20] soft operators S(0),S(1) are given as

S(0) = −
n
∑

i=1

(

pi ·
∂

∂pi
+

D − 2

2

)

+D ,

S(1) = −pµn

n
∑

i=1

[

pνi
∂2

∂pνi ∂p
µ
i

−
piµ
2

∂2

∂piν∂p
ν
i

+
D − 2

2

∂

∂pµi

]

, (2.12)

where D is the space-time dimension, and here we only consider the form of the soft

theorem on massless degrees of freedom. We will not present the derivation of this single-

soft theorem here which was done in [20], but just to remark that as discussed in the

above review, the presence of sub-leading single-soft theorem is related to the fact that the

generators of the broken symmetries being derivatively related.
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2.1.1 Leading double-soft theorems from (jD, jD)

We now directly move to the double soft limit. For the leading order, we consider the

double Ward identity for two dilatation currents:

LSZ

∫

dDy eip·y
∂

∂yν

∫

dDx eiq·x
∂

∂xµ
〈0|jµD(x)j

ν
D(y)φ(x1) · · ·φ(xn)|0〉

= LSZ

∫

dDy (−ipν)

[

ei(q+p)·y〈0|δDj
ν
D(y)φ(x1) · · ·φ(xn)|0〉

+
n
∑

i=1

ei(q·xi+p·y)〈0|jνD(y)φ(x1) · · · δDφ(xi) · · ·φ(xn)|0〉

]

(2.13)

where for abbreviation LSZ =
∏

i

[∫

dDxie
iki·xi − ∂2

i

]

, as the LSZ reduction. In the above

we first apply the Ward identity associated with ∂x, and partial integrate ∂y. For the second

term in eq. (2.13) one can directly apply a second Ward identity in momentum space:

LSZ

∫

dDy (−ipν)

[

∑

i

ei(q·xi+p·y)〈0|jνD(y)φ(x1) · · · δDφ(xi) · · ·φ(xn)|0〉

]

= LSZ
∑

i,j

ei(q·xi+p·xj)〈0|φ(x1) · · · δDφ(xj) · · · δDφ(xi) · · ·φ(xn)|0〉 (2.14)

and similarly for the first term once one symmetrises (p ↔ q). Now use that

δDO(x) = (d+ x · ∂x)O(x) , (2.15)

where d is the scaling dimension of the operator O, we get

eq. (2.13) = LSZ

[

1

2
(d−D+1−(p+q)·∂p)

∑

j

ei(p+q)·xj 〈0|φ(x1)···δDφ(xj)···φ(xn)|0〉

+
∑

i,j

ei(q·xi+p·xj)〈0|φ(x1)···(dj+xj ·∂j)φ(xj)···(di+xi ·∂i)φ(xi)···φ(xn)|0〉

]

=

(

∏

i

k2i

)

[

1

2
(d−D+1)+

∑

i

Di

]

∑

j

Dj〈0|φ̃1 ···φ̃n|0〉+O(p,q), (2.16)

with following definitions,

φ̃i = φ̃(ki), Di = di −D − ki · ∂i . (2.17)

Now, the piece in the correlator that would survive the LSZ reduction is given as:

LSZ× 〈0|φ̃1 · · · φ̃n|0〉 = LSZ×
δD(

∑

i ki)
∏

l k
2
l

Mn + · · · = δD(
∑

i

ki)Mn , (2.18)

thus we find:6

eq. (2.13) =

[

1

2
(d−D + 1) +

∑

i

(2 +Di)

]

∑

j

(2 +Dj)δ
D(K)Mn +O(p, q), (2.19)

6Note that the operatorDi is sandwiched in between the LSZ factor and the 1
k2
i

factor form the correlator.

Pushing Di past the latter acquires a factor of [Di,
1
k2
i

] = 2
k2
i

.
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where K =
∑

i ki. Use the fact that
[
∑

iDi, δ
D(K)

]

= DδD(K), we arrive at the following

double soft theorem:

Mn+2|p,q→0 =





1

2
(d−D + 1) +

∑

j

(2 +Dj) +D









∑

j

(2 +Dj) +D



Mn +O(p, q) .

(2.20)

Consider the case where the remaining fields are just canonical scalars, i.e. di = (D−2)/2,7

the soft theorem reduces to

Mn+2|p,q→0 =



n
(D − 2)

2
−D +

∑

j

kj · ∂j







(n+1)
(D − 2)

2
−D +

∑

j

kj · ∂j



Mn

+O(p, q) . (2.21)

This is the leading double soft theorem due to the (broken) conformal symmetry for scalar

amplitudes.

2.1.2 Subleading double-soft theorems from (jD, jK)

Similar to the single-soft limit, by replacing the dilatation current with that of the special

conformal transformation, we can obtain further constraints for the sub-leading double-soft

limit. Let us begin with following Ward identity:

LSZ

∫

dDy eip·y
∂

∂yν

∫

dDx eiq·x
∂

∂xµ
〈0|jµD(x)j

ν
Kλ(y)φ(x1) · · ·φ(xn)|0〉

= LSZ

∫

dDy eip·y (−ipν)

[

eiq·y〈0|δDj
ν
Kλ(y)φ(x1) · · ·φ(xn)|0〉

+
∑

i

eiq·xi〈0|jνKλ(y)φ(x1) · · · δDφ(xi) · · ·φ(xn)

]

, (2.22)

where we have used the Ward identity associated with the dilatation current. Start with

the first term on the r.h.s., and use

δDO(x) = (d+ x · ∂)O(x), δKλO(x) =
[

2xλ (d+ x · ∂)− x2∂λ
]

O(x) , (2.23)

we have

LSZ

∫

dDyei(p+q)·y(−ipν)〈0|δDj
ν
Kλ(y)φ(x1)···φ(xn)|0〉

=

(

∏

i

k2i

∫

dxie
iki·xi

)

(−ipν)(d−D−(p+q)·∂p)

∫

dyei(p+q)·y〈0|jνKλ(y)φ(x1)···φ(xn)|0〉

=

(

∏

i

k2i

)

(−ipν)(d−D−(p+q)·∂p)〈j̃
ν
Kλ(p+q)φ̃(k1)···φ̃(kn)〉. (2.24)

7For currents, d = 1, due to Jµ|0〉 ∼ pµ|φ〉.
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Since when acting on the vacuum j̃ν
Kλ(p+ q) excites Goldstone mode, and will generate a

term proportional to (p+q)ν

(p+q)2
, in the expansion of p+ q it can be written as

〈j̃νKλ(p+ q)φ̃(k1) · · · φ̃(kn)〉 =
(p+ q)ν

(p+ q)2
S−1 +S

ν
0 + (p+ q)νS1 + · · · . (2.25)

Upon contraction with (p+ q)ν , at leading order one must recover the Ward identity, one

immediately deduce:

S−1 = i
∑

i

〈φ̃1 · · · δ̃Kλ φ̃i · · · φ̃n〉, (2.26)

where

δ̃KλO(p) = −2i

[

(d−D − p · ∂p)∂λ +
1

2
pλ∂

2
p

]

O(p) ≡ −2iKλO(p) , (2.27)

and we denote ∂λ := ∂pλ . Thus we find:

eq. (2.24) =

(

∏

i

k2i

)

pν (d−D − (p+ q) · ∂p)
(p+ q)ν

(p+ q)2

∑

i

〈φ̃1 · · · δ̃Kλ φ̃i · · · φ̃n〉+O(p, q)

=

(

∏

i

k2i

)

1

2
(d−D + 1)

∑

i

〈φ̃1 · · · δ̃Kλ φ̃i · · · φ̃n〉+O(p, q)

= −i (d−D + 1)
∑

i

(2∂i,λ + Ki,λ) δ
D(K)Mn +O(p, q) . (2.28)

The second term of the r.h.s. in eq. (2.22) is a straightforward Ward identity for conformal

boost, and hence we write:8

LSZ
∑

i,j

〈0|φ(x1) · · · δKλφ(xi) · · · δDφ(xj) · · ·φ(xn)|0〉

= −2i
∑

i,j

k2i k
2
jKi,λDj

1

k2i k
2
j

δD(K)Mn +O(p, q)

= −2i
∑

i,j

(2∂i,λ + Ki,λ) (2 +Dj) δ
D(K)Mn +O(p, q) . (2.29)

Now for the l.h.s. of eq. (2.22), due to the derivative relation amongst the currents, from

eq. (2.8) we should get

LSZ

∫

dDyeip·y
∂

∂yν

∫

dDxeiq·x
∂

∂xµ
〈0|jµD(x)j

ν
Kλ(y)φ(x1)···φ(xn)|0〉=−2i∂p,λδ

D(K)Mn+2 .

(2.30)

Equating above results, and contracting (p+ q)λ into both sides, we obtain the sub-leading

double soft theorem:

(p+ q) · ∂p δ
D(K)Mn+2 = (p+ q)λ

∑

i

(2∂i,λ + Ki,λ)





1

2
(d−D + 1) +

∑

j

(2 +Dj)





×δD(K)Mn +O(p2, p · q, q2) . (2.31)

8Similar to footnote 6 for D, here pushing Ki,λ past the 1
k2
i

one acquires a factor of [Ki,λ,
1
k2
i

] =
2∂i,λ

k2
i

+

(D − 2di − 2)
ki,λ

k2 =
2∂i,λ

k2
i

, where the scaling dimension of scalar di =
D−2
2

has been used.
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Again use
[
∑

iDi, δ
D(K)

]

= DδD(K), we get

(p+ q) ·
∂

∂p
Mn+2 = (p+ q)λ

∑

i

(2∂i,λ + Ki,λ) (2.32)

×





1

2
(d−D + 1) +

∑

j

(2 +Dj) +D



Mn +O(p2, p · q, q2) .

Thus express the double-soft theorem as Mn+2 = (S0 + (p + q) · S1)Mn, we finally obtain

the sub-leading soft factor as,

S1λ =
∑

i

(2∂i,λ + Ki,λ)





1

2
(d−D + 1) +

∑

j

(2 +Dj) +D



 . (2.33)

Considering the case where all other fields are scalars, i.e. d = D−2
2 , we arrive at

S1λ =
∑

i

[(

D − 2

2
+ ki · ∂i

)

∂i,λ −
1

2
ki,λ∂

2
i

]



(n+ 1)
D − 2

2
−D +

∑

j

kj · ∂j



 , (2.34)

which is the sub-leading double soft theorem of dilatons when scatter with scalars.

2.2 Broken translational symmetry

Here we consider another kind of spontaneous broken space-time symmetry, broken trans-

lation and Lorentz rotation due to the presence of branes. The low energy effective actions

for the brane describes the interaction of the Goldstone bosons associated with broken

translation and Lorentz rotation. We consider the case where a D-dimensional brane is

embedded in (D+n)-dimensional flat space, with n = 1. It is straight forward to extend

it to general n. The space time index is separated as xM = {xµ, x0}, where µ denote the

longitudinal directions along the brane and 0 denotes the transverse direction.

In the presence of a brane, both P0 and L0µ are broken. However, as the case of

(broken) conformal symmetry, there is only a single Goldstone mode. That is because P0

and L0µ are related by

[L0µ, Pν ] = ηµνP0 , (2.35)

the mode associated with broken translation symmetry is derivatively related to that of

broken Lorentz transformation. More precisely, since the current must be conserved, on

dimension grounds one can deduce

∂µj
µ
L0ν

∼ xν∂µj
µ
P0

, (2.36)

similar to the case for broken conformal symmetries. Thus we would expect universal

leading and sub-leading soft theorems, as we will show in the following.
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2.2.1 Single soft theorems

We begin by considering the following LSZ reduction of the current correlator,

LSZ

∫

dDx eip·x
∂

∂xµ
〈jµP0

(x)jµ1

P0
(x1) · · · j

µn

P0
(xn)〉 . (2.37)

Apply the Ward identity and the fact that δP0j
µ
P0

∼ [jνP0
, jµP0

] = 0, one finds that eq. (2.37)

vanishes. On the other hand using eq. (2.2) and eq. (2.37) yields

pµ

(

n
∏

i=1

k2i

)

〈j̃µP0
(p)j̃µ1

P0
(k1) · · · j̃

µn

P0
(kn)〉 = Mn+1(π(p)π(k1) · · ·π(kn))

(

n
∏

i=1

kµi

i

)

+O(p).

(2.38)

So we conclude that,

Mn+1(π(p)π(k1) · · ·π(kn))|p→0 = 0 +O(p) . (2.39)

This is the Adler’s zero for broken translation symmetry.

Now, instead use jµL0λ
and eq. (2.36), we have the relation,

∫

dDxeip·x
∂

∂xµ
〈jµL0λ

(x)jµ1

P0
(x1)···j

µn

P0
(xn)〉=

∫

dDxeip·xxλ
∂

∂xµ
〈jµP0

(x)jµ1

P0
(x1)···j

µn

P0
(xn)〉.

(2.40)

Once again apply the Ward identity, since δL0λ
jµP0

∼ [jµL0λ
, jµP0

] = jµPλ
, thus it does not

excite a physical state, one finds:

LSZ

∫

dDx eip·x
∂

∂xµ
〈jµL0λ

(x)jµ1

P0
(x1) · · · j

µn

P0
(xn)〉 = 0. (2.41)

On the other hand, using the fact that jµP0
(x) excites a Goldstone mode, we can also write

eq. (2.40) as:

(

n
∏

i=1

k2i

)

∂

∂pλ
pµ〈j̃

µ
P0
(p)j̃µ1

P0
(k1) · · · j̃

µn

P0
(kn)〉 =

=
∂

∂pλ

[

Mn+1(π(p)π(k1) · · ·π(kn))
n
∏

i=1

(kµi

i ) +O(p)

]

. (2.42)

Using the fact that Mn+1 vanishes in the soft limit from eq. (2.39), therefore expanding

in terms of the soft momentum we have Mn+1 =
∑

a=1 p
ama. Then the above equation

implies that the leading term m1 = 0, and hence

Mn+1(π(p)π(k1) · · ·π(kn))|p→0 = 0 +O(p2) , (2.43)

i.e. spontaneously broken translational symmetries implies that amplitudes involving a soft

Goldstone boson vanishes up to order O(p2) in the soft momentum.
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2.2.2 Leading double soft from (jP0
, jP0

)

Just as the case of the single-soft theorems we just discussed, one can apply Ward identity

with jP0 twice to obtain the leading double-soft theorem. To do so, we start with following

identity,

LSZ

∫

dDy eiq·y
∂

∂yν

∫

dDx eip·x
∂

∂xµ
〈0|jµP0

(x)jνP0
(y)jµ1

P0
(x1) · · · j

µn

P0
(xn)|0〉

= LSZ

∫

dDy (−iqν)

{

ei(q+p)·y〈0|δP0j
ν
P0
(y)jµ1

P0
(x1) · · · j

µn

P0
(xn)|0〉

+
n
∑

i=1

ei(p·xi+q·y)〈0|jνP0
(y)jµ1

P0
(x1) · · · δP0j

µi

P0
(xi) · · · j

µn

P0
(xn)|0〉

}

= 0 , (2.44)

where we have used that δP0j
µi

P0
= 0. On the other hand we also have:

LSZ

∫

dDy eiq·y
∂

∂yν

∫

dDx eip·x
∂

∂xµ
〈0|jµP0

(x)jνP0
(y)jµ1

P0
(x1) · · · j

µn

P0
(xn)|0〉

=

(

∏

i

k2i

)

qνpµ〈0|j̃
µ
P0
(q)j̃νP0

(p)jµ1

P0
(x1) · · · j

µn

P0
(xn)|0〉

= Mn+2(π(q)π(p)π(k1) · · ·π(kn))
n
∏

i=1

(kµi

i ) +O(p, q) . (2.45)

Thus combining these two results we conclude that the double-soft limit vanishes up to

leading order, i.e.

Mn+2(π(q)π(p)π(k1) · · ·π(kn)) = 0 +O(p, q) . (2.46)

2.2.3 Subleading double-soft theorems from (jL0λ
, jP0

)

To obtain higher-order double soft theorems, we instead consider correlators involving both

jL0λ
and jP0 . In particular, we will study,

LSZ

∫

dDy eiq·y
∂

∂yν

∫

dDx eip·x
∂

∂xµ
〈0|jµL0λ

(x)jνP0
(y)jµ1

P0
(x1) · · · j

µn

P0
(xn)|0〉

= LSZ

∫

dDy (−iqν)

{

ei(q+p)·y〈0|δL0λ
jνP0

(y)jµ1

P0
(x1) · · · j

µn

P0
(xn)|0〉

+
n
∑

i=1

ei(p·xi+q·y)〈0|jνP0
(y)jµ1

P0
(x1) · · · δL0λ

jµi

P0
(xi) · · · j

µn

P0
(xn)|0〉

}

. (2.47)

Since δL0λ
jP0 ∼ [jL0λ

, jP0 ] = jPλ , the last line in the above does not survive the LSZ

reduction. The contribution of the first line is given as:

(−iqν)
n
∑

i=1

[

〈π(ki)| ˜δL0λ
jνP0

(p+q)|φ(ki+q+p)〉
1

2ki · (p+q)
〈φ(ki+q+p) · · · 〉

]

(

∏

i=1

kµi

i

)

.

(2.48)

– 12 –



J
H
E
P
1
2
(
2
0
1
7
)
0
5
2

We will evaluate 〈π(ki)| ˜δL0λ
jνP0

(p+q)|φ(ki+q+p)〉 by considering the following diagram-

matic representation of this term,

J J

k
k+p+q

i

i

p q

00

(2.49)

Since [L0λ, P 0] = P λ, the contribution of this diagram should be given by,

α
(p+ q)λ
(p+ q)2

pµ(2ki + p+ q)µqν(2ki + p+ q)ν

2ki · (p+q)
Mn = α

(p+ q)λ
(p+ q)2

2(p·ki)(q·ki)

ki · (p+q)
Mn +O(p, q)

(2.50)

where α is an undetermined coefficient so far. Summing over all ki, the r.h.s. of eq. (2.47)

up to O(p, q) can be recast as,

α
∑

i

(p+ q)λ
(p+ q)2

2(p·ki)(q·ki)

ki · (p+q)
Mn = α

∑

i

(p+ q)λ
(p+ q)2

((p− q) · ki)
2

2ki · (p+q)
Mn +O(p, q) . (2.51)

On the other hand, using eq. (2.36), the double soft limit of eq. (2.47) can also be written as

−i
n
∏

i=1

[

k2i
]

∂pλqνpµ〈0|j̃
µ
P0
(p)j̃νP0

(q)j̃ρ1P0
(k1) · · · j̃

ρn
P0
(kn)|0〉|p,q→0

= − i∂pλMn+2(π(q)π(p)π(k1) · · ·π(kn))
n
∏

i=1

[kνii ]

∣

∣

∣

∣

∣

p,q→0

+O(p0, q0) . (2.52)

Equating these two distinct representations, and contracting with (p+ q), one finds:

− i (p+ q) · ∂pMn+2(π(q)π(p)π(k1) · · ·π(kn))|p,q→0 = iα
∑

i

((p− q) · ki)
2

2ki · (p+q)
Mn . (2.53)

The undetermined constant α can be fixed by checking the above formula eq. (2.53) with

explicit simple tree-level amplitudes in the theory. For instance for n = 4, namely the

double-soft limit which take the six-point amplitude to the four-point one, we find α = 1
2 .

We can now also compare this to the result in [24], where at the leading non-vanishing order,

Mn+2(π(q)π(p)π(k1) · · ·π(kn))|p,q→0 =
∑

i

S
(0)
i Mn(π(k1) · · ·π(kn)) +O(p2, q2) , (2.54)

with the soft factor S
(0)
i = 1

4
(ki·(p−q))2

ki·(p+q) . Acting with (p+q)·∂p on the above one indeed finds

eq. (2.53) with α = 1
2 ! Thus we conclude that the sub-leading soft theorem derived in [24]

has a current algebra origin. A similar analysis using (L0µ, L0ν) should lead to double-soft

theorem at one further higher order [24],

Mn+2(π(q)π(p)π(k1) · · ·π(kn))|p,q→0 =
∑

i

(S
(0)
i + S

(1)
i )Mn(π(k1) · · ·π(kn)) , (2.55)
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Figure 1. The Feynman diagrams contribute to four and six-point amplitudes in DBI at one-loop

order. One should also sum over all other independent permutations.

where the higher-order soft factor S
(1)
i is given by

S
(1)
i =

1

2

(

−
(ki · p)2 + (ki · q)2

(ki · (p+ q))2
(p · q) +

ki · (p− q)

ki · (p+ q)
(pµqνJ

µν
i )

)

, (2.56)

with the angular momentum Jµν
i for scalars defined by,

Jµν
i = kµi

∂

∂ki,ν
− kνi

∂

∂ki,µ
. (2.57)

3 UV-divergence

3.1 UV-divergence of DBI

As we mentioned it is now well-known that the soft theorems we derived in previous sections

are satisfied for the tree-level S-matrix in various effective field theories. Here we will study

the fate of the soft theorems against the UV divergences. As examples we will consider the

UV divergences of one-loop amplitudes in DBI, conformal DBI in D = 4 and D = 6, as well

as the A-V theory for Goldstinos in D = 4. We will verify by explicit loop computations

that all the soft theorems that are derivable from current algebra as we have shown in

previous sections should be respected even in the presence of UV divergences.

We begin with the DBI action of a single scalar, which takes the following form,

LDBI = g−2

(

√

−det(ηµν − g2∂µφ∂νφ)− 1

)

, (3.1)

where g is the dimensionful coupling constant. Expand the square root to the order relevant

for the four- and six-point amplitudes, we have,

LDBI = −
1

2
(∂φ)2 −

g2

2!

(

(∂φ)2

2

)2

−
3g4

3!

(

(∂φ)2

2

)3

+ . . . . (3.2)

From the action, it is then straightforward to compute the amplitudes from Feynman

diagrams. In particular, the interacting vertices at four and six points are given by,

V4(k1, k2, k3, k4) = g2 (k1 · k2 k3 · k4 + k1 · k3 k2 · k4 + k1 · k4 k2 · k3) ,

V6(k1, k2, k3, k4, k5, k6) = 3g4 (k1 · k2 k3 · k4 k5 · k6 + . . .) , (3.3)
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where the ellipsis in the six-point vertex V6 denotes all other 14 independent contractions

for the six-point momenta. We then glue the above vertices to form one-loop diagrams, the

Feynman diagrams that contribute to four and six-point one-loop amplitudes in DBI are

shown in figure 1. In the following subsections we will study four and six-point one-loop

amplitudes respectively, including both the D = 4 and D = 6 case.

3.1.1 Four points at D = 4 and D = 6

At four points, the one-loop integrand is obtained by gluing two four-point vertices V4,

which is given by the bubble diagram at the top of figure 1. Explicitly, the integrand takes

the following form,

I4 =
1

4

N4

ℓ2(ℓ+ k1 + k2)2
, (3.4)

where the factor 1
4 is the symmetry factor of the diagram, and the numerator N4 is defined

as

N4 = V4(k1, k2, ℓ, ℓ
′)V4(k3, k4,−ℓ,−ℓ′) , (3.5)

with ℓ′ = −(ℓ + k1 + k2). It is straightforward to perform the one-loop integration of the

bubble integral. To be concrete we use dimensional regularization, and we are interested in

the UV divergent part. The integrated result clearly depends on the space-time dimensions.

Here we consider D = 4 and D = 6 as interesting examples. At D = 4, we find the UV

divergent part is given by9

A
(D=4)
4,UV =

7π2

5ǫ
(s4 + t4 + u4) . (3.6)

In the language of UV counter terms, it shows that the UV counter term of 4D DBI action

takes the form of −7π2

5 (∂8φ4), where the matrix element of (∂8φ4) is given by (s4+ t4+u4).

Similarly, at D = 6, the UV divergent part of the one-loop four-point amplitude is given

A
(D=6)
4,UV = −

223π3

525ǫ
(s5 + t5 + u5) . (3.7)

So again the UV counter term may be written as 223π3

525ǫ (∂
10φ4) now for D = 6.

3.1.2 Six points at D = 4 and D = 6

We then consider the six-point amplitudes. There are three types of Feynman diagrams at

six points as shown in figure 1. To express the results in a compact form, it is convenient to

expand all the answers in terms of polynomial basis. At six points, it is easy to see that the

UV divergence goes as s5 in D = 4. At this order and D = 4, there are five independent

local polynomials, and one term with a factorization pole,

b
(5)
1 = s512 + P6 , b

(5)
2 = s5123 + P6 , b

(5)
3 = s3123s

2
45 + P6 , b

(5)
4 = s2123s

3
45 + P6 ,

b
(5)
5 = s212s

3
34 + P6 , F

(5)
1 =

(s212 + s223 + s213)(s
4
45 + s446 + s456)

s123
+ P6 , (3.8)

9Here and in the following, we will simply ignore the coupling g dependence since it is not crucial for

our discussion.
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where P6 means that we sum over full permutations on the six-point external legs. For con-

venience, we will denote this length-six list of basis as B
(5)
6 := {b

(5)
1 , b

(5)
2 , b

(5)
3 , b

(5)
4 , b

(5)
5 , F

(5)
1 }.

Let us now discuss each contribution to the six-point amplitude in figure 1. Begin with

the first bubble diagram in figure 1, the integrand is given by

I
(1)
6 =

1

2

N
(1)
6

ℓ2(ℓ+ k1 + k2)2
, (3.9)

and the numerator is the product of a four-point vertex and a six-point vertex as shown in

the figure,

N
(1)
6 = V4(k1, k2, ℓ, ℓ

′)V6(k3, k4, k5, k6,−ℓ,−ℓ′) , (3.10)

where ℓ′ = −(ℓ + k1 + k2). Performing the integration, we find the ten-derivative UV

divergence. Expressed in terms of the basis B
(5)
6 defined previously, the contribution of

this particular diagram is given by C
(D=4)
1 ·B

(5)
6 , where we find that the coefficient C

(D=4)
1

is given by,

ǫC
(D=4)
1 =

{

181π2

3600
,−

2π2

675
,−

8π2

45
,−

π2

180
,
11π2

40
, 0

}

. (3.11)

The integrand of the second bubble diagram in figure 1 with a factorization pole takes the

following form,

I
(2)
6 =

1

2

N
(2)
6

ℓ2(ℓ+ k1 + k2)2s456
, (3.12)

and the numerator now is the product of three four-point vertices,

N
(2)
6 = V4(k1, k2, ℓ, ℓ

′)V4(k3, P,−ℓ,−ℓ′)V4(k4, k5, k6,−P ) , (3.13)

with ℓ′ = −(ℓ+k1+k2), and P = k4+k5+k6. The UV divergence of this diagram is given

by C
(D=4)
2 ·B

(5)
6 , with the coefficient,

ǫC
(D=4)
2 =

{

−
77π2

2700
,
13π2

16200
,
13π2

270
,
π2

360
,−

59π2

360
,
7π2

360

}

. (3.14)

Finally, the triangle diagram with three four-point vertices in figure 1 has the integrand of

the form

I
(3)
6 =

1

3!

N
(3)
6

ℓ2(ℓ+ k1 + k2)2(ℓ− k3 − k4)2
, (3.15)

and the numerator is given by

N
(3)
6 = V4(k1, k2, ℓ, ℓ1)V4(k3, k4,−ℓ, ℓ2)V4(k5, k6,−ℓ1,−ℓ2) , (3.16)

where ℓ1 = −(ℓ+ k1 + k2) and ℓ2 = ℓ− k3 − k4. Perform the integration, we find the UV

divergence of this diagram is given by C
(D=4)
3 ·B

(5)
6 , with

ǫC
(D=4)
3 =

{

−
319π2

10800
,−

91π2

16200
,
7π2

54
,
π2

45
,−

41π2

180
, 0

}

(3.17)
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Put all the contributions from three diagrams together, we have the full one-loop UV

divergent part at six points of DBI action at D = 4,

A
(D=4)
6,UV = C

(D=4)
1 ·B

(5)
6 + C

(D=4)
2 ·B

(5)
6 + C

(D=4)
3 ·B

(5)
6 . (3.18)

This finishes the computation of the UV divergence of the six-point amplitude in 4D DBI

action, and we will discuss its soft limits shortly.

We now consider the six-point DBI amplitude at D = 6 as another example. The

Feynman diagrams and the loop integrands are of course independent of the space-time

dimensions. The power counting of the six-point UV divergence is now of order s6 for

D = 6. Again we will express the results in terms of polynomial basis, which has 13

independent local polynomials at this order. Here is the list of the independent basis

elements as well as one term with a factorization pole:

b
(6)
1 = s612 + P6 , b

(6)
2 = s6123 + P6 , b

(6)
3 = s412s

2
13 + P6 , (3.19)

b
(6)
4 = s412s

2
34 + P6 , b

(6)
5 = s312s

3
13 + P6 , b

(6)
6 = s312s

3
34 + P6 ,

b
(6)
7 = s212s

4
123 + P6 , b

(6)
8 = s214s

4
123 + P6 , b

(6)
9 = s414s

2
123 + P6 ,

b
(6)
10 = s314s

3
123 + P6 , b

(6)
11 = s3123s

3
124 + P6 , b

(6)
12 = s212s

2
34s

2
56 + P6 ,

b
(6)
13 = s2123s

2
124s

2
135 + P6 , F

(6)
1 =

(s512 + s523 + s513)(s
2
45 + s256 + s261)

s123
+ P6 .

These independent basis form a list, which we will denote as B
(6)
6 . The first bubble diagram

with four and six-point vertices in terms of the coefficient of these 14 basis is given by

ǫC
(D=6)
1 =

{

−
181π3

11200
,−

π3

4200
,−

17π3

840
,−

33π3

560
,−

π3

70
,−

79π3

3360
,
23π3

3360
,

−
11π3

2240
,
199π3

3360
,

π3

1680
,−

11π3

3360
,
33π3

2240
, 0, 0

}

. (3.20)

While for the second bubble diagram, the coefficient is now

ǫC
(D=6)
2 =

{

2809π3

302400
,

π3

12600
,
53π3

7560
,
431π3

10080
,
π3

210
,
121π3

15120
,−

43π3

18900
,
π3

630
,−

89π3

5040
,

−
π3

7560
,
17π3

15120
,−

17π3

3360
, 0,−

223π3

37800

}

(3.21)

Finally the coefficient for the triangle diagram with three four-point vertices is

ǫC
(D=6)
3 =

{

1823π3

362880
,

5π3

13608
,−

187π3

22680
,
3601π3

60480
,−

19π3

1890
,−

799π3

90720
,
79π3

45360
,−

83π3

12096
,

−
727π3

30240
,
337π3

45360
,−

779π3

90720
,
8π3

105
, 0, 0

}

. (3.22)

The final result is the sum of these three contributions,

A
(D=6)
6,UV = C

(D=6)
1 ·B

(6)
6 + C

(D=6)
2 ·B

(6)
6 + C

(D=6)
3 ·B

(6)
6 . (3.23)
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With these explicit one-loop results, we have checked that both A
(D=4)
UV and A

(D=6)
UV indeed

satisfy the single and double-soft theorems, namely,

A
(D)
6,UV

∣

∣

k6→τk6
∼ O(τ2) , (3.24)

and the double-soft theorem,

A
(D)
6,UV

∣

∣

k5→τk5, k6→τk6
=

(

τS(0) + τ2S(1)
)

A
(D)
4,UV , (3.25)

where S(0) and S(1) are the leading and subleading double-soft factors defined in eq. (2.55).

The six-point UV divergence A
(6)
6,UV in fact further satisfies the order O(τ3) double-soft

theorem of [24], namely it has the same soft behaviour as the tree-level DBI amplitudes.

This result can be easily understood once one realises that the original order O(τ3) double-

soft theorem is a consequence of the four-point structure being of the form s2+ t2+u2. In

the double soft limit, the relevant diagram is of the following form:

2

i

1

Since the original four-point vertex is of four derivatives, the leading contribution from

the four-vertex in the soft limit, k1 → τk1 and k2 → τk2 for τ → 0, would be of the

form τ (k1·ki)
2+(k2·ki)

2

(k1+k2)·ki
which indicates the double soft-limit begins at O(τ). Now the UV-

divergence introduces a new vertex s4 + t4 + u4, which in the soft limit takes the form

(s412 + s41i + s42i)

s12i
×AR

∣

∣

∣

∣

k1→τk1,k2→τk2

= τ3
8((k1 · ki)

4 + (k2 · ki)
4)

(k1 + k2) · ki
×AR +O(τ4) , (3.26)

and thus one expects the order O(τ3) double-soft theorem of [24] to be modified. However,

at D = 6 the four-point UV divergence goes as s5 + t5 + u5, as shown in eq. (3.7), which

would only contribute to the orderO(τ4) and thus leave the double-soft theorem untouched.

We have further checked the UV divergence at D = 8 also satisfies the double-soft theorem

to the order O(τ3), since just by power counting its four-point divergence goes as even

higher order, namely s6.

It is instructive to understand the above result from recursion. As discussed in [9],

the single-soft theorem at order O(τ) ensures that the (2n)-point amplitudes of order sm

with m < 2n are soft on-shell constructible. This is indeed the case for tree-level DBI

amplitudes, where at 2n-points it behaves as sn. The n-point one-loop UV divergence

for DBI at D-dimensions goes as s(n+D)/2, which means that if single soft theorems are

respected, then for D = 4 all the higher-point UV divergent terms are completely fixed

by the four-point. On the other hand since the single-soft theorems are symmetry based,

this implies that if the D = 4 UV divergent violates any tree-level soft theorems, the later

cannot hold solely on symmetry grounds.

For D = 6, the one-loop UV divergence are determined by the four and six-point

ones which we have computed explicitly in this paper. A similar conclusion regarding
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how soft theorems are able to constrain the results of UV counter terms can also apply to

other theories such as the conformal DBI and the Akulov-Volkov theory as well as the α′

corrections from string theories, which we will discuss in the next sections.

3.2 Conformal DBI

To test the soft theorems of conformal symmetry, we will study the one-loop UV divergence

of conformal DBI.10 The conformal DBI action (with single scalar) takes the form,

SCDBI =

∫

dDxφD

(
√

−det(ηµν −
1

φ4
∂µφ∂νφ)− 1

)

=

∫

dDxφD

(

−
1

2φ4
∂φ · ∂φ−

1

8φ8
(∂φ · ∂φ)2 + . . .

)

, (3.27)

here we only expand to the order which is relevant to the computation in this section. We

will consider the theory in D = 4 as well as D = 6, as the case of flat space DBI. Therefore,

for D = 4 we have

SCDBI =

∫

d4x

(

−
1

2
∂φ · ∂φ−

1

8φ4
(∂φ · ∂φ)2 + . . .

)

, (3.28)

The action should be understood with φ = v + φ, where v is the vev which breaks the

conformal symmetry spontaneously. The action then can be expanded in the large-v limit,

to the order which is relevant to our computation, it is given by,

SCDBI =

∫

d4x

(

−
1

2
(∂φ)2 −

1

v4
1

2!

(

(∂φ)2

2

)2

+
4

v5
1

2!

(

(∂φ)2

2

)2

φ−
20

v6
1

2!

(

(∂φ)2

2

)2
φ2

2

)

+ . . . . (3.29)

Similarly in the case of D = 6, we have,

SCDBI =

∫

d6x

(

−
1

2
(∂φ)2 −

1

v4
1

2!

(

(∂φ)2

2

)2

+
6

v5
1

2!

(

(∂φ)2

2

)2

φ−
48

v6
1

2!

(

(∂φ)2

2

)2
φ2

2

)

+ . . . . (3.30)

To obtain the action of 6D conformal DBI in the above equation eq. (3.30), we have made

a field-redefinition to remove a three-point vertex since it vanishes when on-shell. In the

following we compute the UV divergences of one-loop four, five and six-point amplitudes

built from these vertices. First we note that the four-point amplitude is identical to that

of the flat-space DBI, so the results are given in eq. (3.6) and eq. (3.7) for the theory

at D = 4 and D = 6, respectively. Therefore we will only consider five and six-point

amplitudes shown in figure 2.

3.2.1 Conformal DBI at D = 4

The computation is very similar to that of flat space DBI, so we will be brief here, and

only present the final results. At D = 4, the UV divergence of the amplitudes presented

10The leading and subleading single-soft theorems due to (broken) conformal symmetry have also been

tested in detail in [14] for the lower-energy effective action of N = 4 super Yang-Mills (SYM) on the

Coulomb branch, both perturbatively at one-loop order and non-perturbatively via the one-instanton effec-

tive action [33].
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Figure 2. The Feynman diagrams contributing to five and six-point amplitudes in conformal DBI

at one loop of order s4 at D = 4 and s5 at D = 6, where the four-point vertex is identical to that

of DBI, and five- and six-point vertices are φ(∂φ · ∂φ)2 and φ2(∂φ · ∂φ)2. One should also sum over

all other independent permutations.

in figure 2 goes as s4. As usual to express the results in a compact form we will use

independent polynomial basis. The basis relevant for the five and six-point UV divergence

of D = 4 conformal DBI we will use is given by,

b
(4)
5,1 = (s212 + P5)

2 , b
(4)
5,2 = s412 + P5

b
(4)
6,1 = s412 + P6 , b

(4)
6,2 = (s212 + P6)

2 ,

b
(4)
6,3 = s212s

2
23 + P6 , b

(4)
6,4 = s4123 + P6 , (3.31)

and we denote the six-point ones as a list B
(4)
6 = {b

(4)
6,1, b

(4)
6,2, b

(4)
6,3, b

(4)
6,4}. Performing the

one-loop integral, we then obtain the final results of five- and six-point UV divergences of

conformal DBI,

A
(4)
5,UV = −

43π2

6480ǫ
b
(4)
5,1 −

4π2

27ǫ
b
(4)
5,2 , (3.32)

A
(4)
6,UV = C

(4)
6,1 ·B

(4)
6 + C

(4)
6,2 ·B

(4)
6 ,

with the coefficients of six-point case given as

ǫC
(4)
6,1 =

{

−
13π2

270
,
π2

384
,−

49π2

90
,
163π2

1620

}

, (3.33)

ǫC
(4)
6,2 =

{

2π2

27
,
25π2

6912
,−

8π2

9
,
2π2

81

}

.

We have verified that the results satisfy all the single and double soft theorems of (broken)

conformal symmetry.

3.2.2 Conformal DBI at D = 6

Let us now move on the case of conformal DBI at D = 6. The UV divergence for the

amplitudes in figure 2 should go as s5, and the polynomial basis for five-point amplitude
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Figure 3. The Feynman diagrams contributing to four- and six-point fermionic amplitudes in K-S

action at one loop. One should also sum over all other independent permutations.

we will use are given as:

b
(5)
5,1 = s212s

3
34 + P5 , b

(5)
5,2 = s212s

3
23 + P5 , (3.34)

whereas the polynomial basis for six-point kinematics is the same as that in eq. (3.8):

B
(5)
6 = {b

(5)
6,1, b

(5)
6,2, b

(5)
6,3, b

(5)
6,4, b

(5)
6,5}. Note now there is no factorization term. In terms of the

above polynomial basis, the final results of UV divergences of five and six-point amplitudes

take the following form,

A
(5)
5,UV =

89π3

280ǫ
b
(5)
5,1 +

447π3

280ǫ
b
(5)
5,2 , (3.35)

A
(5)
6,UV = C

(5)
6,1 ·B

(5)
6 + C

(5)
6,2 ·B

(5)
6 ,

with the coefficients C
(5)
6,1 and C

(5)
6,2 for the six-point case given by

ǫC
(5)
6,1 =

{

−
267π3

280
,
89π3

84
,−

1781π3

12600
,
309π3

280
,−

13π3

80
,

π3

4200

}

, (3.36)

ǫC
(5)
6,2 =

{

−
89π3

70
,
96π3

35
,−

89π3

1050
,
89π3

70
,−

4π3

5
,−

89π3

525

}

.

We have again explicitly verified that the soft theorems that can be derived from current

algebra are respected by the above one-loop UV divergence.

3.3 A-V and K-S action

In the previous sections we studied the UV divergence of scalar theories, here we consider

the A-V model of Glodstino’s of spontaneously breaking of supersymmetry. The A-V action
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takes the form,

SAV = −
1

2g2

∫

d4x det

(

1 + ig2ψσµ
↔

∂ µψ̄

)

. (3.37)

One may expand the determinant to obtain all the higher-dimensional operators. It is

known that the expansion terminates at the order of (ψψ̄)3, namely higher orders with

eight fermions are actually absent [34]. The soft theorems of tree-level scattering ampli-

tudes in Akulov-Volkov theory were established in [35, 36], and reproduced via current

algebra in appendix A, where it was shown that the amplitudes for the A-V model have

the Alder’s zero as pions, furthermore the amplitudes also satisfy the double-soft theo-

rems which reflect the underlying supersymmetry algebra.11 Explicitly, the Adler’s zero of

amplitudes in A-V theory is,

An(ψ1, ψ̄2, . . . , ψn−1, ψ̄n)
∣

∣

λn→τλn
∼ O(τ) . (3.38)

Here we also use the standard spinor helicity formalism for massless momenta,

pµσαα̇
µ = λαλ̃α̇ , 〈i j〉 = ǫαβλ

α
i λ

β
j , [i j] = ǫα̇ β̇λ̃

α̇
i λ̃

β̇
j (3.39)

and the soft limit of particle ψ̄n can be realized by setting λn → τλn.
12 While the double-

soft theorem is given by

An(ψ1, ψ̄2, . . . , ψn+1, ψ̄n+2)
∣

∣

λ̃n+1→τλ̃n+1,λn+2→τλn+2
=

n
∑

i=1

SF,iAn(ψ1, ψ̄2, . . . , ψ̄n)

+O(τ) , (3.40)

with the soft factor given by

SF,i =
ki · (kn+1 − kn+2)

2ki · (kn+1 + kn+2)
〈n+1|ki|n+2] , (3.41)

here we defined 〈i|kj |l] := 〈i j〉[j l]. The derivation of the above soft theorem using the

current algebra of breaking supersymmetry can be found in appendix A. In the following

we test the single and double soft theorems by computing one-loop UV divergence in the

A-V theory.

For the computation of six-point amplitudes at one loop is actually more convenient

to use the equivalent Komargodski-Seiberg (K-S) action [39], which is related to the A-V

action by a non-linear change of variables [40]. Furthermore it was shown that [40] the

K-S action instead does not contain the six-point vertex, but the eight-fermion interaction

is now present which however does not contribute to the six-point amplitudes at one loop

anyway. So due to the absence of the six-fermion term, it is clear that K-S action simplifies

the computation of one-loop six-point amplitude. Explicitly, the K-S action is given by,

SKS =

∫

d4x

(

i∂µψ̄σ
µψ +

g2

4
ψ̄2∂µ (ψ∂

µψ) + . . .

)

, (3.42)

11Recent study on the soft theorems of amplitudes in A-V theory can be found in [37, 38].
12Here we made a choice such that the soft limits do not rescale the wave functions of fermions, although

it is not necessary.
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where we have omitted the eight-fermion term since as we mentioned that it is irrelevant

to the computation we are interested in. The scattering amplitudes in the theory can be

obtained by gluing these four- and eight-point vertices. For the computation in paper, we

will only need the four-point vertex, which is given by,

VF(ψ1, ψ2, ψ̄3, ψ̄4) = g2ψ1 · ψ2ψ̄3 · ψ̄4(k1 + k2)
2 , (3.43)

when on-shell it reduces to 〈12〉[34]s12 that is the four-point amplitude in A-V theory.

Let us now consider the one-loop fermionic amplitudes in the K-S action. Begin with

the four-point case, there are two kinds of Feynman diagrams which can contribute, as

shown in figure 3. To be concrete we consider the amplitude A4(ψ1, ψ̄2, ψ3, ψ̄4), and the

one-loop bubble integrands of two diagrams for the four-point amplitude take the form,

I
(1)
4 =

1

4

N1

ℓ2(ℓ+ k1 + k3)
, I

(2)
4 =

1

4

N2

ℓ2(ℓ+ k1 + k2)
(3.44)

with numerators are given by

N1 = VF(ψ1, ψ3, ψ̄I , ψ̄I′)VF(ψI , ψI′ , ψ̄2, ψ̄4) ,

N2 = VF(ψ1, ψ̄2, ψI , ψ̄I′)VF(ψI′ , ψ̄I , ψ3, ψ̄4) . (3.45)

Here ψ̄I and ψ̄I′ are off-shell internal lines. Explicitly,

N1 = 2〈1 3〉[2 4]s213ℓ · (ℓ+ k1 + k3) ,

N2 = 〈1|ℓ2|4]〈3|ℓ|2](ℓ+ k2)
2(ℓ− k3)

2 , (3.46)

where ℓ2 = −(ℓ + k1 + k2) in the expression of N2. Perform the integral, we find the UV

divergent part of the first diagram is given by,

A
(1)
4,UV =

π2

2ǫ
〈1 3〉[2 4]s313 , (3.47)

where we have summed over the relevant permutations. While for the second diagram we

have,

A
(2)
4,UV =

π2

120ǫ
〈1 3〉[2 4]

(

12s313 − 11(s312 + s323 + s313)
)

. (3.48)

Thus the full UV divergence of four-point fermionic amplitude in A-V and K-S theory is

given by the sum of the above two contributions.

Let us now move on to the computation of six-point amplitude

A6(ψ1, ψ̄2, ψ3, ψ̄4, ψ5, ψ̄6). The Feynman diagrams that contribute to this amplitude

are shown in figure 3, which are obtained by gluing three four-point vertices VF. There

are six types of Feynman diagrams according to the different assignments of the helcities

of fermions. Here we only write explicit integrands for a couple of Feynman diagrams as

examples. For instance, the integrand for the bubble diagram takes the form,

I
(1)
B =

1

2

N
(1)
B

ℓ2(ℓ+ k1 + k3)s456
, (3.49)

– 23 –



J
H
E
P
1
2
(
2
0
1
7
)
0
5
2

where the numerator

N
(1)
B = 2s213s46〈1 3〉[4 6]ℓ1 · (ℓ1 + k1 + k3)〈5|4 + 6|2] . (3.50)

While the integrand for the triangle diagram is given by,

I
(1)
T =

1

3!

N
(1)
T

ℓ2(ℓ+ k1 + k3)2(ℓ− k2 − k4)2
, (3.51)

where the numerator

N
(1)
T = s13s24〈1 3〉[2 4]〈5|ℓ3ℓ1ℓ2|6](ℓ2 − k6)

2 , (3.52)

where ℓi’s are defined as ℓ1 = ℓ, ℓ2 = ℓ− k2 − k4 and ℓ3 = ℓ+ k1 + k3. The one-loop inte-

gration is again straightforward to preform, however unlike the scalar amplitudes of DBI

or the four-point fermionic amplitude, the result of the UV divergent part of the six-point

fermionic amplitude is rather lengthy. So we will not present the explicit result here but an

auxiliary mathematica notebook containing the full expression is attached to the arXiv sub-

mission. Most importantly we have verified that the one-loop UV divergence of the six-point

amplitude in the theory we obtained satisfies the expected vanishing single limit, and a

double soft theorem that is consistent with the four-point result in eq. (3.47) and eq. (3.48).

4 Super and bosonic string amplitudes

The massless sector of open string theory, when dimensionally reduced to p+1-dimensions,

corresponds to the low energy degrees of freedom of a stack of D-p branes. For example,

the six scalars of four-dimensional N = 4 super-Yang mills are the Goldstone modes for

the broken translation symmetry in the transverse directions of D-3 branes. Thus the

open bosonic and superstring amplitudes encode the information of two distinct D-brane

effective actions, which should satisfy all soft theorems derivable from broken translational

symmetry. In this section we will consider only the pure scalar part of the effective action.

Isolating the interactions of the centre of mass degrees of freedom for the branes cor-

respond to separating U(N) → U(1) × SU(N), and keeping only the U(1) part. This is

done in practice by summing over all orderings of the open-string amplitude. In the end,

one obtains an on-shell effective action with the schematic form:

L = −
1

2
φ�φ+

∑

m,3<n

cn,mα′n
2
−2+m∂2mφn . (4.1)

Here, we will translate ∂2mφn into momentum space where they become combinations of

permutation invariant polynomials of si,j . The coefficients cn,m are generally given in terms

of multiple zeta values (MZVs), defined as:

ζn1,n2,··· ,nr ≡
∞
∑

0<k1<k2<···<kr

1

kn1
1 kn2

2 · · · knr
r

. (4.2)
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MZVs can be conjecturally categorised according to their transcendental weight n1 + n2 +

... + nr, and for maximally supersymmetric string theories, it is known that the tran-

scendental weight for each coefficient matches the order of α′, which is coined as uniform

transcendentality property. For non-maximal theories, while the leading transcendental

pieces match with the maximal case [41], subleading pieces may also be present.

Note that the lowest mass-dimension piece of the n-point amplitude (whose local part

takes the form s
n
2
i,j) must be identical with DBI. This is because permutation invariance

forbids two derivative four-point vertex, while single soft-theorems are sufficient to com-

peletly determine the lowest dimension amplitudes from the four-derivative quartic vertex,

i.e that of DBI [9, 11]. In fact, this piece is leading transcendental, and hence it should

be universal. In this section we will consider higher order corrections in α′ for the four-

and six-point open string amplitudes. They can be derived by simply taking the gluon

amplitudes in string theory, identifying ǫi ·kj = 0, ǫi · ǫj = 1 (namely dimension reduction),

and summing over all permutations.

As we will show, the scalar modes that are associated with the center of mass of the D-

branes will exhibit soft behaviours associated with the spontaneous translation symmetry

breaking.

4.1 Type I superstring

The massless amplitudes of type-I superstring can be naturally represented as [42]:

AS(1, ρ1, . . . , ρn−2, n− 1, n;α′) =
∑

σ∈Sn−3

Fρ
σ(α′) (4.3)

×AYM(1, 2σ, . . . , (n− 2)σ, n− 1, n) ,

where AS and AYM indicate color-ordered Yang-Mills amplitudes of the superstring and

super Yang-Mills field theory, respectively. Moreover, ρ, σ labels all (n − 3)! distinct per-

mutations with legs (2, 3, · · · , n−2). The function Fρ
σ(α′) are disk integrals with insertion

points (z1, zn−1, zn) fixed to (0, 1,∞) respectively, and

Fρ
σ(α′) ≡

∫

0≤zρ1≤zρ2≤...≤zρ(n−2)
≤1

d2z2 . . . d
2zn−2

n
∏

i<l

|zil|
silσ

{

n−2
∏

k=2

k−1
∑

m=1

smk

zkm

}

, (4.4)

with zij ≡ zi−zj . When viewed as an (n−3)!×(n−3)! matrix, the row- and column indices ρ

and σ of Fρ
σ label different integration domains and integrands, respectively, where σ acts

on the subscripts within the curly bracket in eq. (4.4). Note that the field-theory limit is

recovered as Fρ
σ(α′) = δρ

σ+O(α′2). The full α′ expansion is conveniently organised as [43]

F (α′) = 1+ζ2P2+ζ3M3+ζ22P4+ζ5M5+ζ2ζ3P2M3+ζ32P6+
1

2
ζ23M3M3+ζ7M7+ . . . , (4.5)

where the entries of the (n − 3)! × (n − 3)! matrices Pw,Mw are degree w polynomials in

α′sij with rational coefficients. The precise forms of these matrices can be found in [44].

– 25 –



J
H
E
P
1
2
(
2
0
1
7
)
0
5
2

To obtain the scalar amplitudes, we simply take AYM in eq. (4.3) and set ǫi · kj = 0,

ǫi · ǫj = 1. Summing over all permutations of the external momenta, and taking the α′

expansion one finds

LType−I = −
1

2
φ�φ+α′2π2[∂4φ4]s+α′4π4[∂8φ4]s+α′3π3[∂6φ6]s+α′5π5[∂10φ6]s+. . . , (4.6)

where we note at four point [∂6φ4]s is absent due to supersymmetry. The explicit polyno-

mials represented in [∂nφm]s are given as,

[∂4φ4]s =
1

2
(s2 + t2 + u2) , [∂8φ4]s =

1

24
(s4 + t4 + u4) . (4.7)

At six points, [∂6φ6]s is the term corresponding to that of DBI, while [∂8φ6]s has a vanishing

coefficient in super string theory. At the order of ten derivatives we have,

[∂10φ6]s = −
1

384
b
(5)
1 −

1

864
b
(5)
2 −

1

51840
b
(5)
3 −

1

192
b
(5)
4

−
13

1152
b
(5)
5 +

1

1080
b
(5)
6 . (4.8)

where the polynomial basis are given by,

b
(5)
1 = s2123s

3
234 + P6 , b

(5)
2 = s212s

3
23 + P6 ,

b
(5)
3 = s5123 + P6 , b

(5)
4 = s234s

3
123 + P6 ,

b
(5)
5 = s334s

2
123 + P6 , b

(5)
6 = s512 + P6 . (4.9)

Written the effective action in this explicit basis, it is straightforward to verify that the

scattering amplitudes (up to six points at order s5) satisfy the leading and sub-leading

single-soft translation soft theorems, as well as double soft theorems up to order τ2. The

proposed O(τ3) soft theorem in [24] is found not to hold as expected since it cannot be

derived from current algebra. As the case of the UV divergence at D = 4, this is due to

the presence of the four-point amplitude of order s4.

4.2 Bosonic string

The derivation of bosonic string result is more involved, and we consider the standard

representation of the bosonic string integrand. Taking ǫi · kj = 0, ǫi · ǫj = 1 for the bosonic

string one obtains the integrand of the form:

Iρ(α
′) ≡

∫

0≤zρ1≤zρ2≤...≤zρ(n−2)
≤1

d2z2 . . . d
2zn−2

n
∏

i<l

|zil|
sil

{

1

z212z
2
34 · · · z

2
n−1n

+ Pn

}

, (4.10)

The above “multi trace” integrals can be systematically reduced to “single traced” ones

via integration by parts (IBP) identities. The relevant identities are listed in appendix C.

Thus the resulting “scalar” piece of the amplitude is given in the form:

∑

ρ∈S5

cρ(si,j)Z(1ρ2ρ3ρ4ρ5ρ6) , (4.11)
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where one sums over all 5! permutations of (2, 3, 4, 5, 6) labeled by ρ, and

Z(123456) ≡

∫

(

5
∏

i=2

d2zi

)

∏6
i<l |zil|

sil

z12z23z34z45z56z61
. (4.12)

The single trace disk integrand satisfy KK- and BCJ-relations, and thus one can further

reduce the representation to that involving only six distinct single trace integrand which

can now be cast in terms of the Fρ
σ(α′) of superstring. More precisely, we have [45]

Z(6σ2σ3σ451) = −
F σ2σ3σ4

s16

(

1

sσ3σ4sσ3σ45
+

1

sσ45sσ3σ45
+

1

sσ2σ3sσ45
+

1

sσ4σ3s156
+

1

sσ2σ3s156

)

+
F σ2σ4σ3

s16sσ3σ4

(

1

sσ3σ45
+

1

s156

)

+
F σ3σ2σ4

s16sσ2σ3

(

1

sσ45
+

1

s156

)

+
F σ3σ4σ2

s16sσ3σ4s156
+

F σ4σ2σ3

s16sσ2σ3s156
−
F σ4σ3σ2

s16s156

(

1

sσ2σ3

+
1

sσ4σ3

)

(4.13)

where σ2σ3σ4 corresponds to the different permutations of (234), and the functions F σ2σ3σ4

are defined with canonical ordering 0 ≤ z2 ≤ z3 ≤ z4 ≤ 1.

Plugging in the explicit α′ expansion denoted in eq. (4.5), we find the following effective

action for bosonic open string:

LBosonic = −
1

2
φ�φ+ π2α′2[∂4φ4]b + π2α′3[∂6φ4]b + π4α′4[∂8φ4]b + π3α′3[∂6φ6]b

+π3α′4[∂8φ6]b + α′5[∂10φ6]b + . . . (4.14)

we note the appearance of non-maximal transcendental terms. Here the four-point vertices

take following explicit expressions,

[∂4φ4]b =
1

2
(s2 + t2 + u2) , [∂6φ4]b = (s3 + t3 + u3) ,

[∂8φ4]b =
1

24
(s4 + t4 + u4) . (4.15)

Now the eight-derive term is given by

[∂8φ6]b =
1

288
b
(4)
1 +

1

12
b
(4)
2 −

1

108
b
(4)
3 −

3

32
b
(4)
4 , (4.16)

with following polynomial basis,

b
(4)
1 = s412 + P6 , b

(4)
2 = s212s

2
23 + P6

b
(4)
3 = s4123 + P6 , b

(4)
4 = s2123s

2
34 + P6 . (4.17)

The ten-derivative term takes the following form,

[∂10φ6]b = [∂10φ6]s + π4

(

−
1

8
b
(5)
1 +

13

36
b
(5)
2 −

1

108
b
(5)
3 +

1

12
b
(5)
4 −

11

48
b
(5)
5 +

1

72
b
(5)
6

)

(4.18)

where the polynomial basis b
(5)
i are defined in eq. (4.9), and the term [∂10φ6]s is identical to

that in the superstring. We note ten-derivative term ∂10φ6 in bosonic string contains lower-

transcendental terms. Again we have verified the scattering amplitudes from this effective
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action satisfy the single and double-soft theorem up to O(τ2). Interestingly, comparing to

DBI, the α′-expansion of the bosonic string not only generates a four-point vertex with

eight derivatives (it is the same as the superstring, and that would violate the double-soft

theorems of order O(τ3)), but also a six-derivative one. A simple power counting shows

that a six-derivative four-point vertex could potentially change the double-soft theorems

of tree-level DBI even at the order O(τ2). However as we argued in the previous section 2,

the double-soft theorem at this order is derivable from symmetry principle and should

be protected from UV divergence as well as α′ corrections, and our explicit computation

shows that is indeed the case. Thus the double-soft theorems up to O(τ2) is solely due

to enhanced broken symmetries and protected from any possible modification due to new

higher dimension operators.

5 Conclusion and outlook

In this paper, we study sub-leading soft theorems that arise from the enhanced broken

symmetries. This occurs for space-time symmetries, where some generators of the broken

symmetries are derivatively related. This then implies that the multiple broken symmetries

lead to the same Goldstone mode, and in the soft momenta expansion, the presence of

universal behaviour at sub-leading order and beyond. We have applied the analysis to

spontaneously broken conformal and translational symmetry, deriving double-soft theorems

at leading and sub-leading level. This allows us to identify the O(τ) and O(τ2) double-soft

theorems given in [24](for DBI), can be attributed to symmetry arguments alone, while

the order-O(τ3) soft-theorem requires particular quartic interactions.

Naively one would expect that the use of currents (jK , jK) of conformal boost should

lead to a sub-sub-leading double soft theorem of dilatons. However, that cannot be the

case.13 One can also see this by studying the amplitude of six dilatons at the order of s3.

This amplitude is completely fixed by the dilaton single soft theorem, and the result can

be expressed in terms of lower-point amplitudes, namely four-point order-s2 and five-point

order-s3 amplitudes. If a sub-sub-leading double soft theorem exists, it would mean that

in the double-soft limit, at this order the six-point amplitude should be proportional to

the four-point order-s2 amplitude, but from explicit computation we found that is not the

case. Thus there cannot be such a universal double-soft theorem.

These soft theorems are expected to be exact, and we give explicit tests against UV

divergences of effective field theories whose tree-level (classical action) amplitudes have the

right soft behaviours. In particular we have computed and tested

• The one-loop UV divergences for DBI action at four- and six-points in D = 4, 6, 8:

for single-soft theorems up to O(τ), and double-soft theorems up to O(τ2)

• The one-loop UV divergences for conformal DBI action at four-, five- and six-points

in D = 4, 6, for single-soft theorems up to O(τ), and double-soft theorems up to

O(τ2).

13A universal factorized sub-sub-leading double soft theorem of dilatons may not exist has also suggested

in [30].
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• The one-loop UV divergence for A-V model at four- and six-points in D = 4 for

double-soft theorems at O(τ0),

where all soft-theorems are satisfied. This lends support to the statement that soft-

theorems derived from current algebras, which are equivalent to non-linear symmetries,

are exact even for the regulated theory. We also consider the S-matrix of open string effec-

tive field theory, for which the translation symmetry breaking induced double-soft theorems

are also shown to hold up to O(τ2). More over, operators that are power counting capa-

ble of modifying the O(τ2) soft-theorem are present for the bosonic string, thus the fact

that it is still preserved reflects the non-triviality of such symmetry based soft-theorems.

It is quite remarkable how weakly coupled string amplitudes know about the presence of

D-branes in such non-trivial fashion.

Note that the soft-theorems for the D-brane effective field theory changes depending

on the isometries of the back ground, as demonstrated for flat space and AdS. It would be

interesting to consider other non-trivial backgrounds, to derive the associated soft-theorems

and in turn constrain its effective action. These can be useful in consider the effective action

for more complicated Coloumb branches. It has been shown that soft theorems in itself for

NLSM and DBI are sufficient to enforce unitarity [11–13], and it would be nice to show that

this continues to be true for conformal DBI or any other new backgrounds. It was under-

stood recently that the soft theorems of NLSM and DBI are inherent from Weinberg’s soft

theorems of YM and gravity due to unifying relations among these theories at tree level [46],

it would be of interest to study the implications of our results on the unifying relations.

Acknowledgments

We thank Massimo Bianchi, and Renata Kallosh for helpful discussion. Y-t Huang and

Zhizhong Li are supported by MOST under the grant No. 103-2112-M-002-025-MY3 and

the support from National Center for Theoretical Science (NCTS), Taiwan. ALG is sup-

ported by the São Paulo Research Foundation (FAPESP) under grants 2016/01343-7 and

2017/03303-1, and by the CUniverse research promotion project by Chulalongkorn Uni-

versity (grant reference CUAASC). The work of CW is supported in part by a DOE Early

Career Award under Grant No. DE-SC0010255.

A Broken supersymmetry

Using current algebra, we may also get double soft theorems for Goldstino of broken su-

persymmetry. Consider the correlator of 2n+ 2 currents, by the Ward identity,14

LSZ

∫

dyeiqy
∂

∂yν

∫

dxeipx
∂

∂xµ
〈jµQα

(x)jν
Q̄β̇

(y)jσ1

Qγ1
(x1)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σ2n

Q̄γ̇2n

(x2n)〉

=LSZ

∫

dyeiqy
∂

∂yν

[

eipy〈jνPαβ̇
(y)jσ1

Qγ1
(x1)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σ2n

Q̄γ̇2n

(x2n)〉

14Note that once a fermionic generator, say Q, pass through a fermionic current, there would be an extra

−1.
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+

n
∑

i=1

eipxn+i(−)n+i〈jν
Q̄β̇

(y)jσ1

Qγ1
(x1)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σn+i

Pαγ̇n+i
(xn+i)···j

σ2n

Q̄γ̇2n

(x2n)〉

]

=LSZ(−iqν)

∫

dyei(p+q)y〈jνPαβ̇
(y)jσ1

Qγ1
(x1)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σ2n

Q̄γ̇2n

(x2n)〉

+
n
∑

i,j=1

ei(pxn+i+qxj)(−)n+i+j−1

×〈jσ1

Qγ1
(x1)···j

σj

P
γjβ̇

(xj)···j
σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σn+i

Pαγ̇n+i
(xn+i)···j

σ2n

Q̄γ̇2n

(x2n)〉 (A.1)

On the other hand, by exchanging the first two currents and the order of integration in the

l.h.s., we get

LSZ

∫

dyeiqy
∂

∂yν

∫

dxeipx
∂

∂xµ
〈jµQα

(x)jν
Q̄β̇

(y)jσ1

Qγ1
(x1)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σ2n

Q̄γ̇2n

(x2n)〉

=−LSZ

∫

dxeipx
∂

∂xµ

∫

dyeiqy
∂

∂yν
〈jν

Q̄β̇
(y)jµQα

(x)jσ1

Qγ1
(x1)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σ2n

Q̄γ̇2n

(x2n)〉

=LSZ(ipµ)

∫

dxei(p+q)x〈jµP
αβ̇
(x)jσ1

Qγ1
(x1)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σ2n

Q̄γ̇2n

(x2n)〉

−
n
∑

i,j=1

ei(pxn+i+qxj)(−)n+i+j−1

×〈jσ1

Qγ1
(x1)···j

σj

Pγjβ̇
(xj)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σn+i

Pαγ̇n+i
(xn+i)···j

σ2n

Q̄γ̇2n

(x2n)〉 (A.2)

Summing eq. (A.1) and eq. (A.2) and dividing them by 2, we have

LSZ

∫

dyeiqy
∂

∂yν

∫

dxeipx
∂

∂xµ
〈jµQα

(x)jν
Q̄β̇

(y)jσ1

Qγ1
(x1)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σ2n

Q̄γ̇2n

(x2n)〉

=LSZ
i(p−q)µ

2

∫

dxei(p+q)x〈jµPαβ̇
(x)jσ1

Qγ1
(x1)···j

σn

Qγn
(xn)j

σn+1

Q̄γ̇n+1

(xn+1)···j
σ2n

Q̄γ̇2n

(x2n)〉. (A.3)

Then we proceed by performing the LSZ reduction on the both sides, which gives

M(v(p)v̄(q)v(k1) · · · v(kn)v̄(kn+1) · · · v̄(k2n))|p,q→0 (A.4)

=
2n
∑

i=1

ki · (p− q)

2ki · (p+ q)
〈v(p)|ki|v̄(q)〉M(v(k1) · · · v(kn)v̄(kn+1) · · · v̄(k2n)) +O(p2, p · q, q2),

where we have used that 〈v(ki)|j
µ
P
αβ̇
(p)|v̄(ki + p)〉 = ki,αβ̇k

µ
i +O(p).

B Broken supercomformal symmetry

For double soft theorem of Goldstino of broken superconformal symmetry, we can instead

consider:

LSZ

∫

dyeiqy
∂

∂yν

∫

dxeipx
∂

∂xµ
〈jµSα

(x)jνS̄
β̇
(y)jσ1

Sγ1
(x1)···j

σn

Sγn
(xn)j

σn+1

S̄γ̇n+1

(xn+1)···j
σ2n

S̄γ̇2n

(x2n)〉

=LSZ

∫

dyeiqy
∂

∂yν

[

eipy〈jνK
αβ̇
(y)jσ1

Sγ1
(x1)···j

σn

Sγn
(xn)j

σn+1

S̄γ̇n+1

(xn+1)···j
σ2n

S̄γ̇2n

(x2n)〉

+
n
∑

i=1

eipxn+i(−)n+i〈jνS̄
β̇
(y)jσ1

Sγ1
(x1)···j

σn

Sγn
(xn)j

σn+1

S̄γ̇n+1

(xn+1)···j
σn+i

Kαγ̇n+i
(xn+i)···j

σ2n

S̄γ̇2n

(x2n)〉

]
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=LSZ(−iqν)

∫

dyei(p+q)y〈jνK
αβ̇
(y)jσ1

Sγ1
(x1)···j

σn

Sγn
(xn)j

σn+1

S̄γ̇n+1

(xn+1)···j
σ2n

S̄γ̇2n

(x2n)〉

+
n
∑

i,j=1

ei(pxn+i+qxj)(−)n+i+j−1

×〈jσ1
Sγ1

(x1)···j
σj

K
γj β̇

(xj)···j
σn

Sγn
(xn)j

σn+1

S̄γ̇n+1

(xn+1)···j
σn+i

Kαγ̇n+i
(xn+i)···j

σ2n

S̄γ̇2n

(x2n)〉 (B.1)

Exchange the first two currents and the order of integration in the l.h.s., and then average

them like the previous discussion, we have

LSZ

∫

dyeiqy
∂

∂yν

∫

dxeipx
∂

∂xµ
〈jµSα

(x)jνS̄
β̇
(y)jσ1

Sγ1
(x1)···j

σn

Sγn
(xn)j

σn+1

S̄γ̇n+1

(xn+1)···j
σ2n

S̄γ̇2n

(x2n)〉

=LSZ
i(p−q)µ

2

∫

dxei(p+q)x〈jµK
αβ̇
(x)jσ1

Sγ1
(x1)···j

σn

Sγn
(xn)j

σn+1

S̄γ̇n+1

(xn+1)···j
σ2n

S̄γ̇2n

(x2n)〉 (B.2)

Finally apply the LSZ reduction on the both sides, we obtain

M(v(p)v̄(q)v(k1) · · · v(kn)v̄(kn+1) · · · v̄(k2n))|p,q→0 (B.3)

=

2n
∑

i=1

ki · (p− q)

2ki · (p+ q)
〈v(p)|Ki|v̄(q)〉M(v(k1) · · · v(kn)v̄(kn+1) · · · v̄(k2n)) +O(p2, p · q, q2),

where we have used that 〈v(ki)|j
µ
K

αβ̇
(p)|v̄(ki + p)〉 = Kαβ̇k

µ
i +O(p), and Ki stands for the

conformal boost operator acting on the i-th particle.

C IBP relations for string amplitudes

Here we list the relevant IBP relations to reduce the six-point disk integral Z(12|34|56),

where

Z(12|34|56) ≡

∫

0≤z2≤z3≤z5≤1

(

5
∏

i=2

d2zi

)

KN

z212z
2
34z

2
56

, (C.1)

and KN =
∏n

i<l |zil|
sil , to linear combinations of “single trace” integrals Z(123456).15 For

example, consider Z(23|1456) where

Z(23|1465) ≡

∫

(

5
∏

i=2

d2zi

)

KN

z223z14z46z65z51
= −

∫

(

5
∏

i=2

d2zi

)

KN

z14z46z65z51
∂z2

1

z23
.

(C.2)

Integrating by parts while keeping in mind that z6 has been set to ∞, one finds:

−

∫

KN

z14z51
∂z2

1

z23
=

∫

KN

z23z14z51

(

s21
z21

+
s23
z23

+
s24
z24

+
s25
z25

)

. (C.3)

In the above we have surpressed terms involving z6, which can be restored simply by

ensuring one has the correct SL(2) weights at each point, i.e.

−

∫

KN

z14z46z65z51
∂z2

1

z23
=

∫

KN

z14z51z23

(

s23
z23z46z65

+
s24

z24z36z65
+

s25
z25z46z63

)

. (C.4)

15From now on we will suppress the notation for integration regions, knowing that we always have

0 ≤ z2 ≤ z3 ≤ z5 ≤ 1.
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This leads to the identity

Z(23|1465) = (s12(Z(145632) + Z(154632))− s24Z(142365)− s23Z(146325)) /(1− s23) .

(C.5)

Similarly one has:

Z(123|456) = (s34Z(621345)− s35Z(621354) + s15Z(154623)− s14Z(145623)) /(1− s123) .

(C.6)

Finally, repeated use of IBP relations lead to

Z(23|14|56) = s25Z(14|2365) +

[

s12
s14 − 1

(

s24(A− Z(214|536))− s34Z(56|1432)

+s45Z(321456)
)

+ 1 ↔ 4

]

1

1− s23
(C.7)

where

A =
1

s56 − 1
(s16Z(614235)− s64Z(356412) + s36Z(563|142)) . (C.8)

Applying the result in eq. (C.5) and eq. (C.6), one recovers a result that is expressed in

terms of single trace integrands.
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