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On the existence and linear approximation of the
power flow solution in power distribution networks

Saverio Bolognani and Sandro Zampieri

Abstract—We consider the problem of deriving an explicit
approximate solution of the nonlinear power equations that de-
scribe a balanced power distribution network. We give sufficient
conditions for the existence of a practical solution to the power
flow equations, and we propose an approximation that is linear in
the active and reactive power demands of the PQ buses. For this
approximation, which is valid for generic power line impedances
and grid topology, we derive a bound on the approximation error
as a function of the grid parameters. We illustrate the quality of
the approximation via simulations, we show how it can also model
the presence of voltage controlled (PV) buses, and we discuss how
it generalizes the DC power flow model to lossy networks.

Index Terms—Power systems modeling, load flow analysis,
power distribution networks, fixed point theorem.

I. INTRODUCTION

The problem of solving the power flow equations that
describe a power system, i.e. computing the steady state of
the grid (typically the bus voltages) given the state of power
generators and loads, is among the most classical tasks in
circuit and power system theory. An analytic solution of the
power flow equations is typically not available, given their
nonlinear nature. For this reason, notable effort has been
devoted to the design of numerical methods to solve systems
of power flow equations, to be used both in offline analysis of
a grid and in real time monitoring and control of the system
(see for example the review in [1]).

Specific tools have been derived for the approximate so-
lution of such equations, based on some assumptions on
the grid parameters. In particular, if the power lines are
mostly inductive, equations relating active power flows and bus
voltage angles result to be approximately linear, and decoupled
from the reactive power flow equations, resulting in the DC
power flow model (see the review in [2], and the more recent
discussion in [3]).

We focus here on a specific scenario, which is the power
distribution grid. More specifically, we are considering a
balanced medium voltage grid which is connected to the power
transmission grid in one point (the distribution substation, or
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PCC, point of common coupling), and which hosts loads and
possibly also microgenerators.

Power distribution grids have recently been the object of an
unprecedented interest. Its operation has become more chal-
lenging since the deployment of distributed microgeneration
and the appearance of larger constant-power loads (electric
vehicles in particular). These challenges motivated the deploy-
ment of ICT (information and communications technology)
in the power distribution grid, in the form of sensing, com-
munication, and control devices, in order to operate the grid
more efficiently, safely, reliably, and within the its voltage and
power constraints. These applications have been reviewed in
[4], and include real-time feedback control [5]–[7], automatic
reconfiguration [8], [9], and load scheduling [10], [11]. In
order to design the control and optimization algorithms for
these applications, an analytic (rather than numerical) solution
of the power flow equations would be extremely convenient.
Unfortunately, because in the medium voltage grid the power
lines are not purely inductive, power flow equations include
both the active and reactive power injection/demands, and both
the voltage angles and magnitudes, in an entangled way. The
explicit DC power flow model therefore does not apply well.

The contribution of this paper is twofold. First, we give
sufficient conditions for the existence of a practical solution
of the nonlinear power flow equations in power distribution
networks (Theorem 1). Second, we derive a tractable approxi-
mate solution to the power flow problem, linear in the complex
power injections, providing a bound on the approximation
error (Corollary 2).

In the remainder of this section, we review relevant related
works. In Section II, we present the nonlinear equations that
define the power flow problem. In Section III we present our
main existence result, together with the linear approximate
solution. We illustrate such approximation via simulations
in Section IV, and we compare it with the classical DC
power flow model in Section V, where we also show how
to incorporate voltage controlled (PV) buses.

A. Related works

Conditions have been derived in order to guarantee the
existence of a solution to the power flow equations in the
scenario of a grid of nonlinear loads.

Many results are based on the degree theory [12]–[14]. In
[15], for example, exponential model is adopted for the loads,
and sufficient conditions for the existence of a solution are
derived. These conditions are however quite restrictive, and do
not include constant power (PQ) buses. In [16], on the other

Published on IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 163–172, Jan. 2016.
https://doi.org/10.1109/TPWRS.2015.2395452

https://doi.org/10.1109/TPWRS.2015.2395452


2

hand, the existence of a solution is proved by exploiting the
radial structure of the grid, via an iterative procedure which
is closely related to a class of iterative numerical methods
specialized for the power distribution networks [17], [18].

The existence of solutions to the power flow equations has
been also studied in order to characterize the security region of
a grid, i.e. the set of power injections and demands that yield
acceptable voltages across the network. These results include
[19], and others where however the decoupling between active
and reactive power flows is assumed [20]. Other works in
which the DC power flow assumption plays a key role are
[21] and [22], both focused on active power flows across the
grid. On the other hand, the results in [23] focus on the reactive
power flows and on the voltage magnitudes at the buses.

In [24] the implicit function theorem is used in order to
advocate the existence of a power flow solution, without
providing an approximate expression for that.

It is worth noticing that the linear approximate model that
we are presenting in this paper shares some similarities with
the method of power distribution factors [25], which allow
to express variations in the state (voltage angles) as a linear
function of active power perturbations. This method is also
typically based on the DC power flow assumptions, even if
a formulation in rectangular coordinates (therefore modeling
reactive power flows) has been proposed in [26]. Notice that,
except for the seminal works on power distribution factors
[27], [28], and the more recent results in [29], most of the
related results consists in algorithms that allow to compute
this factors only numerically, from the Jacobian of the power
flow equations.

The approximate power flow solution proposed in this paper
has been presented in a preliminary form in [6], [30], where
however no guarantees on the existence of such solution and
on the quality of the approximation were given.

II. POWER FLOW EQUATIONS

We are considering a portion of a symmetric and balanced
power distribution network, connected to the grid at one point,
delivering power to a number of buses, each one hosting loads
and possibly also microgenerators. We denote by {0, 1, . . . , n}
the set of buses, where the index 0 refers to the PCC.

We limit our study to the steady state behavior of the system,
when all voltages and currents are sinusoidal signals at the
same frequency. Each signal can therefore be represented via
a complex number y = |y|ej∠y whose absolute value |y|
corresponds to the signal root-mean-square value, and whose
phase ∠y corresponds to the phase of the signal with respect
to an arbitrary global reference.

In this notation, the steady state of the network is described
by the voltage vh ∈ C and by the injected current ih ∈ C at
each node h. We define the vectors v, i ∈ Cn+1, with entries
vh and ih, respectively.

Each bus h of the network is characterized by a law relating
its injected current ih with its voltage vh. We model bus 0 as
a slack node, in which a voltage is imposed

v0 = V0e
jθ0 , (1)

where V0, θ0 ∈ R are such that V0 ≥ 0 and −π < θ0 ≤ π. We
model all the other nodes as PQ buses, in which the injected
complex power (active and reactive powers) is imposed and
does not depend on the bus voltage. This model describes
the steady state of most loads, and also the behavior of
microgenerators, that are typically connected to the grid via
power inverters [31]. According to the PQ model, we have
that, at every bus,

vhīh = sh ∀h ∈ L := {1, . . . , n}, (2)

where sh is the imposed complex power.
A more compact way to write these nonlinear power flow

equations is the following. Let the vectors iL, vL, sL be vectors
in Cn having ih, vh, sh, h ∈ L as entries. Then we have{

v0 = V0e
jθ0

sL = diag(̄iL)vL
(3)

where īL is the vector whose entries are the complex conju-
gates of the entries of iL and where diag(·) denotes a diagonal
matrix having the entries of the vector as diagonal elements.

We model the grid power lines via their nodal admittance
matrix Y ∈ C(n+1)×(n+1), which gives a linear relation
between bus voltages and currents, in the form

i = Y v. (4)

In the rest of the paper, we assume that the shunt ad-
mittances at the buses are negligible. Therefore the nodal
admittance matrix satisfies

Y 1 = 0, (5)

where 1 is the vector of all ones. Under this assumption, the
matrix Y corresponds to the weighted Laplacian of the graph
describing the grid, with edge weights equal to the admittance
of the corresponding power lines. We will show in a remark
in Section III how this assumption can be relaxed, so that the
entire analysis can be extended seamlessly to the case in which
shunt admittances of the lines are not negligible.

Considering the same partitioning of the vectors i, v as
before, we can partition the admittance matrix Y accordingly,
and rewrite (4) as[

i0
iL

]
=

[
Y00 Y0L
YL0 YLL

] [
v0
vL

]
.

where YLL is invertible because, if the graph representing the
grid is a connected graph, then 1 is the only vector in the null
space of Y [32]. Using (5) we then obtain

vL = v01 + ZiL (6)

where the impedance matrix Z ∈ Cn×n is defined as

Z := Y −1LL ,

Objective of the power flow analysis is to determine from
these equations the voltages vh and the currents ih as functions
of V0, θ0 and s1, . . . , sn, namely

vh =vh(V0, θ0, s1, . . . , sn)

ih =ih(V0, θ0, s1, . . . , sn).
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In general, because of the nonlinear nature of the loads, we
may have no solution or more than one solution for fixed V0, θ0
and sh, as the following simple example shows.

Example (Two-bus case). Consider the simplest grid made by
two nodes, node 0 being the slack bus (where we let θ0 = 0),
and node 1 being a PQ bus. In this case we have that the
following equations have to be satisfied{

v1ī1 = s1

v1 = V0 + Z11i1
(7)

Assume that Z11 = 1, and that s1 is real. The system of
equations (7) can then be solved analytically. In fact it can be
found that if V 2

0 + 4s1 < 0 there are no solutions. When on
the contrary V 2

0 + 4s1 > 0, there are two distinct solutions

i1 =
−V0 ±

√
V 2
0 + 4s1

2
.

Notice that, if V0 is large, then the solutions exist and, since√
V 2
0 + 4s1 = V0

√
1 + 4s1/V 2

0 ' V0(1 + 2s1/V
2
0 ) = V0 +

2s1/V0, the current i1 take the two values

i+1 ' s1/V0, i−1 ' −V0 −
s1
V0
.

Therefore, when V0 is large, one solution consists in small
currents (thus small power losses and voltage close to the
nominal voltage across all the network), while the other
consists in larger currents, larger power losses, and larger
voltage drops. Of course, the system should be controlled so
that it works at the first working point.

The intuition from this simple example is developed in the
next section, where the existence and uniqueness of a practical
solution to the power flow equations (i.e. a solution at which
the grid can practically and reliably be operated) is studied,
and an approximate power flow solution (linear in the power
terms) is proposed.

III. MAIN RESULT

Define

f := v0īL − sL = V0e
jθ0 īL − sL,

so that we have

iL =
1

v̄0
(f̄ + s̄L) =

ejθ0

V0
(f̄ + s̄L). (8)

By putting together (8) with (3) and (6), we get

sL = diag(̄iL)vL

=
e−jθ0

V0
diag(f + sL)

[
ejθ0V01 +

ejθ0

V0
Z(f̄ + s̄L)

]
= f + sL +

1

V 2
0

diag(f + sL)Z(f̄ + s̄L),

and therefore

f = − 1

V 2
0

diag(f + sL)Z(f̄ + s̄L). (9)

We can determine a ball where there exists a unique solution
f to this equation by applying the Banach fixed point theorem
[33]. In order to do so, define the function

G(f) := − 1

V 2
0

diag(f + sL)Z(f̄ + s̄L).

Consider the standard 2-norm ‖ · ‖ on Cn defined as

‖x‖ :=

√∑
h

|xh|2.

Let us then define the following matrix norm1on Cn×n

‖A‖∗ := max
h
‖Ah•‖ = max

h

√∑
k

|Ahk|2 (10)

where the notation Ah• stands for the h-th row of A.
The following result holds.

Theorem 1 (Existence of a practical power flow solution).
Consider the vector 2-norm ‖ · ‖ on Cn, and the matrix norm
‖ · ‖∗ defined in (10). If

V 2
0 > 4‖Z‖∗‖sL‖ (11)

then there exists a unique solution vL of the power flow
equations (3) and (6) in the form

vL = V0e
jθ0

(
1 +

1

V 2
0

Zs̄L +
1

V 4
0

Zλ

)
(12)

where λ ∈ Cn is such that

‖λ‖ ≤ 4‖Z‖∗‖sL‖2. (13)

Proof. Let

δ :=
4‖Z‖∗

V 2
0

‖sL‖2 (14)

and B := {f ∈ Cn | ‖f‖ ≤ δ}. In order to apply the
Banach fixed point theorem, we need to show that, under the
hypotheses of the theorem,

G(f) ∈ B for all f ∈ B (15)
‖G(f ′)−G(f ′′)‖ ≤ k‖f ′ − f ′′‖ for all f ′, f ′′ ∈ B (16)

for a suitable constant 0 ≤ k < 1. We prove first (15). Observe
that, by using Lemma A.1 in the case p = 2, we have

‖G(f)‖ ≤ 1

V 2
0

‖Z‖∗ ‖f + sL‖2

≤ 1

V 2
0

‖Z‖∗ (‖f‖+ ‖sL‖)2

≤ 1

V 2
0

‖Z‖∗ (δ + ‖sL‖)2 ,

where we used the fact that ‖f‖ ≤ δ. Now, using the definition
(14) of δ and Lemma A.3 in the Appendix (with a = ‖Z‖∗/V 2

0

and b = ‖sL‖) we can argue that, if (11) is true, then

‖G(f)‖ ≤ 1

V 2
0

‖Z‖∗ (δ + ‖sL‖)2 ≤ δ.

1The ∗ sign indicates that we are not referring to the norm induced by the
vector norm.
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We prove now (16). It is enough to notice that, by applying
Lemma A.2 in the Appendix (with A = −Z/V 2

0 , x = f and
a = sL) we obtain that

‖G(f ′)−G(f ′′)‖

≤ 1

V 2
0

‖Z‖∗ (‖f ′ + f ′′‖+ 2‖sL‖) ‖f ′ − f ′′‖

≤ 2

V 2
0

‖Z‖∗ (δ + ‖sL‖) ‖f ′ − f ′′‖

= k‖f ′ − f ′′‖

where

k :=
2

V 2
0

‖Z‖∗
(

4‖Z‖∗

V 2
0

‖sL‖2 + ‖sL‖
)
.

Finally, notice that by using (11) we obtain

k <
2

V 2
0

‖Z‖∗ V 2
0

4‖Z‖∗

(
4‖Z‖∗

V 2
0

V 2
0

4‖Z‖∗
+ 1

)
= 1.

Now from (15) and (16), by applying the Banach fixed point
theorem, we can argue that there exists unique solution f ∈ B
of equation (9). Then by using (6) and (8) we have that

vL = V0e
jθ01 + Z

ejθ0

V0
(s̄L + f̄)

= V0e
jθ0

(
1 +

1

V 2
0

Zs̄L +
1

V 2
0

Zf̄

)
.

In order to prove (13) it is enough to define λ := V 2
0 f̄ .

Remark. The norm ‖Z‖∗ can be put in direct relation with
the induced matrix 2-norm ‖Z‖, and with structural properties
of the graph that describes the power grid. Indeed

‖Z‖∗ = max
h
‖eThZ‖ ≤ max

‖v‖=1
‖ZT v‖ = ‖Z‖,

where eh is the h-th vector of the canonical base. It can be
shown that [ 0 0

0 Z ] is one possible pseudoinverse of the weighted
Laplacian Y of the grid. Therefore we have that

‖Z‖∗ ≤ 1

σ2(Y )
,

where σ2(Y ) is the second smallest singular value of Y
(the smallest one being zero). In the special case in which
all the power lines have the same X/R ratio (i.e. their
impedances have the same angle, but different magnitudes),
then σ2(Y ) corresponds also to the second smallest eigenvalue
of the Laplacian, which is a well known metric for the graph
connectivity. Given this relation between ‖Z‖∗ and ‖Z‖, the
assumption (11) in Theorem 1 is satisfied if

V 2
0 > 4

‖sL‖
σ2(Y )

.

This condition resembles similar results that have been pro-
posed for example in [20] for the analysis of the feasibility
of the power flow problem. Interestingly, the role of similar
spectral connectivity measures of the grid has been recently
investigated also for grid synchronization and resilience prob-
lems (see the discussion in [34] and [35], respectively).

Corollary 2 (Approximate power flow solution). Consider
the vector 2-norm ‖ · ‖ on Cn, and the matrix norm ‖ · ‖∗
defined in (10). Let the assumption of Theorem 1 be satisfied.
Then the solution vL of the power flow nonlinear equations is
approximated by

v̂L := V0e
jθ0

(
1 +

1

V 2
0

Zs̄L

)
, (17)

and the approximation error satisfies

|vh − v̂h| ≤
4

V 3
0

‖Zh•‖‖Z‖∗‖sL‖2, (18)

where, as before, Zh• is the h-th row of Z.

Proof. We have, from (12), for any bus h ∈ L,

|vh − v̂h| =
1

V 3
0

|Zh•λ| ,

By using Cauchy-Schwarz inequality and the bound (13) we
obtain (18).

Theorem 1 and Corollary 2 can be interpreted as a way
to model the grid as a linear relation between the variables v
and s. In fact, power flow equations already contain the simple
linear relation (4) between the variables i and v, together with
an implicit nonlinear relation between v and s. The previous
results say that, in case s is sufficiently small, there is a way to
make the relation between v and s explicit (Theorem 1), and
to find a linear approximated relation between these variables
(Corollary 2). This interpretation will be further elaborated in
Section V, in order to extend the model to grids where voltage
regulated (PV) nodes are present.

Notice moreover that the approximate model (17) can be
manipulated, via premultiplication by the admittance matrix
Y , in order to obtain the sparse linear equation

Y v̂ =
ejθ0

V0
s̄, (19)

where v̂ and s are the augmented vectors
[
v̂0
v̂L

]
and

[
−1T sL
sL

]
,

respectively. The resemblance of (19) with the DC power flow
model will be investigated in Section V, where the proposed
approximate solution is presented in polar coordinates.

Remark (Non-zero shunt admittances). The grid model (4)
in which the matrix Y is assumed to satisfy (5) is based on
the assumption of zero nodal shunt admittances. In the case
in which shunt admittances are not negligible, the proposed
analysis can be modified accordingly. In this more general
case the matrix Y is invertible, and for almost all grid
parameters of practical interest, the submatrix YLL is also
invertible. Equation (6) becomes vL = v0w + ZiL, where
Z := Y −1LL , and where w := −Y −1LL YL0 ∈ Cn is a perturbation
of the vector 1 and corresponds to the normalized no-load
voltage profile of the grid.

The reasoning of Theorem 1 can be repeated by defining
f := V0e

jθ0WīL − sL, where the diagonal matrix W :=
diag(w) is a perturbation of the identity matrix. In this case,
f has to satisfy the equation f = G(f) where

G(f) := − 1

V 2
0

diag(f + sL)W−1ZW̄−1(f̄ + s̄L).
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Condition (11) for the existence of a power flow solution is
then replaced by the condition

V 2
0 > 4‖W−1ZW̄−1‖∗‖sL‖,

and the approximate power flow solution in Corollary 2
becomes

v̂L := V0e
jθ0

(
w +

1

V 2
0

ZW̄−1s̄L

)
.

The results of Theorem 1 and Corollary 2 hold also for
other vector norms, different from the vector 2-norm, as the
following remarks show.

Remark (p-norms). Consider the standard p-norm ‖ · ‖p on
Cn defined as

‖x‖p :=

(∑
h

|xh|p
)1/p

. (20)

if 1 ≤ p <∞ and by

‖x‖∞ := max
h
|xh|.

Let us then define the following matrix norm on Cn×n

‖A‖∗p := max
h
‖Ah•‖p (21)

where, as before, the notation Ah• denotes the h-th row of A.
We have that Theorem 1 holds with respect to the vector p-

norm ‖ · ‖p on Cn and the matrix norm ‖ · ‖∗q on Cn×n where
p, q ∈ [1,∞)∪{∞} are such that 1/p+1/q = 1. This follows
from Lemma A.1. The sufficient condition (11) becomes

V 2
0 > 4‖Z‖∗q‖sL‖p

As before, the statement of Theorem 1 allows to derive a bound
on the error of the approximate power flow solution proposed
in Corollary 2 (this time using Hölder’s inequality), replacing
(18) with

|vh − v̂h| ≤
4

V 3
0

‖Zh•‖q‖Z‖∗q‖sL‖2p.

The particular case p = 1, q = ∞ has an interesting
physical interpretation. It can be inferred from (6) that, as
power line impedances have positive resistance and reactance,

|Zhh| ≥ |Zhk| for all h, k ∈ L.

Therefore ‖Zh•‖∞ = |Zhh|, which, in a radial network, is
the length of the path (in terms of the magnitude of the path
impedance) connecting bus h to bus 0. We denote such length
by `h. Then, ‖Z‖∗∞ = maxh |Zhh| corresponds in a radial
network to the breadth of the grid `max, defined as the length
of the longest path connecting a bus h to bus 0. On the other
hand, ‖sL‖1 corresponds to a metric for the total load of
the grid, defined as the sum Stot of the apparent powers |sh|
at every node h ∈ L. Therefore, in this case, the sufficient
condition for the existence of a practical solution becomes

V 2
0 > 4`maxStot,

and the bound on the approximation error is

|vh − v̂h| ≤
4

V 3
0

`h`maxS
2
tot. (22)

In general, Theorem 1 gives only sufficient conditions for
the existence and uniqueness of a solution of the nonlinear
power flow equations, and a bound on the error of the
approximation (17). By revisiting the example proposed in
Section II we show that both the sufficient condition (11) and
the bound (18) can be tight.

Example (Two-bus case). Consider the same example consid-
ered in Section II. Notice that, regardless of the vector norm
that is chosen,

‖Z‖∗ = |Z11| = 1 and ‖s‖ = |s1|.

The sufficient condition (11) in Theorem 1 then becomes

V 2
0 > 4|s1|.

In the case that we were considering in the example, with s1
real and negative (corresponding to an active power load), it
is easy to see that this condition is also a necessary condition
for the existence of a solution. In the special case in which the
condition is marginally satisfied (s1 = −V 2

0 /4), it is possible
to compute both the exact solution

v1 = V0 + i1 =
1

2
V0,

and the approximate solution according to (17),

v̂1 = V0

(
1 +

1

V 2
0

s1

)
=

3

4
V0.

The approximation error is clearly |v1 − v̂1| = V0/4, which
marginally satisfies the approximation error bound (18), i.e.

|v1 − v̂1| ≤
4

V 3
0

|s1|2 =
V 2
0

4
.

IV. SIMULATIONS

In order to illustrate the results presented in the previous
section, we considered a symmetric balanced testbed inspired
to the IEEE 123 test feeder [37].

The details and the data of the adopted testbed are available
online [36], together with the Matlab / GNU Octave and
MatPower source code used for the simulations.

In a per-unit notation, where V0 is taken as the reference
nominal voltage, and SN = 1MW is taken as the reference
nominal power, we have that{

‖s‖ = 0.7015

‖Z‖∗ = 0.1706

{
‖s‖1 = Stot = 3.9930

‖Z‖∗∞ = `max = 0.0460.

Both the sufficient condition of Theorem 1, and its modified
p-norm version (p = 1, q = ∞) are thus verified. Therefore,
existence and uniqueness of a practical solution of the power
flow equations is guaranteed.

In Figure 1 we reported the true solution of the original non-
linear power flow equations (obtained numerically) together
with the approximate linear solution proposed in Corollary 2.
The average and maximum approximation errors are reported
in Table I. In Figure 1 we also reported the bounds (18) and
(22) on the approximation error (as a solid and dashed curve,
respectively). Both these bounds are quite conservative in the
assessment of the quality of the approximation. However, they
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Figure 1. Bus voltages in the modified IEEE 123 test feeder [36]. The circles represent the exact solution of the nonlinear power flow equations. The dots
represent the approximate solution v̂ given by (17). The solid line represent the bound (18) on the approximation error obtained by considering the 2-norm
and the corresponding matrix norm ‖Z‖∗, while the dashed line represents the error bound (22), obtained by adopting the norms ‖sL‖1 and ‖Z‖∗∞.
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Figure 2. Bus voltages in the modified IEEE 123 test feeder [36], in the case of uniform overload (where all active and reactive demands are doubled). The
same convention of Figure 1 is adopted for the approximate solution, the exact solution, and the approximation bounds.

bus 1 bus 55bus 32

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

v
o
lt
a
g
e
m
a
g
n
it
u
d
e
|v

h
|

exact solution

approximate model

Figure 3. Bus voltages in the modified IEEE 123 test feeder [36], in the case of lumped overload (where the power demand of bus 32 is increased to 2 MW
and 1 MVAR). The same convention of Figure 1 is adopted for the approximate solution, the exact solution, and the approximation bounds.

guarantee that the power flow equations have a unique solution
in a region which is practical for the operation of the power
distribution grid (other uninteresting solutions of the power
flow equations may exist, at unacceptable voltage levels).

In order to better assess the quality of the approximated
solution proposed in Corollary 2, an extensive set of variations
of the original testbed have been considered, including:
• different total grid load and load distribution
• shunt capacitors for static voltage support
• voltage regulation
• different tap position at the PCC.

These simulations are available online [36], together with the
source code used to generate them, and a selection of them is
included hereafter.

In a first case, the active and reactive power demand of all
loads has been doubled, in order to simulate a uniform over-
load of the grid. The uniform scaling of the vector of power
demands s affects in the same way (i.e. quadratically) both
the approximation bounds (18) and (22). While the bounds
are still conservetive, Figure 2 shows that the approximation
error is indeed larger compared to nominal case.

In a second case, the demand of one single bus (bus 32)
has been increased to 2 MW of active power and 1 MVAR
of reactive power, i.e. 50 times the original demand. Figure 3
shows how the approximation error is affected, similarly to
the uniform overload case. However, in this case, the effect
of the overload on the approximation bounds (18) and (22)
is qualitatively different, as different norms of s are involved
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absolute error relative error†

avg. max avg. max

Nominal case (Figure 1)
Voltage magnitude [p.u.] 0.0041 0.0056 7.88% 8.45%
Voltage angle [deg] 0.0097 0.0178 0.43% 0.66%

Uniform overload (Figure 2)
Voltage magnitude [p.u.] 0.0191 0.0261 16.72% 17.94%
Voltage angle [deg] 0.0999 0.1782 2.09% 3.02%

Lumped overload (Figure 3)
Voltage magnitude [p.u.] 0.0197 0.0373 18.99% 21.59%
Voltage angle [deg] 0.0994 0.3112 2.12% 4.27%

† The relative error for the voltage magnitude and angle at each bus h is computed
with respect to the voltage drop V0−|vh| and to the angle difference |θ0−∠vh|,
respectively.

Table I
ABSOLUTE AND RELATIVE APPROXIMATION ERRORS

in the two bounds. This example also shows that it is not
possible, for a given grid, to know a-priori which particular
p-norm yields the tightest bounds.

The approximation errors for these two cases are reported
in Table I, for comparison with the nominal case.

V. APPROXIMATION IN POLAR COORDINATES: PV NODES
AND A COMPARISON WITH THE DC POWER FLOW MODEL

In this section, we show how to translate the model proposed
in Corollary 2 to polar coordinates, i.e. in terms of voltage
magnitudes and phases.

A. Voltage magnitudes
If we denote by the symbol |y| the vector having as entries

the magnitudes of the entries of a complex vector y, then from
the approximate model proposed in Corollary 2 we can obtain

|v̂L| = V0

∣∣∣∣1 +
1

V 2
0

Zs̄L

∣∣∣∣ .
If we assume that that ‖Zs̄L‖/V 2

0 � 1, i.e. that the voltage
drops are much smaller than the nominal voltage, then from
the fact that |1 + a| ≈ 1 + Re(a) for |a| � 1, we obtain

|v̂′L| = 1V0 +
1

V0
Re(Zs̄L). (23)

The approximation (23) gives the opportunity to understand
how the proposed model can be useful in a more general
context, such as when there are voltage regulated (PV) buses
in the grid. Let V be the subset of PV buses, whose voltage
magnitude is regulated to |vV | = η, and let Q = L\V be the
remaining set of PQ buses. Let then Z be divided into the
corresponding blocks

Z =

[
ZVV ZVQ
ZQV ZQQ

]
.

Therefore, approximation (23) for the nodes in V becomes

η = 1V0 +
1

V0

(
Re(ZVV s̄V) + Re(ZVQs̄Q)

)
= 1V0 +

1

V0

(
Re(ZVV)pV + Im(ZVV)qV

+ Re(ZVQ)pQ + Im(ZVQ)qQ

)
.

This linear relation can be inverted, in order to obtain the
following expression for the reactive power injection of the
nodes in V

qV = − Im(ZVV)−1
(
V0(V01− η) + Re(ZVV)pV

+ Re(ZVQ)pQ + Im(ZVQ)qQ

)
.

Plugging this expression in the model proposed in Corollary 2
yields an approximate solution of the power flow equations
that is a linear function of the active and reactive power of the
the PQ buses, and of the active power and voltage magnitude
set-points of the PV buses. The quality of this approximated
model has been verified numerically on the same testbed of
Section IV, by assuming that buses 15 and 51 are voltage
regulated to η = V0. Also this simulation is available in [36],
and the results are reported in Figure 4.

B. Voltage phases

We now consider the phases of the approximate power flow
solution, and we show how the proposed approximation can
be seen as a generalization of the DC power flow model. If we
denote by θ̂L := v̂L the vector having as entries the phases
of the entries of the approximate solution v̂L, we have

θ̂L = θ01 + 1 + 1
V 2
0
Zs̄L. (24)

By using the fact that 1 + a ≈ Im(a) for |a| � 1, we obtain
the intermediate approximated model

θ̂′L := θ01 +
1

V 2
0

Im (Zs̄L) . (25)

In the special case in which power lines are assumed to be
purely inductive, namely Z = jX , one obtains

θ̂′L = θ01 +
1

V 2
0

XpL, (26)

Equation (26) is known in the literature as DC power flow
model (see [2] and references therein) which is based exactly
on the assumption of small voltage drops and purely induc-
tive lines. Equation (26) is typically shown in the following
equivalent form

Bθ ≈ 1

V 2
0

p

where θ and p are the vectors in Cn+1 with entries θh and
ph, where B is the power lines susceptance matrix (i.e. a real
matrix such that Y = jB), and where V0 is the slack voltage
(the voltage magnitude at the PCC).

These different approximations of the bus voltage angles
have been plotted in Figure 5 for the same testbed. It is clear
how the model proposed in Corollary 2 approximates very well
the true voltage angles. On the other hand, the DC power flow
model presents a much larger approximation error, due to the
inaccurate assumption that power lines are purely inductive.
Indeed, the model (25), which differs from the DC power flow
model only for the fact that this assumption has not been made,
provides a much more accurate approximation.

In light of this analysis, the model in Corollary 2 can also
be interpreted as a generalization of the DC power flow model
to the case of generic power line impedances.
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Figure 4. Bus voltages in the modified IEEE 123 test feeder [36], in the case of two voltage regulated buses (bus 15 and bus 51). The voltage reference for
these two buses has been set to 1 p.u. The circles represent the exact solution of the nonlinear power flow equations, while the dots represent the approximate
solution v̂ given by (17), where the two PV buses have been included as described in Section V-A.
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Figure 5. Bus voltage angles in the modified IEEE 123 test feeder [36], according to the different approximations analyzed in Section V. The circles represent
the true solution of the nonlinear power flow equations. The dots represent the proposed approximate solution proposed in Corollary 2 and given by (24).
The + signs represent the intermediate model (25), where power lines have not been assumed to be purely inductive. The × signs represent the DC power
flow model.

VI. CONCLUSION

In Theorem 1 we derived a sufficient condition for the
existence of a practical solution to the nonlinear power flow
equations that describe a power distribution network. This
condition is proved to be also necessary in at least one
example, and is verified in the IEEE testbed that we adopted
for numerical validation. Different variations of this condition
can be obtained by adopting different norms (and thus different
invariant sets for the Banach fixed point theorem), yielding
various physical interpretations.

In the case of a grid of constant power (PQ) buses and
one slack bus, the existence result immediately returns the
approximate solution of the power flow equations presented
in Corollary 2. Such approximation is conveniently linear in
the active and reactive power references of the buses, and
analytical bounds for its error are given. We showed that, via
some manipulations, it is also possible to consider different
bus models, and in particular voltage regulated (PV) buses.

We finally assessed the quality of the proposed model via
numerical simulations on a set of variations of the IEEE 123
test feeder, showing how it outperforms the classical DC power
flow model. The proposed model has the potential of serving
as a flexible tool for the design of control, monitoring, and
estimation strategies for the power distribution grid.

APPENDIX

Lemma A.1. Let ‖x‖p be the p-norm of a complex vector as
defined in (20), and ‖A‖∗q be the matrix norm defined in (21).
Assume that p, q ∈ [1,∞)∪{∞} are such that 1/p+1/q = 1.
Then

max
‖x‖p=1
‖y‖p=1

‖diag(x)Ay‖p = ‖A‖∗q .

Proof. We first prove the lemma in one direction. We have
that, if z := diag(x)Ay, then

|zh| =

∣∣∣∣∣xh∑
k

Ahkyk

∣∣∣∣∣ = |xh| |Ah•y| ≤

≤ |xh| ‖Ah•‖q ‖y‖p ≤ |xh| ‖A‖∗q ‖y‖p

where we have applied Holder’s inequality. Hence, in case
p <∞ we have that

‖z‖p =

(∑
h

|zh|p
)1/p

≤

(∑
h

(
|xh| ‖A‖∗q ‖y‖p

)p)1/p

= ‖x‖p ‖A‖∗q ‖y‖p.
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In case p =∞ we have that

‖z‖∞ = max
h
|zh| ≤ max

h
|xh| ‖A‖∗1 ‖y‖∞ =

‖x‖∞ ‖A‖∗1 ‖y‖∞.

In order to prove the other direction first notice that it is well
known that Holder’s inequality is tight in the sense that, for any
fixed complex vector a there exists a complex vector b with the
same dimension such that ‖b‖p = 1 and |

∑
k akbk| = ‖a‖q .

From this fact, if h′ is the index such that ‖A‖∗q = ‖Ah′•‖q ,
we let x = eh′ (namely the h′-th vector of the canonical base)
and y be a vector such that ‖y‖p = 1 and |

∑
k Ah′kyk| =

‖Ah′•‖∗q . With this choice it is easy to verify that

‖ diag(x)Ay‖p = ‖A‖∗q

Lemma A.2. Assume that we have a vector norm ‖ · ‖ and
a matrix norm ‖ · ‖∗ such that ‖diag(x)Ay‖ ≤ ‖A‖∗‖x‖‖y‖
for any x, y. If we define the function

F (x) := diag(x+ a)A(x̄+ ā)

then

‖F (x1)− F (x2)‖ ≤ ‖A‖∗
(
‖x1 + x2‖+ 2‖a‖

)
‖x1 − x2‖.

Proof. First observe that

‖F (x1)− F (x2)‖ = ‖ diag(x1)Ax̄1 + diag(x1)Aā

+ diag(a)Ax̄1 − diag(x2)Ax̄2

− diag(x2)Aā− diag(a)Ax̄2‖
≤ ‖diag(x1)Ax̄1 − diag(x2)Ax̄2‖

+ ‖ diag(x1 − x2)Aā‖
+ ‖ diag(a)A(x̄1 − x̄2)‖.

Notice that

diag(x1)Ax̄1 − diag(x2)Ax̄2

=
1

2
(diag(x1−x2)A(x̄1+ x̄2)+diag(x1+x2)A(x̄1− x̄2))

and so

‖ diag(x1)Ax̄1−diag(x2)Ax̄2‖ ≤ ‖A‖∗‖x1−x2‖‖x1 +x2‖.

From this we can argue that

‖F (x1)− F (x2)‖ ≤ ‖A‖∗‖x1 − x2‖‖x1 + x2‖
+ 2‖A‖∗‖a‖‖x1 − x2‖

= ‖A‖∗(‖x1 + x2‖+ 2‖a‖)‖x1 − x2‖.

Lemma A.3. Let x, a, b ≥ 0 such that ab ≤ 1/4. Then x =
4ab2 satisfies

a(x+ b)2 ≤ x (27)

Proof. To prove the lemma it is enough to substitute x = 4ab2

in (27) and to verify that the inequality holds. Doing this we
need to verify that

4ab2 ≥ a(4ab2 + b)2 = ab2(4ab+ 1)2

This inequality holds if and only if 4 ≥ (4ab+ 1)2, which is
true since by hypothesis we have that 0 ≤ 4ab ≤ 1.
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