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ON THE EXISTENCE AND NONEXISTENCE OF
GLOBAL SOLUTIONS OF REACTION-DIFFUSION EQUATIONS

IN SECTORIAL DOMAINS

CATHERINE BANDLE AND HOWARD A. LEVINE

Abstract. In this paper we study the first initial-boundary value problem for
u, = Au + up in conical domains D = (0,oo) x Í2 c RN where Í2 C SN~l
is an open connected manifold with boundary. We obtain some extensions of
some old results of Fujita, who considered the case D = RN .

Let X = — y- where y_ is the negative root of y(y + N - 2) = wx and
where wx is the smallest Dirichlet eigenvalue of the Laplace-Beltrami operator
on Í2 . We prove: If 1 < p < 1 + 2/(2 + X), there are no nontrivial global
solutions. If 1 < p < 1 + 2/X, there are no stationary solutions in D - {0}
except u = 0. If 1 + 2/X < p < (N + l)/(N - 3) (if N > 3, arbitrary
otherwise) there are singular stationary solutions us. If u(x,0) < us(x), the
solutions are global. If 1 + 2/X < p < (N + 2)/(N - 2) and u{x, 0) < us, with
u(x,0) e C(D), the solutions decay to zero. If 1 + 2/N < p , there are global
solutions.

For 1 < p < oo , there are L00 data of arbitrarily small norm, decaying
exponentially fast at r = oo , for which the solution is not global.

We show that if D is the exterior of a bounded region, there are no global,
nontrivial, positive solutions if 1 < p < 1 + 2/N and that there are such if
p > 1 +2/N . We obtain some related results for u, = Au+ \x\"up in the cone.

1. Introduction

Let Í2 c S       be a connected submanifold of the unit sphere SN~ ' in R
with boundary d£l c S        and having positive N - 2 dimensional measure.
The boundary is assumed to be smooth enough to permit integration by parts.

By a cone in R    with cross section Q with vertex at the origin, we mean the
set

D = {(r,B) | r > 0, 0 G Q},

where r = \x\, x G RN . The boundary of D is

dD = {(r,6) \ r = 0 or 6 edCl}
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596 CATHERINE BANDLE AND H. A. LEVINE

Throughout the remainder of this paper we shall let a>x denote the smallest
Dirichlet eigenvalue for the Laplace-Beltrami operator, namely

Aeip + coxy/ = 0   on Q,
y/ = 0   on d£l.

It is known that we may take ip > 0 on Q. We shall assume y is normalized
so that

( ¥(B)dS9 = \.
Jo.

When N = 2, Sl=(0,yn), 0 < y < 2 and cox=y~2 while

\p = (2y)~x sin(6/y).

We wish to consider the long-time behavior of nonnegative solutions of

(1.1) du/dt = Au + up   onDx(0,T),
u = 0 on dD x (0, T) and at r = oo,

u(r,6,0) = uQ(r,d)   onDx{0},

where u0 > 0 is given, p > 1 .
We shall use the following terminology: Let

QT:=Dx(0,T).

A solution of ( 1.1 ) is called quasiregular in QT if

(i)   ueC2(QT)nC°(QT-Dx{T});
(ii)   VrOO, limr_ooc-/£7fi|W(r,0,i)|^e = O,

linV^e-^Jn \ur(r,d,t)\dS0=O.
A quasiregular solution is called regular if there is a sequence {rn}f=x , rn —» 0,
such that lim^^ w(rn , 0 , t)/rn exists.

A quasiregular solution is called almost regular if there is a sequence {rn}f=x ,
rn —► 0, such that

Urn  Í [r"-1|M,(r„,0,O| + rf-2\u(rn,6 ,t)\]dSe = 0.

It is well known [8] that for uQ large in the sense that

-^¡^dx>\jD\VuQUx

then weak solutions of ( 1.1 ) which are (with their gradients) square integrable
cannot be global.

Our purpose here, however, is to study (1.1) for "small" initial data.
The plan of the paper is as follows: In §2 we establish various blowup the-

orems for small nontrivial initial values. For our major results in this section,
we must modify an old argument of Kaplan [6] for bounded domains since
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GLOBAL SOLUTIONS OF REACTION-DIFFUSION EQUATIONS 597

A has no eigenvalue in the cone. In §3, we demonstrate the existence of sin-
gular stationary solutions for "large p," while in §4 we show that for "small
p > 1 " no regular stationary solutions exist. In §5, we establish the nonexis-
tence of envelopes of regular stationary solutions. In the next section we show
that for certain p no stationary solutions can exist under any singular station-
ary solutions. In §7, we demonstrate the existence of global regular solutions
of ( 1.1 ) which are initially smaller than a singular stationary solution. Finally,
in §§8, 9 we discuss related results for (1.1) in domains exterior to a bounded
region and for a generalization of (1.1). In §8, we show that if D is the exte-
rior of a bounded region, then there are no positive global solutions of ( 1.1 ) if
I < p < I + 2/N, while if p > I + 2/N there are such solutions. (This is the
classical result of Fujita [2] when D = R   A)

Throughout this paper, when we demonstrate global nonexistence, we shall
show that integrals of the form

/ u(x,t)e~kMdx
Jd

must become unbounded in a finite time. It is known that if u is smooth on
D x (0, T) and uniformly bounded on D x [0, T], then u is continuable to
D x [0, T+ô) for some S > 0. However, if such a weighted L1 norm (for some
k > 0) becomes unbounded on [0, T) then u cannot be in L°°(D x [0, T)).
To see this let

M = sup{u(x, t) | x G D, t e [0, T)} < oo.

Let
F(t) = [ u(x, t)e~kM dx,       te[0,T).

Jd
Then

F'(t)< [ Aue~kMdx + Mp~lF(t).
Jd

Because of our notion of a regular solution, we may integrate by parts.   We
obtain

[ Aue~kM dx< f (k2 - (N- l)k/\x\)ue~kM dx < k2F(t)
Jd Jd

since N > 1 and A(e~kr) = (k2 - (N - l)k/r)e~kr. We note that since u > 0,
we also have (on £2 )

ÍAeu=í   p-<0.
Thus

F'(t) <(k2 + Mip'U)F(t)
and thus

F(t)<F(0)e{k2+MP")!.

Therefore F cannot be unbounded on [0, T) for T < oo .
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598 CATHERINE BANDLE AND H. A. LEVINE

Throughout this paper, we shall let y± denote the positive and negative roots
of y(y + N-2) = col, i.e.,

y± = -i(/V - 2) ± ^œx + \(N-2)2.

2. NONEXISTENCE RESULTS FOR  p >  1

We begin with simple lemma.

Lemma 2.1. Let m, k, X, co be real constants with k  + X > 0. Let tp(r) =
rme~ r. If one of the conditions

(A) (k2 + X)(m2 + (N - 2)m -co)>(m + ±(N - l)fk2
or
(B)

(i)   (k2 + X)(m2 + (N- 2)m - to) < (m + {(N - l)fk2 ,
(ii)   m2 + (N-2)m-œ > 0,

(iii)   k(m + \(N- 1)) <0
holds, then

-(N-\) d ( n-\ dtp\ -2       .
dr{r       l?)^œr    ^^^

that is,
(2.1.2) Atp + Xtp > cotpr

for all r>0.
Proof. Direct calculation shows that (2.1) is equivalent to the inequality

(2.2) (k2 + X)r2 - 2k [m + \(N - 1)) r + m2 + (N - 2)m - co > 0.
Condition (A) is the statement that the quadratic has no real roots, while con-
dition (B) says that if it does, the larger root is not positive.

We shall need the following simple lemma, which we can trace back to Kaplan
[6], who used it to prove global nonexistence.

Lemma 2.2. Let G(t) be a nonnegative C   function defined on [0, T)  which
satisfies
(2.3) G'(t) > (G(t))p - XG(t)   for some XeR.

If
(A) C7(0) >0 and X<0, then
(2.4a) T<Gl~p(0)/(p-l),

while if
(B) X > 0 and G(0) > Xl/{p~l), then

r°° _i
(2.4b) T< /     [op-Xa]    da:=x(X;G(0)).

Jg(0)
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GLOBAL SOLUTIONS OF REACTION-DIFFUSION EQUATIONS 599

Theorem 2.3. If

(2.5) l</»<l+2/(/V + y+) = l + 2/(2-y_)
then no almost regular solution of (I.I) with nontrivial, nonnegative initial data
can exist for all time.
Proof. We must modify Kaplan's method [6] because the Laplacian with Dirich-
let boundary conditions has no eigenvalues in cones. Let u be any quasiregular
solution of (1.1) and define

u(r,t):=      y/(6)u(r,6,t)dSe   and   uQ(r) = u(r,0).
Ja

If we multiply ( 1.1 ) by \p and integrate over Q we find, using Jensen's inequal-
ity,

(2.6) üt- Au + o)xu/r  > if .
For m > -(N - 1) put

.*.   /   n 777   — kr ,„®0(r) = r e     /C,
where

fOO

'0
From (2.6) we deduce that

/■OO,-, I m+N-\   -kr   , , -(m+N)r,       ,   Ar,C =        r e     dr = k T(m + N).
Jo

(2.7) ^ JR ü%rN~l dr - j* Ü(A% - (cox/r2)%)rN-1 dr

+ rN~ ' [ü<&'0 - wrO0]f > /   ü"^0rN~ ' dr.

Since u is quasiregular we have

lim RN~ ' [ü<p' - ör<Pn] = 0   for any meR.R-.00 u        r    u

Let us assume for the moment that u and m  are such that there exists a
sequence {en}f=x , en —> 0 with the property

(2.8) limef-[+m[mü(En,t)/en - Üfen,t)] = 0.

(This is a consequence of quasiregularity if m > 0 .) Then by (2.7) and Jensen's
inequality, the function

u9Qr      drG(t) := i"
Jo

satisfies the inequality
/■OO

G'(t) > Gp(t) + /    ü(A% - o)x%/r)rN~l dr.
Jo

Next we show that for any initial data uQ > 0, u0 ^ 0 there exist X > 0, k,
and m such that

/•00
(2.9) G(0) = C~l        rm+N~le~krüJr)dr>X

Jo
!/(/>-!)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



600 CATHERINE BANDLE AND H. A. LEVINE

and such that for the corresponding function  G(t), the inequality (2.1.2) in
Lemma 2.1 holds for u> = co, . According to Lemma 2.1(A) we must have

/V-2      / //V-2x2
m>y+ =--— + 1/0,,+   ——     >0

and

(2.10) ß:=^j> ¡m + o)x + (N 4l)   I Urn2 + (N - 2) m - cox}.

In view of condition (2.5), the interval

l = (y+,2/(p-i)-N)

is a nonempty subset of (0, oo). Hence it is possible to find m such that

(2.11) y+<m<2/(p-l)-N.

Once m is fixed, choose ß such that (2.10) holds. By replacing C by its actual
value, (2.9) becomes

, -[2/(p-l)-m-/V]   / rn+ZV-l    -kr ~     , ~,        ,    Ar, 0l/(p-l)k I     r e     u0dr >T(m +N)ß n     A
Jo

By (2.11 ) we have 2/(p-l) > m + N and we can therefore find a k sufficiently
small for which the equality (2.9) is satisfied. With these values of ß and k,
we then determine X. Consequently, the assumptions of Lemma 2.2(B) hold.
Since m is positive, condition (2.8) is certainly satisfied for any almost regular
solution. This completes the proof of the theorem.   D
Remark 2.1. If the initial datum is in L (D) and if its support contains an
open set, then the corresponding almost regular solution cannot be global.

Theorem 2.3 does not exclude the existence of a global solution which is not
regular at the origin.

If under the assumptions of the previous theorem a global solution exists, it
must be irregular at the vertex of the cone in such a way that (2.8) fails. This
observation leads to

Corollary 2.4. // under the assumptions of Theorem 2.3 there exists a quasireg-
ular global solution then

limrßür(t,r)>0  for all ß e (N + y+ - 1 ,(3 -p)/(p - 1))

and for some t e (0, x(X ; C7(0))), where x(X ; 6?(0)) has been defined in Lemma
2.2.

If p > 1 does not satisfy (2.5) we can still find m and ß satisfying the left-
hand side of (2.11) and (2.10), respectively. In this case 2/(p - 1) - m - N < 0
and we cannot always determine k such that (2.9) holds.
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GLOBAL SOLUTIONS OF REACTION-DIFFUSION EQUATIONS 601

Corollary 2.5. For any p > 1 and for any ô > 0 arbitrarily small, there exist
initialdata u0 with \\u0\\x =5 such that the almost regular solution is not global.

Proof. Fix m and ß as above. Observe that maxrme~ r = (m/k)me~m . Let
supp«0 G (m/k-e,m/k+e) where e > 0 is such that r'ne~ r > (m/k)m(2e)~m
in this interval. Then

r[2l(p_x)_m_N]   rrm+N-Xe-kr      dr > k-lVU>-y)-mmm{2e)-m^
Jo

Hence it is always possible to choose k such that the expression is bounded from
below by Y(m + /V)/>1/(/'~1) and, hence, such that (2.9) holds. The assertion is
now obtained as Theorem 2.3.   □
Remark 2.2. If Q = S       so that cu, = 0, the inequality (2.5) becomes

1 <p< 1+2/N.
so that we recover half of Fujita's result [2].

(Observe that

2/(2 - y_) = 4 - {(N + 2) + [4<u, + (N - 2)2]'/2}"' < 2/N

with equality if and only if œx = 0. This says that the range of p's for
which global existence fails for all positive initial data is maximal for the Fujita
problem. This is in accordance with the general principle that "small domains
are more stable than large domains.") When we set a>x = 0, we are passing
Dirichlet to "periodic" boundary conditions.

Remark 2.3. When N = 2, we have cox = y where 0 < y < 2, so that cox(y)
has range [\ ,oo) and the inequality (2.5) becomes

Kp<l+2y/(2y+l),
which means that p has maximal range (1, |).

Remark 2.4. Let ipm be a spherical harmonic of order m and let Q.m be its
nodal domain on 5   "  .In this case «y, = m(N + m - 2). For the special case

Dk = {x : xx >0, ... ,xk> 0}

we have

y/k = xx-x2.xkl\jx\ + x2 + ' ' ' + xl
and hence o){ = k(N + k - 2). In this case the condition for p is 1 < p <
1 +2/(N + k), in accordance with Meier's result [9]. Meier also proved that for
p > I + 2/(N + k) both global and nonglobal solutions are possible, a result we
also extend here (§§2, 7).

When (2.5) fails, i.e., when p exceeds the extreme right member of (2.5),
then global solutions may or may not exist. However, when they do, they are
not very regular near the vertex of the cone.
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602 CATHERINE BANDLE AND H. A. LEV1NE

Before we state our next theorem, let us introduce the expressions

A := max{-(N - 1), - cox, - (N - l)2/4},

B := min{-i[A7 - 2 + \j4cox + (N - 2)2], - (N - l)/2}.

An elementary verification shows that for

[1,1) ifiV = 2,
,N-l)    ifN>2,

we have A < B.

(2.12) cox g{[ï'1     1(0,.

Theorem 2.6. Let u>x satisfy (2.12). Then the following results hold.
(i) For any p > 1, no nontrivial global regular solution exists.

(ii) If a global quasiregular solution exists, then

limr ~ +m[mu(r,t) - ur(r,t)] > 0

for all me(A,B) and for some te(0,x(0, G(0))).
Proof. If (2.1.2) holds for X = 0, then conditions (B) of Lemma 2.1 must be
satisfied; (ii) and (iii) imply that m < B defined above and by (i) we have
m > -[cox + (N - 1) /4]. Let G(t) be defined as in the proof of Theorem 2.3.
Since (2.8) is supposed to hold for all regular functions, we also require that
m > -N + 1 . Thus we have to choose m much that

A < m < B.

Under this assumption (2.3) holds with X = 0 and Lemma 2.2(A) applies.
If a global quasiregular solution exists condition (2.8) cannot hold; otherwise

the solution could not be global
Remark 2.5. For N = 2, the condition of Theorem 2.6 becomes 1 < y < 2,
which means that the sector has a reentrant corner. By Fujita's result, global
solutions exist for p > 2. Consequently, these must be irregular at the corner.
The same remark applies when p > I + 2/N and Q contains the half-sphere
{x:xx >0,|x| = l}.

A second global nonexistence theorem may be obtained following the general
arguments of Meier [9], which we sketch here.

Let z(t ,zQ) ; solve

(2.13) z = zp,        z(0,z0) = z0.

Let <5>0, X,m,k > 0 and define

(2.14) w(r,e,t) = ôe~X'tp(r)ip(6),

where tp is as in Lemma 2.1(A). Then we have that

wt - Aw < 0
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GLOBAL SOLUTIONS OF REACTION-DIFFUSION EQUATIONS 603

in the cone and w = 0 on the boundary of the cone and at r = oo. One can
easily check that

(2.15) u(r,6,t) = z(t,w(r,d,t))

vanishes on the boundary of the cone, at r = oo, and

(2.16) ut-Au<if,
i.e., m is a subsolution.

The subsolution will blow up in some finite time T if

Te-(p-l)XT>-^max[w(r,d,0)]-{p-l),

i.e., if

„nl . ...      ( Xpe \[/ip-i]   (ke\m2.17 ó max \p 0  >    -^-¡- •   —      .
eeo \p- I ) \m/

Thus, with ß given by (2.10),  m fixed, and k small where X = ßk    is also
small, (2.17) will hold for fixed ô. Thus, we have

Theorem 2.7. Suppose m > 0 is such that ß is given by (2.10) is positive. If
there are ô > 0, k > 0 such that

(2.18) Mo(r,0,O)>(Î7-me"A:V(0),

and such that (2.17) /zotós w/7/z X = ßk , then u(r,6, t) cannot be global.

This result says that for any p > 1, there exist initial values with L°° norm
as small as one pleases, smaller than rm near r = 0 for any m > 0 and which
decay exponentially fast at r = oo, for which the corresponding local (in time)
solution (when it exists) is not global.

Nonexistence results for more general nonlinearities. Let f: R+ —► R+  be a
locally Lipschitz function with the following properties:

(F-0) /(0) = 0, f(s) > 0 for 5 > 0 ;
(F-l) lims^0 f(s)/sp = a > 0 for some p > 1 ;
(F-2) J7° V/f(a) da < oo for all s>0;
(F-3) / is convex.
Consider the initial value problem ( 1.1 ) with u" replaced by f(u). Asimple

scaling argument shows that we may take a = 1. the same arguments as in §2.1
provide nonexistence results for global solutions.

Indeed, multiplying the differential equation by \p and using Jensen's in-
equality, we see that with

u(r,t) := / \pudse
Ja.

we obtain

(2.6f) u( -Arü + coxü/r2 > f(ü)    in (0,oo) x (0, T).
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604 CATHERINE BANDLE AND H. A. LEVINE

Note that this is a simple extension of (2.6). If u is regular solution, then we
deduce, as in the proof of Theorem 2.3, that the corresponding function G(t)
satisfies

(2.3,) G'(t)>f(G)-XG.
An immediate generalization of Lemma 2.2 is

Lemma 2.8. For X > 0 denote the positive solution of f(s) - Xs = 0 by sx. if
G(0) > sx then G(t) cannot exist beyond

x  -P       dS
À     Jg(0) f(s) - As

From (2.3 y-) and this lemma we obtain the following generalizations of The-
orems 2.3 and 2.6.

Theorem 2.9. Assume (F-0)-(F-3) hold.
(i) If (2.5) holds, then the same statement as in Theorem 2.3 holds for the

solutions of (I. I) with up replaced by f(u).
(ii)  The statement of Theorem 2.6 remains valid for the solutions of (I.I)

with up replaced by f(u).
Proof. Obviously it suffices to prove the theorem for small initial values. By
(F-l) we have

sx~(X/afl(p~X)   asA^O.
Therefore there exists a constant X0 > 0 such that

(2.19) sx < (2X/af/{p~l)   forO<A<V
We can now proceed exactly as in the proof of Theorem 2.3.

First fix me I. Then determine kQ > 0 such that

(7(0) > (2ßk2)/af,{p~l]   for all 0 < k < kQ.
By (2.19) we have

G(0)>sßk2    fork<min{k0,jxjß}=:k'.

If X > ßk'2, then (7(0) > sÁ .
The first assertion is now obvious. The remainder of the proof is a repetition

of the proof of Theorem 2.5 and is omitted.
Remark 2.6. The results hold for every nonlinearity f(s) > f(s), where / is
as above. This follows immediately from the standard comparison principle for
the corresponding solutions w and u, i.e., u(x, t) > u(x, t).

3. The existence of singular solutions

Under certain conditions, we may construct singular stationary solutions. For
example N = 2 and

p>2y + l,
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GLOBAL SOLUTIONS OF REACTION-DIFFUSION EQUATIONS 605

let aM be the unique root of

\yn= f [ip(p,aM,d)fl/2dd
Jo

where

ip(p,aM,e) = (2/(p-l))2(l-e2) + [2aPMl/(p-l)](l-dp+l).

Define a(6) by
ra(6)/aM

e= (ip(p,aM,6)f/2dd
Jo

for 6 G [0,577t] and by
a(G) = a(yn - 6)

for 6 G [\yn,yit\. Then

us(r,d) = r~2/{p~l)a(d),       r>0, 0<6<yTZ,

is a solution of the stationary problem for (1.1) except at r = 0.
In higher dimensions, such singular solutions will exist under circumstances

analogous to the condition p > I +2y .
We consider

(3.1) Au + u" = 0   inD,       « = 0   in dD,

and we look for a solution of the type

(3.2) u(r,0) = rqa(d).

Since
.     d2    N-i d     l .

dr2 r     dr     r2   e

we find with this choice that

rq-2Aea + q(N + q- 2)r"-2a + S'a" = 0.

Setting q = -2/(p - 1), the equations for a become

(3.3) Aea + va + ap = 0    in Q,        a = 0    ondQ,

where

„--»(»+2-»).

By standard arguments we have

Lemma 3.1. For any p > 1 with

(N+l)/(N-3)    ifN>4,
P < ^ oo if N = 2,3,
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606 CATHERINE BANDLE AND H. A. LEVINE

problem (3.3) possesses a nontrivial positive solution provided that v < œx . If
tox <v, no such solution of (3.3) exists.
Proof. We shall only sketch the main ideas and refer to the standard literature
for more details. The second statement follows if we multiply (3.3) by \p(Q)
and integrate over Q.

For any v e WQl ,2(Q) n Lp+i (Q) define

JUñ ._ l>s{v) - » ¡Qv2 dS9

[VÏ-    (afQv»+ldSef>+i

where Ds(v) stands for the Dirichlet integral over ficS ~ and dSe is the
surface element on S.

By our assumption we have

D (v) >œx[v2dS>u[ v2 dSe
Jq Jn

for all v / 0. Hence J[v] is bounded from below.
Let {vn}f=x be a minimizing sequence such that

KIU'(£i) = l     and     ¿l^/KJ = 'mfJW-
Obviously {vn}f=x is bounded in W0 ' (Q). Therefore there exists a subse-
quence, say {vn}f=x , such that

and

vn —► v   weakly in WQ' (Q)

v    strongly in Lp    (Q).

For the next step, we show that v e WQ ' (Q) n Lp+ (Q.)  satisfies the Euler
equation

Aev + vv + Xvp = 0   in Q

for some appropriate value of X > 0. The function a(6) = Xx'(p~ ]v(6) has
the required properties.

From these considerations, we have

Theorem 3.1. Suppose cox> v and

(N+l)/(N-3)    ifN>3,
(3.4) Ki<, [ oo ifN = 2,3,
That is,

(N+l)/(N-3)    ifN>3,
(3.5) l-2/y_<p< ( oo ij N = ¿,5 .

There exists a singular solution to (3.1) of the form

(3.6) u5(r,6) = r2,{p-l)a(e),
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where a is a solution to (3.3). No positive singular solution of the above form
exists if cox < v .
Remark 3.1. Let Dk be as in Remark 2.4 of §2. Then us exists whenever

+ 2-N]<k(N + k-2).
p-l\p-l

Remark 3.2. Notice that if U(x) solves (3.1), so does V(x;X) = X2/p~[U(X\)
for any X > 0.

Lemma 3.2. The only solutions of (3.1) such that for all X > 0, X 'p~ us(Xx) =
us(\) are of the form (3.6).
Proof. Let V(\;X) be any such solution. Then differentiation with respect to
X yields

0 = (2/(p-l))X-]V + rVr
and in particular for X = 1

0 = (2(p-l))V + rVr.

Integration of this first-order equation yields the desired result.   D

4. NONEXISTENCE OF STATIONARY SOLUTIONS FOR SMALL p

Again let

y± = li-(N - 2) ± \/(N-2)2 + 4cox].
In this section, we show that if

(4.0) p < 1 - 2/y_
then there are no stationary solutions of (1.1), i.e., no«)>0 such that

(4.1) Aw + w" = 0   inD,        w=0   on dD.

When N = 2, (4.0) reduces to p < 2y + 1 . The argument proceeds via a series
of lemmas. Let u solve Au + up = 0 in D, u e C°(D)nC2(D') for all D' c D,
D' bounded, and let u = 0 on dD. Define

ü(r)= [ y/(d)u(r,d)dSe
Jn

Then
. .      .  .       -(N-\) d   ( n-\ duAu = Au = r — [r       —-r dr \ dr \= j ip(d)Aru(r,6)d6

= /  ip   —tA„w - ¡/
1 de.

Hence, by Jensen's inequality,

(4.2) Aü-(tox/r2)ü + üp <0
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for r > 0. We see also that

(Ar- cox/r )u = r ^    '(r(r    u) )

where X is one of y+, y_ and ß = N - I + 2X, so that we have instead of
(4.2),

(4.3) (rVty)' + ̂ -V<0.
Let

/(/•) = r~ u(r)

for the sake of convenience. Then, for 0 < p < r < oo,

(4.4) //'(r) - pßl'(p) + [' sß~xif(s)ds < 0
J p

and, after a second quadrature,

(4.5) l(rx)-l(r2) + ^ p (^sß-"if(s)ds\ di < '*  [~_j  "pßl'(p)

provided ß ^ 1 and p < r2 < rx.
We are now in a position to prove some lemmas.

Lemma 4.1. Let X = y+ . Then

limpßl'(p) = 0.
p->0

Proof. The function h(r ,0) = r i/(0) is harmonic. Therefore, if we set

De = {(r,0) \s<r< 1,0gQ},

we find that

0= /   hAudx+ /   hu1'dx = <f>
Jdc J Dc JdDt

Let Ta = dD£ n{r = a}. Then, we have

0= -e^-1 / ip(6)ur(e,6)dSe+Xif+N~2 f ip(8)u(e,d)dSeJii Jo.
+      (h^r -"-^-) ds+      hifdx,

7r, V   dr        dr J JDc
whence

e+ ~ [it (e) - Xu(e)/e] = I   hu" dx + C,
7d£

where C is a constant independent of e. The left-hand side of this may be
rewritten in terms of ß , i.e.,

//'(£)= / hifdx + C.
Jdc

. du       dh
hd-n-Ud-n ds + [ hi/

Jd,
dx.
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Since C does not depend on e and the integral is a decreasing function of e,
lime^0eßl'(e) exists. Suppose this limit is k ^ 0. Then for all ô e (0,|«r|)
there is p0 such that

(K-o)/pß<l'(p)<(K + S)/pß
if P < P0 ■ Integrating this over [e, p0], we find

, A  £\ K -Ô r   l-ß 1-ß,    .  ..      .        ..   .     .  K +Ô      l-ß l-ß

Now for X = Uß-N+l),

lim//(r) = û(0) = 0.
r—»0

If we multiply (4.6) through by e  , we have

K-Í.  2-JV-l /    l-ß,    .    Xu      . 2,/   s    ,  rC+ f5     2-V-l /I    1-0.j—¡-[e -ep0    ]-^e/(/,o)-e/(£)^yrr[e -«/»o    I-

Since 2-A/-A<0,we have a contradiction if e —»■ 0+ unless k = 0.
Thus, from 4.4, we see that

(4.7) rßl'(r)+ f sN+k~lüp(s)ds<Q.   u
Jo

Lemma 4.2. Let X = y+ . Then l(r) is decreasing and

lim l(r) = 0.
r—>oo

Proof. The first statement follows from (4.7). Let /0 = lim^^ l(r). Assume
/0 t¿ 0. Then from (4.7) we have

(4.8) l(r)-l(p)+ [CßdH [ÍsÍN-UX(p+l)]lp(s)ds<0.
J p Jo

Thus
i00rßddtslN-l+X{p+l)]ip(s)ds<0o.
J p Jo

Therefore, since l'(r) < 0, we have
rOO

lp        ¿flHP~mdi<oo,
J p

which is not possible. Thus, /0 = 0 .   G

Lemma 4.3. Let X = y+. Then

limr(2+(p-miPl(r) = Q.
r—»oo

Proof. From Lemma 4.2 and (4.8), we see that

lim  i2ri-ßdi[(slN-]+"(p+l)]lp(s)ds = 0.
r^°°Jr Jo
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By the monotonicity of /(•),
-lr alp(2r)JrCßdt:J sl(N-l)+X{p+i)]ds

<frCßdifs[N-M{p+X)]lp(s)ds

= 0
so that

!f , \ 2+X(p-l](2r)P+*P-i>]   !_flN
\2

and we have the result.   D

Thus, we obtain

Corollary 4.4. Let X = y+ ; then

lim r'l(r) = 0
r—»oo

for all
v<(2 + (p-\)X)/(p-\).

Proof. Let a = 2 + (p - l)X. In (4.8) take p = r/2. Then, since l(r) < l(r])
for r¡ e (0,r] and some c > 0,

-l(r) + l(r/2) >  f Cßdi t sN-{+(p+{)llp(s)ds
Jr/2 Jo

>clp(r)ra,

we see that

Therefore

limr{a/p+a)lp(r) = 0.
r—»oo

hm r l(r) = 0.

Repeating this argument yields
,. a(l/p+l/p2 + --- ) ,,   ,        r.        „hm r    ' 7(t") = 0.    D

Lemma 4.5. Let X = y+ . There exists c > 0 swc/z í/íaí

/(r),
Proof. From (4.7), for /• > 1 ,

/(7")r > c   i/r > 1.

//'(/■) + [lsN-l+"up(s)ds<0
Jo

so that, with cn as the integral on the left,-o
Itr\  _/in\± lL/(/-)-/(p) + (c0/(y5-l))[/?'-/?-r1-/?]<0.

Letting r —> oo, we have

l(p)>cp]'ß       (p>l)
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That is, for p > 1 ,
,/    .        N-2+2À .l(p) -P >cx,

whence the statement of the lemma,   o

From Corollary 4.4 and Lemma 4.5 we must have (with X = y+ )

(2-X + pX)/(p- l)<N-2 + 2X
or

P> l + 2/(N-2 + X).
We thus obtain the following nonexistence result.

Theorem 4.6. If
p<(2 + X)/X       (X = -y_),

then no positive stationary solution exists.

Theorem 4.7. If a stationary solution exists then u(r)r" —> 0 as r -* 0 for all
v<2/(p-l).
Remark 4.1. If X = —y_ and

2 + X \(N+l)/(N-3),       N>3,<
UN-

P<{
( oo,A I oo, 7V = 2,3,

then there exist singular solutions, as we recall from the preceding section (equa-
tion 3.5).

Remark 4.2. Similar arguments show that if

N/(N-2),        N>2,\N/(
I oo,P < . N = 2,

then (4.1) has no nontrivial positive global solutions if D = R   . See §9 and
[14].   (In the case  D = R     such ground states actually exist if and only if
p> (N + 2)/(N-2). See [22].)

5. On ENVELOPES

We turn again to (4.1). Suppose w > 0 is a regular stationary solution of
(4.1). Then it is easy to verify that

(5.1) v(r,6;X) = X2/(p~l)w(Xr,d)

is also such a stationary solution. The envelope of such solutions, when it exists,
is given by

(5.2) V(r,d) = v(r,6,X(r,d))

where A is found from

(5.3) v,(r,d,X(r,6)) = 0.
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One easily checks that if Xr, V$X exist, then V is also a stationary solution of
the differential equation in (4.1). Writing out (5.3) we see that with

p = rX(r,6),

X(r,0) exists if and only if p solves

(5.4) G(p,d) = pwp(p,B) + (21 (p - l))w(p,6) = 0,

as a function of 0 in a C1 fashion on Q.

Leamma 5.1. There is no regular, positive stationary solution of (I.I) for which
the solution set of (5.4) contains a C surface p = p(6) defined on a nonempty
open subset fl0c£i.
Proof. If, to the contrary, such a surface existed on some open Q0 c Í2, Q0 ^
0, let X(r, 0) = p(d)/r and set

(5.5) V(r,6) = (p(6))2/{p~l)w(p(d) ,6)r~2/{p~1)

= F(0)r~2/{p~l) =v(r,d,X(r,6)).

Since p(B) is C , so is X and hence V solves AV + Vp = 0 in the subcone
(0,oo)xQ0. Consequently, F (6) must be a positive solution of the differential
equation (3.3) with v given prior to Lemma 3.1. (We do not require F to
vanish on öQ0 .) We have w(p(6) ,0) = V(p(6) ,0) in QQ , while, in view of
(5.4) and the chain rule,

(5.6) VeF = p2,{p-l)(d)Vew(p(6),6),

i.e.,
Vew(p,6) = VeV(p,6)

on p = p(6), 0 G Í20 . Moreover, by (5.4)
dw _ 2     w _ 2V      _dV
~dp~-~(p-l)~p~-~(p-l)p~ ~d~p~

on p = p($), 0 G íi0 . Therefore, on the C manifold given by p = p(6), w
and Vw agree with V and W and therefore, by unique continuation,

w(r,6)= V(r,B)

on (0,oo)xfi0. Hence w is singular.   D

We next prove the following:

Theorem 5.2. // G(p,6) given by (5.4) changes sign on (0,oo) x Cl, then w
cannot be a positive solution o/(4.1) satisfying the boundary condition.
Proof. The hypothesis assures us that there is an open subset Qx c Q such
that for each 0 G Q, , there is an interval Ie c (0,oo) with G(p,6) < 0 if
p e Ie . On the other hand, from the mean value theorem, for each such 0 and
each ô > 0, there is a p+(6) with 0 < p+(6) < Ô such thatG(p+(6),d) > 0.
Therefore h cannot have zero as its right-hand end point.
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It follows from these observations and the continuity of G that there is an
open set Q0 c Q, , a number a > 0 such that G(a, 0), and a number b > a
such that G(b, 0) < 0 for all 0 e £20 . Therefore the number

p0(0) = inf{p | G(p,d) < 0,p e [a,b]}

is well defined, and G(p0(6),6) = 0 for 0 G fiQ. Moreover G(p,6) > 0 if
a < p < p0(0) and 0 e Q0 .

Let
s = {(/>o(0),0)|0Giy

denote the graph of the function p0 . Then S c[a,b]x£l0, and, from Lemma
1.8 of [11],

HN'l(S)>HN~l(UQ)>0,

where 77 (S) denotes the fc-dimensional Hausdorff measure of (S).
Let

r = {(/>o(0),0)GS|V(7(/>(0),0) = o}.
We will show that T has N - 1 dimensional Hausdorff measure zero or else w
is singular. Suppose the former. Then there are points in S where VC7 ̂  0. Let
(p0(60),60) be such a point. If G (p0(80),60) ^ 0, then in a neighborhood
of this point, the implicit function theorem assures us that we may write p =
px(6) with pxeC (Q0), G(px(6),6) = 0, for all 0 in some open set fi0 c
iî0 and px(00) = p(Q0) ■ In this case the result follows from the previous
lemma.  If VeG(p0(00) ,d0) / 0, then one of the angular variables, say 0, ,
may be expressed as a C function of p and 62, ... ,6N_X . That is, 0, =
S(p,d2, ... ,6N_X) and 01O = 6(/7o(0o),02O, ... ,0(A,_1)O) where 6 is a C1
function of (p,62, ... ,QN_X) is an open neighborhood of (p0(00),620, ... ,
e(N-i)o)- Moreover> G(p,S(p,d2, ... ,dN_x),e2, ... ,0N_X) = 0 on this set.
If d&/dp / 0 at some point of this neighborhood, we may again apply the
implicit function theorem to find p as a C1 function of 0 on some Q0 c £2
and apply and the lemma again. If dO/dp = 0 then

G(p,e(e2,...,eN_x),e2,...,eN_x) = o
for 6i = 6¡0 and all p in some small open neighborhood of p0 = p(00).
However, by construction, G cannot vanish for a < p < pQ and 0 = 0O . This
is the desired contradiction.

In order to show that 77 ~ ( T) = 0, we let

(5.6) l(r,d) = r2/(p~l)w(r,6).

Then
(5.7) G(r,d) = rip-mp-l)lr(r,6).

A routine calculation shows that

(5.8) r2ln + (N - 1 -4/(p- l))rlr + ul + Ael + lp = 0
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where v = 2/(p - l)(2/(p - l) + 2- N) as before. If we differentiate both sides
of (5.8) with respect to r, we see that on [a,b]xQ0, there are constants A ,
B such that

(5.9) \AG\<A\G\ + B\VG\,
an inequality considered by Caffarelli and Friedman [1]. From this article we
conclude that 77 ~ (T) = 0 unless G = 0 on [a,b] x Q0. In the latter
case, it follows that w = r~ '^~ F(6) on this set, where F solves (3.3), and
consequently (by unique continuation again) w = r~ ' F(6) on (0,oo)xQ0
and hence is singular. Thus, the theorem is established.   D
Remark 5.1. The unique continuation results of [21, 23] can also be applied
here.

6. NONEXISTENCE OF STATIONARY SOLUTIONS UNDER
SINGULAR SOLUTIONS

Let p >  1 - 2/y_ .   Then there exist singular stationary solutions  us =
r~ ct(6) as constructed in §3.  In this section we show that regular pos-
itive stationary solution w , when they exist, cannot satisfy w < us for some
us, provided p is not too large.

Theorem 6.1. Under the condition

(6.1) l-2/y_<p<(N + 2)/(N-2)
no regular solution of (4.1) satisfying w <us can exist except w = 0.
Proof. Let w be such a positive stationary solution. By the results of §5, we
may assume that G(r ,6) > 0 on D . Therefore, we may assume that since

(6.2) l(r ,0) EE r2/{p~l)w(r,6) < a(6),

and
lr = (r2/{p-l)w)r>0

we must have

/ lr(r,6)a(6)dSe >0Ja
for all r > 0.   (If the integrand vanished for some rQ > 0 on an open set
Í20 c Q, we could find a C1 solution of (5.4) and be finished by the results of
§5.)

Therefore, if we define

(6.3) L(r)= [ l(r,8)a(6)dd,
Jo.

we find from (5.8) that with q = 2/(p - 1)

(6.4) 0 = Ln + (N - 1 - 2q)Lr/r + f la(lp~{ - ap~X)dSe/r2.Jq
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The integral on the right of (6.4) is nonpositive by (6.2). Consequently we find
for r > rx

Lr(r)>(r/rx)2q+X-NLr(rx),

and, after a second quadrature, for some c > 0

ri^ri   u      ir2q+2~N'       P<(N + 2)/(N-2),L(r) > L(r.) + c ■ i
1 1 lnr, p = (N + 2)/(N-2).

Therefore, L(r) is unbounded as r —> oo. However, by (6.2) again

L(r)< [ a(6)dSe,
Jo.

an obvious contradiction. Thus lr and hence G must change sign.

Remark 6.1. Since for N > 3

(N + 2)/(N-2)<(N+l)/(N-3),
we have not eliminated the possibility of stationary solutions under singular
solutions for all p for which singular solutions exist.

7. Global existence

Suppose that

(yV+1)/(/V-3),       iV>3,
(7.1) l-2/y_<p<t oo, N = 2,3.

Then singular stationary solutions exist.    Let  us  be one such of the form
r2/{p~i}a(e). We show that if

(7.2) 0 < u0 < min{r£, us}

for some e > 0, then u(x,t;u0) is global. If

(7.3) l-2/y_<p<(N + 2)/(N-2),
then

(7.4) lim u(x, t ; un) = 0.
t—>oo u

Let

and define

u  =a(B)r-2l(p-{)

<p(r,6) = Arma(d),

where, for v as defined in §3, m satisfies

1,.,    ,s       /       (N-2\2 1 _       /       ÍN-22(N-2)-\¡v+\-^-\   <m<--(N-2) + du+.
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and A > 0. Then

Then

in

Let

Aip + ip" = Aa(d)r(m 2)[m(m + N - 2) - v]

-Arim-2)ap(d)[l-Ap-lrm{p-[)+2].

A (// + ipp < 0

DÀ = Dn{r<A-l(p-mm{p-l)+2)]}.

Í Vu(r,e) = inf{u ,i//} = {
in DA,
in D - DA .

Then u is a supersolution in the weak sense. Therefore, by standard arguments,
the solution of ( 1.1 ), u(x, t, ü), with u0 = u(x, 0 ; u) = ü exists globally.

Lemma 7.1.  u(x,t,U) is decreasing in t.
Proof. This follows from a result of [13].    D

Lemma 7.2.

(7.5) lim u(x,t;U) = w(x)
l—>+oo

where w (x) is a stationary solution of (I.I)
Proof. See Sattinger [12].   D

Lemma 7.3. If (7.3) holds, then w(x) = 0.

This follows from the preceding section.

Theorem 7.4. If (7.1) holds and u0 satisfies (7.2), then u(x,t;uQ) < u(x ,t,u)
and (by standard arguments) is global. If (7.2) and (7.3) hold, then (7.4) holds
also.
Remark 7.5. If we combine our result with that of Fujita, we see that if

p >min(l +2/iV,l -2/y_),

global solutions of ( 1.1 ) exist for certain nontrivial initial values.

8. Blowup in exterior domains

In this section we indicate how some of the arguments in §2 carry over to
other unbounded regions, specifically regions exterior to bounded regions.

Lemma 8.1. Let DR = {x e RN \ \x\ > R}. Then there is not positive regular
global solution of

(8.1) ut = Au + if    inDRx(0,oo),
u(x ,0) = uQ(x)       in DR,
u(x,t) = 0 on dDR x (0,oo),
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when

(8.2) l<p<l + 2/N.
Proof. We only sketch the proof. Let m e (0,2/(p - 1) - N) and let p > R
be such that

1 -mln(p/R) <0.
Let Ím   —krre      , r> p,

Aln(r/R),       R<r<p.

We choose A such that (p(p+) = <p(p-) and k > 0 but so small that f'(p+) >
tp'(p-) and let

it(r, t) := (ûA.   /      u(x, t) dSe
Js"-*

where coN = area of S
s"-

N-l

Then with
i-OO

G(t):=C~l /    tp(r)ü(r,t)rN~l dr,
Jr

where
/*oo

C:=        tp(r)rN-{dr = 0(k-(m+M))       (/c->0),
7ä

we have G' > -XG + Gp and (7(0) > A1^-1' when we take

X = k2(m + i(A7 - l))2/m(m + N-2)

and k sufficiently small. We can again apply Lemma 2.2 to obtain the result.    D

Theorem 8.1. Let D c RN and let Dc = RN - D be bounded. If (8.2) holds,
there are no quasiregular global solutions o/(8.1).
Proof. The result will follow from (8.1) by comparison. Let uQ > 0 on some
open subset of D and let 0 < ux < u0 have compact support. Let

vfx,t) = u(x,t;ui),        i = 0,1.
Then vi exists on D x (0, 77) where T = T0 < T{ and

vx(x,t)<v0(x,t)    on 75 x [0,7o).

Now let R > 0 be so large that DR c D and let « be a regular solution of
(8.1) on DR x [0,Tf) where

v(x,0) = vx(x,2-T0),       xeDR.

Then, by comparison,

v(x,t) <vx(x,t) < v0(x,t) = u(x, t)

while TQ < Tx < T2. However, by Lemma 8.2, T2 < oo. Therefore TQ < oo
and we are done,   o
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Remark 8.2. Let N > 2. It is easy to see that if p > N/(N - 2) > 1 + 2/N,
then

us(r,d)=Xr-2,{p-l)

solves Au + up = 0 in RN - {0} where
r   i    / 7   \-|i/(p-i)
_p-l\ p-l).

Theorem 8.3. Let Dc = RN -D be a bounded region of RN and let uQ e C(D)
(u0 > 0).

(i) If p > I + 2/7V then there are nontrivial global solutions o/(8.1).
(ii) If N/(N - 2) < p < (N + 2)/(N - 2), then u decays to zero pointwise

at t —► oo.
(iii) If N > 3, p > N/(N-2), and u0< us, then the corresponding solution

o/(8.1) is global.

The first statement follows by comparison with a Fujita solution. To prove
(ii) we let 7? > 0 be such that D c DR and we use us as a super solution
of (8.1) in DR x [0,oo). The third statement follows by an argument used to
establish an analog of Theorem 6.1.
Remark 8.2. Combining Theorem 8.1 and the first statement of Theorem 8.3,
we obtain the classical Fujita result for any domain with bounded complement.

9. Concluding remarks

During the course of preparation of this paper, we became aware of reference
[14], where stationary solutions of

Aw + \x\"wp = 0,       xeR   ,p>l,aeR,
are discussed.

The results of [14] lead us to consider the problem (with a > -2 )

(9.1) du/dt = Au + \x\aup    in Dx(0,T),
u = 0 ondDx(0,T),

u(x ,0) = uQ(x) on D,
where uQ > 0. We shall state, but not prove, results for (9.1) which are analo-
gous to Theorem 2.3, Theorem 3.1, Theorem 4.6, Theorem 5.2, and Theorem
7.4.

With the exception of Theorem 2.3, the results are obtained at easy modifi-
cations of the proofs already given. We have:

Theorem 9.1. Let u be a regular solution of (9.1) with u0 > 0, u0 ^ 0. Let y±
be as in § 1.

(i)//
(9.2) Kp<l + (2 + o)/(2-y_)
then u cannot be global.
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(ii) If
(9.3) Kp<l + (2 + a)/(-y_)

then (9.1) cannot have positive stationary solutions in D.
(iii) //

( (N+l)/(N-3)    ifN>4,(9.4) l<l + (2 + a)/(-y_)<Jp<r "• •,„",,
t arbitrary ij N = 2,3,

then there exist singular stationary solutions (9.1) of the form

us(d) = r-(2+a)l(p-l)a(B).

If 1 < P < I + (2 + a)/(-y_), no such singular solutions exist.
(iv) //

; N + 1    N + 2 + 2cr       1
Ar - 3 '     /V - 2

¿Ae« regular solutions of (9.1) with u(x, 0) < ufx) are global and decay to zero
pointwise as t -* +00.

(v)7/

ran     ,^1      2 + £T      ^ + 2 + 2rj ( (N+l)/(N-3),        N>4,(9.6)       1  <  1 + -.-r < -T7-;;- <P <  {
(-y_) N-2 y     \oo, N = 3,

then regular solutions of (9.1) w/i/? w(x,0) < ufx) are global.

The proof of the first statement follows the lines of that of Theorem 2.3 if
we first make the change of variables

sv = r u

in (9.1) (r = |x|) where S = o/(p - 1). Then

-(A-1-2Ó) d    (  (N-l-2S)dv
' dr \ dr

+ r~2(A0v -S(N-2- S)v) + v" .

Then, with v replacing ü and
rOO

G(t):= /     v%r~ldr
Jo

lr
'0

we see that (2.3) will hold provided (2.2) holds for all r with m replaced by
m + 6 . Thus, m must satisfy

y+ - ô < m < 2(p - 1 ) - N,

which leads to condition (9.2). When cox —> 0, we obtain

1 < p < 1 + (2 + a)/N = (N + 2 + a)/N.
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The proofs of (ii)-(iv) are easy modifications of the arguments of §§3-7. When
ojj —> 0 in (9.3) we see that there can be no stationary solutions if

1 <p<(N + o)/(N-2)
so that we recover Theorem A.l of [14].

Notes added later

1. Recently, using comparison arguments of Meier [10] but avoiding the use
of the Green's function, Levine and Meier [16] proved for (9.1) and hence for
(1.1) when er = 0 that there are nontrivial nonnegative almost regular solutions
of (9.1) if er >0 and

p>l + (2 + o)/(2-y_).
Thus when o > 0, p(a) = 1 + (2 + er)/(2 - y_) is the cutoff point between the
blowup case and the global existence case (for small data). They did not prove
that p(o) belongs to the blowup case.

2. At about the time this paper was accepted for publication, one of us
(Bandle) learned of some related work of Kavian [ 17] and others [18,19]. There
results were obtained quite independently from ours and the proofs are much
different. They are carried out in the context of L   theory.

At the risk of doing an injustice to these workers, let us briefly describe their
results. Let

*(v) = exp(iM2),      yeD.
They introduce the Hubert spaces

L2(K,D)= {/||j/|2/Í7Íx<oo} ,

H¡(K,D) = {f\f, VfeL2(K,D) and / = 0 on dD}.

They require solutions of ( 1.1 ) to belong, at each /, to HQ(K, D) or to HQ (D).
They define for / g 770' (D)

L/=-A/(x)-Ix-V/(x)        (xG£>)

and denote by A, the smallest eigenvalue of L. They assume throughout that
D is convex and 1 < p < (N + 2)/(N - 2). They prove the following (for
maximal solutions):

(a) If u(-) e Hr](D), u0 > 0, and 1 < p < 1 + l/Xx , then u(t) blows up
in finite time.

(b) If p > 1 + 1/A, , p < (N + 2)/(N - 2),

E(0) = U \u(0)\2Kdx - -Lj- / \u(0)\"+lKdy
A- Jd P + l Jii

^55^-)/j"(0)|!"^0'
then u blows up in finite time.
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(c) If p > 1 + 1/A, and p < (N + 2)/(N-2) then there are global solutions
for some nontrivial m(0) g 770' (K < D).

(d) \f p> 1 + 1/A2, p > (N+2) / (N-2), and u(t) is a global solution, then
u(t) is global and the C (Q) norm decays at least as fast as t~ '^p~
as t —> +00.

They rely on potential well arguments of Payne and Sattinger [20] for the
global existence and on the concavity arguments of [8] as modified by Payne
and Sattinger [20] for the global nonexistence. The Hubert space approach
necessitates the additional restriction that

p<(N + 2)/(N-2),
which neither we nor Levine and Meier require. On the other hand, they prove
that 1 + l/Xx does belong to the blowup case. For cones, an elementary argu-
ment show that

r\x = \{2-y_)={2(N + y+).

They do not consider the case of global existence when p > (N + 2)/(N - 2)
nor do they consider the case of (9.1).

It should also be noted that the authors of [ 17-19] work in HQ (D), whereas
we work in the space

If | VA: > 0, Í c~*W[|/(x)| + |V/(x)|] dx < oo and / = 0 on 3D

which strictly contains 770' (D).
However, the decay result (d), which overlaps ours, contains more informa-

tion as the decay rate is precisely specified. Meier and Levine obtain a somewhat
better decay rate for the L°° norm under certain conditions. They show that

limsup(/ + i0)(1/2)(A'+5'+)||M(OIL<^
t—>+oo

for solutions which initially lie under the supersolutions they construct, for all
p > I +2/(N + y+). This is clearly a better estimate of the rate of decay than
(d) for the L°° norm.

It would be of interest to know if the result of (d) is optimal. That is, is it
true that there are solutions which decay exactly like t~l'^~1' t that is, that

lin,l/^-'VWIL-
t—»+oo L-

exists and is nonzero?
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