
transactions of the
american mathematical society
Volume 326, Number 2, August 1991

ON THE EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS
FOR COMPETING SPECIES MODELS WITH DIFFUSION

E. N. DANCER

Abstract. In this paper, we consider strictly positive solutions of competing
species systems with diffusion under Dirichlet boundary conditions. We ob-
tain a good understanding of when strictly positive solutions exist, obtain new
nonuniqueness results and a number of other results, showing how complicated
these equations can be. In particular, we consider how the shape of the under-
lying domain affects the behaviour of the equations.

The purpose of this paper is to obtain much better results on the existence and
uniqueness of strictly positive stationary (that is time-independent) solutions of

L— = Au + u(a - u - cv)

(1) dv      .    ,    ,, .    inQxT?,v ' — = Av + v(d - v -eu) '

u = v = 0   on dQ x R.

Here a, c, d, e, L > 0 and Q is a bounded open set in Rm. Here u =
u(x, t). Note that we could replace -u by -au where a > 0 in the first
equation, -v by -ßv in the second equation where /?>0,and |y by L2fj
where L2 > 0. However, these could be removed by simple rescalings and
hence we have not lost generality.

The above equations are of competing species type (with diffusion). Here
u, v usually represent the population of species. Thus it is natural to look for
nonnegative solutions.

For stationary solutions, the main point of interest is the existence and
uniqueness of strictly positive solutions, that is solutions with both components
strictly positive in Í2. This problem has been studied extensively in [4, 5, 6,
8, 9, 24] where many further references can be found. However, the results are
far from complete.

Let w denote the maximal solution of the first equation when v vanishes
identically and u = 0 on <9Q.   We define v analogously.   We assume that
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830 E. N. DANCER

a, d > kx where kx denotes the first eigenvalue of -A on dQ, (for our bound-
ary conditions).

If (ïï, 0) and (0, v) are both unstable or both stable for the parabolic system
and a weak nondegeneracy assumption holds, we proved in [8] that there is a
strictly positive solution. Hence the case of interest is when exactly one of (ïï, 0)
and (0, v) is stable. We showed in [9] that in this case there may or may not
be a strictly positive solution. Here we obtain a good geometric understanding
for which parameters there is a strictly positive solution. We show that, in the
interior of the set T where there is a strictly positive solution while exactly one
of (ïï, 0) and (0, v) is stable, there are at least two strictly positive solutions.
One must be an asymptotically stable solution and another an unstable solution.
We also prove that for almost all pairs (a, d) (with a, d > kx) there is an open
set of pairs (c, e) in R for which the above assumptions are valid. This is
an interesting contrast to [6] where it is shown when a = d there can only
be strictly positive solutions when (ïï, 0) and (0, v) are both stable or both
unstable and with the Neumann problem where T is always empty. We also
prove some estimates of the extent of the set T. It turns out that T naturally
splits into two parts T+ and T~ . The above results answer a question in [24].

We also obtain examples of star-shaped sets Í2 where the two solutions (ïï, 0)
and (0, v) are both unstable and nondegenerate (and a, d > kx) while the
system has more than one strictly positive solution. This appears to be the first
such example. We present examples of such nonuniqueness in two parameter
ranges. One is where d is close to a while the second is where a is fixed and
d is very large. The first is interesting because it is known [6] that if d = a,
then uniqueness holds if (ïï, 0) and (0, v) are both unstable. Both examples
depend upon the domain perturbation results in [14]. We do not know if this
nonuniqueness holds if aaz = 1 or if Q is convex.

We also produce a number of other counterexamples which show how com-
plicated this simple looking equation is. Indeed, most of the questions one
might ask turn out to have negative answers. One of these answers a question
in [6].

While our main emphasis is on the stationary solutions, our methods have
implications for the asymptotic behaviour of time dependent solutions. We
discuss this fairly briefly.

One of the advantages of our methods is that they are quite flexible. For
example, most of our results continue to hold for many other (including mixed)
boundary conditions, for rather more general nonlinearities if we replace -A
by a second order linear (not necessarily selfadjoint) operator and if -A is
replaced by two different such operators in the two equations.

In § 1, we obtain some basic results on the geometry of the solution set while
in §2 we obtain conditions on when the solution set is other than the obvious
set. In §3 we combine our earlier ideas with domain perturbation results to
discuss uniqueness and to construct some other counterexamples, while in §4
we briefly discuss the time-dependent problem.
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POSITIVE SOLUTIONS FOR COMPETING SPECIES MODELS 831

1. THE GEOMETRY OF THE SOLUTION SET

We consider nonnegative stationary solutions of (1); that is, nonnegative
solutions of

-Au = u(a - u- cv)
(2) -Av = v(d - v -eu)     inQ,

u = v = 0   on 9Í2.
For simplicity, we assume that Q is smooth. By solutions of (2) we will mean

elements of W1' (£2) n C0(Q), where C0(Q) means the continuous functions
on Cl vanishing on <9Q with the usual norm. (In fact, at the expense of a little
effort, this regularity assumption on Í2 can be entirely removed by looking for
solutions in L°°(Q) n Wx'2(Cl) and by writing our equation as an equation on
Lp(Çl) © L"(Q) for suitable large p .) Here we will use C0(Q) © C0(Q) as our
basic space.

First, as in [8], we see that, if a < kx, all nonnegative solutions have u = 0.
Here kx denotes the first eigenvalue of -A under Dirichlet boundary condi-
tions. In fact by comparing with solutions of |y - Au + u(a-u), one easily sees
that every solution of (1) with nonnegative initial conditions satisfies u(i) -> 0
uniformly on Q as t -+ oc . Since we then essentially have a scalar gradient-like
equation for v , it is easy to obtain a complete picture of the dynamics of (1).
(If we add terms b • Vv , the equation for v may not be gradient-like but, if
Q is smooth, we can use order arguments to obtain the same result. Similar
arguments appear in Conway [5].) Hence interesting behaviour only occurs if
a > kx. Similarly, we only have interesting behaviour if d > kx. We assume
that a > kx and d > kx for the remainder of this paper.

If a > kx , (2) has a unique nontrivial nonnegative solution (ïï, 0) with
second component vanishing identically. Note that (ïï, 0) is independent of
d, e, c. Similarly, if d > kx , there is a unique nontrivial nonnegative solution
(0, v) with first component vanishing identically. Any nonnegative solution
(u, v) of (2) other than (0,0), (ïï, 0) or (0, v) satisfies u(x) > 0 and v(x) >
0 in Q. We call such a solution a strictly positive solution. The above results
can be found in [8].

Now, as in [8], when A"((-A + KI)~x(a + K - cv)I) is less than 1 (or greater
than 1), it is independent of K for K such that a + K - cWvW^ > 0. Here r
denotes the spectral radius. As in [8], we will abuse notation slightly and write
r(-A~x(a-cv)I) > 1 (< 1) to mean that r((-A+Kiyl(a+K-cv)I) > 1 (< 1)
for all large K . For fixed K > 0, we can argue as in [8, proof of Proposition
1] to deduce that r((-A + KI)~x(a + K - cv)I) is strictly decreasing in c as
long as a + K - cfB^^ > 0. (Note that v(x) > 0 in Í2 by the weak maximum
principle.) If c = 0, a simple calculation shows that r(-A~x(a - cv)I) > 1.
We will prove in a moment that r(-A~x(a - cv)) < 1 if c is large. Hence
there is a unique positive c such that r((-Ayx(a - cv)I) > 1 if 0 < c < c,
r((-A)~x(a-cv)I) = 1 if c = c, and r((-A)~x(a-cv)I) < 1 if oc. c is a
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function of a and d. It remains to prove that A-((-A)_1(a - cv)I) < 1 if c is
large. We use positive operator theory as in [8, proof of Proposition 1]. Since
(a - cv) < (a - cv)+ ,

r((-A + KI)~\a + K- cv)I) < r((-A + KI)~X((a - cvf + K)I).

Thus it suffices to prove that A-((-A + 7í7)_1((a - cv)+ + K)I) < 1 if c is large.
Since (a - cv)+ > 0, a similar argument to the one presented earlier shows
whether r((-A + KI)~x((a-cv)+ + K)I) < 1 is independent of K for K > 0.
Thus it suffices to assume that K = 1. Now (a-cv)+ —* 0 in Lp(Cl) as c -* oo
for 1 < p < oo. (Remember that v(x) > 0 in Q.) Thus, as in the proof of
Proposition 1 in [8],

r((-A + I)'x((a - cv)+ + 1)7) -+ r((-A + I)~xI)

as c —> oo . Since a simple calculation shows that r((-A + I)~x) < 1, our claim
follows.

By similar arguments, there is an ë > 0 such that r((-A)~x(d - eu)I) > 1
ifO<(?<¡?, =1 if e = I, and < 1 if e > ë. As before ë is a function of
a and d.

It can be proved (cf. [8]) that (ïï, 0) is stable (unstable) as a solution of (1)
if a-((-A + KI)~x(d + K - eu)I) > 1 (< 1 ). In other words (ïï, 0) is stable
if e > ë and is unstable if e < ë. A similar result holds for (0, v) (with e
replaced by c).

Now, if (c, e) e [0, c) x [0, ë),

r((-A)~x(a - cv)I) > 1    and   r((-A)'x(d - eu)I) > 1.

In this case, it is proved in [9] that (2) has a strictly positive solution. In fact,
as we see later, there is an asymptotically stable strictly positive solution. If
(c, e) e (c, oo)x(¡?, oo), r((-A)~x(a-cv)I) < 1 and r((-A)~x(d-eu)I) < 1.
Again by [9] it follows that (2) has a strictly positive solution. There need not
be a stable strictly positive solution in this case. Thus the question of interest is
whether (2) has strictly positive solution for (c, e) in ([c, oo)x[0, ë])U((0, c]x
[ë, oo)). Note that we are thinking here of the section of the parameter spaces
where a and d are fixed.

The main result of this section is the following.

Theorem 1. Assume that T+ = {(c, e) : c > c, 0 < e < ë and (2) has a
strictly positive solution} is nonempty. Then there exist p > c, v e (0,ë),
and a continuous strictly increasing function f^ : [c, p] -» (0,ë] such that
f+(c) = v, f*ip) =ë, and T+ = \(e, c) :oc, 0 < e < ë, e > f+ic)}.
Moreover, if (c, e) e intr+, then (2) has at least two solutions, at least one
of which is "asymptotically stable. " Moreover, (2) has a strictly positive solution
(in fact, an "asymptotically stable" one) if c = c and v < e < ë, and a strictly
positive solution if e = ë and c < c < p.
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Remarks. 1. By an "asymptotically stable solution" we mean a solution (u,v)
such that r(Al(u, v)) < I, (u, v) is an isolated solution, and (u, v) has index
1 in

D = {(u,v) : C0(Q)©C0(iQ) : w>0on£2, v>0onQ, ||m||00<û, ||v||00<í7}.

Here A is a natural map whose fixed points are the solutions of (2). We will
define A a little later. (This is equivalent to the definition of quasi-minimum
in [10] but the present notation is more natural here. The equivalence is easy
to see if one recalls that the Krein-Rutman theorem (cf. [29, p. 265]) ensures
that r(A'(u, v)) e a(A'(u, v)) provided that r(A'(u, v)) > 0.) By applying
Remark 4 on p. 58 of [10] with E = 7/(Q) © 7/(Q) for p large, we deduce
that an "asymptotically stable" solution in our sense is indeed an asymptotically
stable solution of ( 1 ) in the space Xa © Xa where Xa is a fractional power
space in the sense of Henry [20, p. 29]. There are two points to be noted here.
First, our proof in [10] really shows asymptotic stability. Second, we need to
generalize the proof in [10] slightly because h is only C1 as a map of Xa ®Xa
into E (and not from E into E). (h is defined in [10].) However the proof
is essentially the same. This result explains our choice of terminology. If £2
has smooth boundary, it is not difficult to modify the argument in §5 of Dancer
and Hess [16] to obtain asymptotic stability of (u, v) in a direct sum of Lp
spaces for large p .

2. There is an analogous theorem for T~ = {(c, e) : 0 < c < c, e > ë and (2)
has a strictly positive solution}. The curved boundary is of the form c = f~(e).
Thus Theorem 1 and our earlier comments provide a good understanding of
when (2) has a strictly positive solution. Our ideas in §3 can be used to show
that f* need not be convex. It can be proved that there is no strictly positive
solution at (c, r) if t < v or at (y, ë) if y > p, and that T+ is nonempty if
(2) has a strictly positive solution for some point (c, t) where t < ë or (y, ë)
with y > c. We discuss these briefly and some additional results in §2.

3. It can be shown that f*~, p, and v depend continuously on a and d.
Indeed our methods can be used to obtain results on how f* changes with a
and d.

4. If a = d, the results in [6] easily imply that T+ and T~ are both empty
and the only points of ({c} x R)u (R x {ë}) where there is a strictly positive
solution is (c, ë). On the other hand, we prove in §2 that for most (a, d)
either T+ or T~ is nonempty.

5. Some explicit estimates for the size of T+ follow from [24]. Theorem 1
answers a question in [24].

We will prove Theorem 1 by a series of lemmas. If we use the cone K =
{(u, v) e CQ(Q) x C0(Q) : u > 0 in Q, v < 0 in Q} and the corresponding
order (denoted by >s), we easily see that, for K large, the map A defined by

A(u, v) = (-A-r-Ä7)~1(w(a-l-7ir-M-c?j), v(d + K-v -eu))
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is increasing on

D = {(u,v)eC0(ÏÏ)xCQ(n):\\u\\oo<a,  ||v||00<fl, zz>0oní2,
v > 0 on Q}

Here we have abused notation slightly by identifying the scalar operator
(-A + Kiyx and the operator which operates on a two-component vector by
operating as (-A+Kiy on each component. The above result is easily shown
by noting that A is Fréchet differentiable and A'(u,v) maps K into itself for
each (u, v) e K. Indeed, one can easily prove that A'(u, v) is a demi-interior
operator in the sense of [10, p. 50] when u > 0 in Ci and v > 0 inQ. Here
we use Lemma 2 in [8] and that (u, v) e K is demi-interior to K if and only
if u and -v are both demi-interior to the usual cone Kx in C0(Q). These
remarks enable us to use a number of standard results in cone theory.

Lemma 1. Assume that (cx, ex) e T+. If 0 < c < cx, e > ex, e < ë, and
either c < cx or e > ex then (2) has a strictly positive solution which is an
"asymptotically stable" solution of (1). Moreover, if c > c, there must be at
least one other strictly positive solution.
Proof. We first prove the existence of a strictly positive solution. Since (cx, ex)
e T+ , there exists a strictly positive solution (ux ,vx) of

-Au = u(a - u - cxv),        -Av = v(d - v - exu).

By standard estimates (cf. [8, §2]), w, < ïï and v < v . Thus (ux,vx) e D and
(ux, vx) <s (ïï, 0) (for the order generated by K ). Now

-Aux =ux(a-ux- cxvx) <ux(a-ux- cvx)
since c < cx . Moreover, strict inequality holds on Í2 if c < cx since ux > 0
on Q and vx > 0 on Cl. Thus

"i < (-A + Kiyx(ux(a + K - ux -cvx))

and equality does not hold if c < c,. Similarly,

vx >(-A + KI)~x(vx(d + K-vx -<?«,))

and equality does not hold if e > ex. Hence A(ux, vx) >s (ux, vx) (where
>5 means >s and equality does not hold). Hence we have that (ux, vx) <s
(ïï,0), A(ux,vx)>s(ux,vx), A(u, 0) = (ïï, 0) (since (ïï, 0) is a solution of
(2)), and A is increasing on the order interval C = [(«,, vx), (ïï, 0)]. Hence
the iterates (un+x, vn+x) = ¿(u„, v„) will increase (in K) to a fixed point
(ü, v) of A (and thus a solution of (2)) with ux < ü < ïï and 0 < v < v . This
will be a strictly positive solution of (2) unless v = 0. In this case, the first
equation of (2) implies that ü = ïï. (Note that ü is nontrivial since u> ux .)

Since the iterates {(«„, vn)} converge to the minimal fixed point of A in
C, we see that in this case (ïï, 0) will be the only fixed point in C. Now C is
closed and convex (and thus contractible) and AC ç C by the monotonicity.
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Hence by basic properties of the fixed point index, the sum of the indices of
the fixed points of A in C (counted relative to C) is 1. Since (ïï, 0) is
the only fixed point in C, it follows that inde\c(A, (ïï, 0)) = 1. However,
since ux(x) < ü(x) and vx(x) > 0 in £2, it is easy to see that C(- 0) = -K
where our notation follows §§1 and 2 of [11]. Thus, by Theorem 1 and Lemma
2 in [11] and Proposition 1 in [10], indexc(A, (ïï, 0)) = 0 if we prove that
r(Ä{ü, 0)) > 1 and A'(U, 0) does not have an eigenvector in K corresponding
to the eigenvalue 0. Hence, if we prove these properties of A'(ü, 0), we will
have a contradiction and hence there will be a strictly positive solution. This
is very similar to part of the proof of Theorem 1 (ii) in [8]. Now, by a simple
calculation,

(3)     A'in, 0)(h, k) = (-A + Kiyx((a + K- 2u)h - cük, (d + K - eu)k).

It follows easily from this formula that

o(A'(u, 0)) = a((-A + KI)~x(a + K- 2ïï)7)
U ct((-A + KI)~x(d + K- eu)I).

Hence

r(A'(ü,0))>r((-A + KiyX(d + K-eü)I)> 1    since e < ë.

Hence r(A'(H, 0)) > 1. That Äiü, 0)(h, k) # (h, k) if (h, k) e K\{0, 0} is
almost the same as the proof of the corresponding result at the bottom of p.
733 of [8] once we recall that r((-A + KI)~x(d + K - eu)I) > 1.

This completes the proof of the existence of the strictly positive solution
(u, v).

Before starting the remainder of the proof, we note that an isolated strictly
positive solution has the same index in D or E = C0(Q) © C0(Q) or in K2 =
Kx © Kx or in C if it belongs to C . We will return and prove this at the end
of the proof.

Now, to prove the existence of a second strictly positive solution if c > c,
we note that there is nothing to prove unless there is a unique strictly positive
fixed point (w, v) of A in C. Since, as before, the sum of the indices of
the fixed points in C is 1 and since, as before, (ïï, 0) has index 0 in C,
it follows that indexc(^, (u,v)) = 1. Hence, by the previous paragraph,
indexa (A, (ü, i>)) = 1. However, if e < ë and oc, r((-Ayx(a-cv)I) < 1

and r((-Ayx(d - eu)I) > 1. Thus, by the arguments in §2 of [8], the sum of
the indices of the strictly positive solutions is 0 (relative to K2). Hence there
must be another strictly positive solution, as required.

We now prove that there is an "asymptotically stable" solution in C. We
have that A(ux, vx) >s (ux, vx) and A(iï, 0) = (ïï, 0). Let

w = A(ux, vx) - (ux, vx) >s 0.
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Since A is increasing, we see that if 0 < t < 1, the map At defined by
At(u, v) = A(u, v) - tw is an increasing C map of C into itself. Let xt
denote its minimal fixed point in C. This is obtained by the obvious iteration
from (ux,vx). Moreover, by the iteration, xt increases as t decreases. Since
{xt : t e (0,1)} lies in a compact set (by the boundedness of C and the
compactness of A), we see easily that x0 = lim^^xt exists, is in C, and is
a fixed point of A. We will prove that x0 is "asymptotically stable". Since
x, >s (ux, vx), the first component of xt is positive in £2. Since xt = Axt -
tw <s A(u,0) - tw = (ïï, 0) - tw and since both components of w are
positive on £2, it follows that the second component of xt is positive on £2.
Hence, by our earlier comments, A'(xt) is a demi-interior operator. Hence
r(A'(xt)) < 1. This follows by applying the remarks at the bottom of p. 143
in [11] to At. The only point to note is that since Á(xt) is a demi-interior
operator, it follows easily that any eigenvector / of A'(x¡)* in the dual cone
K* is strictly positive, that is f(x) > 0 if x e K\{0). (See, for example, [10,
p. 50].) Since r(Á(xt)) < 1, we see from the continuity of the spectral radius
that r(A'(x0)) < 1 . Thus, since r(Â{u, 0)) > 1, x0 ^ (ïï, 0). Hence x0 is
a strictly positive solution. Suppose that x0 is isolated in C. (We will prove
this in a moment.) By our earlier comments, A'(x0) is a demi-interior operator
and r(A'(x0)) < 1. We can now prove that indexc(A, x0) = 1 by a similar
argument to the proof of a corresponding result in Proposition 3 and Remark 4
in [11]. As there, the result is easy unless r(A'(x0)) = 1. In that case, as in [11],
we easily see that the solutions (x, t) of x = A(x) - tw near (x0, 0) are of the
form (x0 + ah + w(a), (p(a)) where w and <t> are C , w(0) = 0, 0(0) = 0, h
spans N(I - A'(x0)), f spans N(I - A'(x0)*), and f(w(a)) = 0 for all small
a. The proof is the same as the one there except for two points. First, because
At only maps C into itself for t > 0, we only know that ah + w(a) e C for
a < 0. Note that, since xt <s xQ , x( corresponds to a negative a . Second, as
a consequence, if a > 0, we only find that either (f>(a) < 0 or ah + w (a) £ C.
(We do find that 4>(a) > 0 for a < 0.) The only other point is that the sign in a
number of other inequalities is reversed. Hence we find that indexc(^, x0) = 1
and thus, by a comment earlier in the proof, indexfl(^, x0) = 1.

Hence x0 will be "asymptotically stable" if it is isolated. Now, as in the
previous paragraph, the solutions of x = A(x) - tw near (x0, 0) in E x R
are {(x0 + ah + w(a), <f>(a)) : \a\ < e}. By the argument of Remark 5 on p.
143 of [11], if x0 is not isolated, </)(a) = 0 for all small a. (Note that A
is a continuous polynomial map on E and hence is real analytic.) Thus any
solution of x = A(x) - tw near (x0, 0) has / = 0. This is impossible since
(xt, t) is such a solution. Thus x0 is an isolated fixed point of A in E.

It remains to prove our claim that the indices of fixed points is the same in the
different spaces. It is here that we use <9£2 is smooth. We use the space V ® V
where V denotes the space of functions u in C0(£2) for which §1 u extends to
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a continuous function on £2 with the norm ||m||' = supx6i2 \4>\ (x)u(x)\, where
(j)x denotes the positive eigenfunction corresponding to the first eigenvalue of
-A on £2 under Dirichlet boundary conditions. It is easy to check (cf. [1]) that
F is a Banach space under the norm || ||'. Let 7C4 denote the cone K2C\ V. It is
easy to see that K4 has nonempty interior in V and that the interior elements
are functions u for which infx€i20[" u(x) > 0. In particular, this holds if u is
C1 on £2, u(x) > 0, and |^ < 0 on <9£2. Now, by a similar argument to that
in [1], one easily sees that A is a completely continuous map of E into V® V .
Moreover, if x is an isolated fixed point of A in E, the commutativity theorem
for the degree (cf. [19 or 27]) ensures that indexE(A, x) = indexVS)V(A, x).
Similarly, if x e C, the index of x in C is the same as that in C n (V © V).
This means that we need only prove our results on indices on the space V © V.
In this case, we simply have to prove that the point is interior to Cn(V®V) or
D n (V © V) and the result is then obvious. This is easy to check once we note
that, if u2 > ux and v2 < vx in K2, then A(u2, v2) - A(ux, vx) is interior to
(V® V) C\K (because the maximum principle ensures that each component has
nonzero normal derivative on <9£2). Note that our earlier ideas show easily that
each component of A(u2, v2) - A(ux, vx) is nonzero on £2. This completes
the proof of Lemma 1.
Remarks. 1. The existence of a strictly positive solution in the lemma can also
be proved by using the iteration scheme in [9, pp. 241-242], though this seems
to work less well in degenerate cases. This method has the advantage that it
implies that the "asymptotically stable" solution is as symmetric as £2 and that
f*~ is unchanged if we look at solutions with the same symmetries as £2.

2. As we noted, the result is true without the smoothness of 9£2. To prove
this, we need to use some of the ideas in [11, 10]. However, it is a little te-
dious because we cannot apply the results there directly but have to modify the
techniques very slightly. Part of the difficulty is that A'(u, v) is not always a
demi-interior operator.

3. We essentially used the analyticity to prove the existence of the asymp-
totically stable solution. If we have a nonlinearity which is similarly behaved
to ours but is not real analytic, one can prove instead the existence of a stable
solution and a set of solutions whose index is nonzero. (This would suffice for
our other arguments.) A slight modification of our analyticity arguments imply
that, if either e ^ë or c^c, then every strictly positive solution (u, v) with
r(A'(u, v)) < 1 is isolated.

4. It is possible to give another proof of Lemma 1 when £2 is smooth by
combining some of the ideas in Dancer and Hess [16] with the ideas in [11] to
construct an asymptotically stable solution and then use a variant of the ideas of
Matano [26] to find another solution between the asymptotically stable solution
and (0, v).
Lemma 2. There exists e > 0 such that there is no strictly positive solution of
(2) if c > c, e < ë, and either e < e or c > e~x.
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Proof. We first prove that there is no strictly positive solution if e is small.
Suppose that en < n~x and (2) has a strictly positive solution (un, vn) for
c = cn and e = en (where cn > c). By the obvious bounds, we see that
llM„lloo - a ancl il^lloo - d • By the compactness of (-A)-1 on C0(£2), we see
from the second equation that {vn} is compact in C0(£2). Thus, by choosing
a subsequence if necessary, we can assume that vn —> v in C0(£2) as az -> oo .
Since enun -» 0 as az —► oo, we can pass to the limit in the second equation
and deduce that v is a nonnegative solution of

-Av = v(d -v)   in £2,        v = 0   on <9£2.
Thus v = 0 or v = v . In the first case, this implies that vn —► 0 in C0(£2) as
az —> oo. Now, by the second equation,

vn = (-A + Kiyx((d + K-vn-enun)vn).

Since (-A + KI)~ (a(x)I) is a demi-interior operator on C0(£2) if a(x) > 0
on £2 and thus has its spectral radius as the only nonzero point of the spectrum
to which there corresponds a positive eigenfunction,

r((-A + KI)~X (d + K - vn- enun)I) = 1    (where K > 0).
Passing to the limit as az —► oo and by using the continuity of the spectral radius,
we see that r((-A + KI)~ (d + K)I) = 1. An easy calculation shows that this
is false. Hence vn —* v as az —» oo .

Now, by similar arguments to above applied to the first equation,

(4) r((-A + KiyX(a + K-un-cnvn)I) = l.

Now, a - un- cnvn < (a - cnvn)+ . Hence, by spectral properties of positive
linear operators,

l=r((-A + Kiyx(a + K-un-cnvn)I)

<r((A + Kiyx(K + (a-cnvn)+)I).
In particular, if cn —► oo as az —► oo, then, since vn —> v as az —> oo and
v(x) > 0 in £2, we easily see that (a - cnvn)+ -» 0 in 7/(£2) as az —> oo for
every p in (1, oo). Thus (cf. [8, p. 735]), r((-A + KI)~x(K + (a-cnvn)+)I) -»
r((-A + Kiy K) < 1 as az —> oo . Hence we have a contradiction unless {cn}
is bounded. Thus, by choosing a subsequence, if necessary, we can ensure that
c„ -> c>c as az—>oo. Now, by passing to the limit in the first equation much
as earlier in the proof, we deduce that, by choosing a subsequence if necessary,
un —* ü in C0(£2) as az —> oo where -Azi = ü(a - ü - cv) in £2. Now it is
easy to see (cf. [8, Lemma 1] for a similar result), this equation can only have a
nontrivial nonnegative solution (with u = 0 on <9£2) if r((-A)~x(a-cv)I) > 1.
However, since c > c, r((-A)~ (a - cv)I) < 1 with strict inequality if c > c.
Hence z~z = 0 and thus un—> 0 as az —>oo. Since

r((-A + KiyX(a + K-un-cnvn)I) = l,
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we see by passing to the limit that r((-A + KI)~x(a + K - cv)I) = 1. By the
definition of c, this implies that c = c. Hence we have that un -> 0, vn -> v ,
^-»0, and cn —> c as az —> oo and cn > c. Thus we are looking at strictly
positive solutions bifurcating from (0, v). That this is impossible (for cn > c)
follows from a simple bifurcation analysis very similar to the one at the start
of §2 below (or §3 of [4]). This proves our claim for e small.

We now consider the case where c is large. Thus we assume that there exist
strictly positive solutions (un,vn) for c = cn and e = en where 0 < en < ë
and cn —► oo as az —> oo. By the previous part, en is not small. Thus, by
choosing a subsequence if necessary we can ensure that en —> ê as az —► oo
where 0 < ê < ë. By working with the second equation much as before, we
can assume that vn -> v in C0(£2). Moreover, since HwJ^ < a for all az ,
we can assume that un tends (weakly) to uQ in 7/(£2) for 1 < p < oo where
u0 e L°°(£2). By passing to the limit in the second equation, we see that v is
a nonnegative solution of -Av = v(d - v - êu0) in £2. By the weak Harnack
inequality (cf. [18, Corollary 8.21]), v(x) > 0 in £2 or v = 0. We now show
that the first case is impossible. This is similar to earlier. By the first equation,

1 = r((-A + Kiy\a + K-un- c„vn)I)

<r((-A + KiyX(K + (a-cnvn)+)I)

(since a + K -un- cnvn < K + (a - cnvn)+).
However the right-hand side tends to r((-A + KI)~XKI) < 1 as az -> oo.

(This follows because (a - cnvn)+ -» 0 in 7/(£2) for all p as az —► oo since
cn —> oo as az —> oo and vn(x) -> v(x) > 0 as az -> oo.) Hence we have a
contradiction and thus v = 0, that is, vn —► 0 as az —> oo. By the second
equation

l=r((-A + Kiyx(d + K-vn-enun)I)
(6) _,

> r((-A + Kl)   l(d + K-e-(ê + e)u)I)    if az is large

(since un<u, en —► ê, and H^H^ -* 0 as az -» oo).
However, as e —► 0,

r((-A + Kiyx(d + K-e-(ê + e)û)I)

-^r((-A + KiyX(d + K-êû)I) > 1    ifê<ë.
Equations (6) and (7) give a contradiction if ê < ë. Thus the only case left
to consider is when en -» ë as az —> oo and vn -> 0 as az —» oo. Let wn =
(II^JoJ-1^ • By the equation for vn, Awn is bounded. Thus {wn} is compact
in C0(£2). Thus, by choosing a subsequence if necessary, we can assume that
wn -* w in C0(£2) as az -» oo. Since ll^ll^ = 1, INIloo = 1 • Thus w ^ 0.
By passing to the limit in the equation for wn, -Au; = w(d - ëu0) in £2.
Since w > 0 in £2 and w does not vanish identically, it follows from the weak
Harnack inequality that w(x) > 0 in £2. We can now deduce that {c„||tz ||   }
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is bounded. If cJI^H^ -» oc as az —► oo ,

l=r((-A + KiyX(a + K-un-cn\\vn\\oown)I)

< r((-A + Kiyx(K + (a- cjvj^w^l)

and, since cjlfj^ -» oo as « -» oo ensures that (an - c„||t>„||0O«z/1)+ —> 0 in
7/(£2), we can obtain a contadiction as before. (Remember that w (x) —>
w(x) > 0 as az —> oo.) By choosing a subsequence, we can ensure that
{cjuj^} converges and thus {cnvn} converges in C0(£2) (since {wn} con-
verges). Let wn = cnvn. Then

(8) -Aun = un(a-un-wn),        -Awn = wn(d-pnwn-enun),

where pn = (cn)~ . Note that pn —> 0 as az —► oo. Since [wn] is bounded,
we can easily deduce from the first equation that, by choosing a subsequence if
necessary, {un} converges. Hence we can assume that (un, wn) —> (it, w) in
E as az —► oo . By passing to the limit, we deduce that (û, w) is a nonnegative
solution of

(9) -A« = u(a - û - w),        -Aw = tî)(d -ëû)

in £2 with o = iiv = 0 on <9£2. Since the second equation of (8) implies that

r((-A + Kiy\d + K- pnwn - enun)I) = 1,

we see in the limit that

(10) r((-A + Kiyx(d + K-ëû)I) = 1.

Hence û jt 0. By the first equation of (9), û < ïï and u(x) < ü(x) in £2 unless
w = 0. However if û(x) < ïï(x) in £2j,

(11) r((-A + KI)~x(d + K- ëû)I) > r((-A + KI)'x(d + K- ëu)I) = 1

by the definition of ë. Note, to obtain the strict inequality, we have used a
similar argument to that in [8, top of p. 735]. Since (11) contradicts (10), we
have that û = ïï and w = 0. Hence (un, wn) -> (m , 0) in E as az -» oo. It
is now a standard bifurcation analysis of (8) near (ïï, 0) to show that this is
impossible if en < ë for all az . We sketch the proof (the quickest but not the
most standard proof). By the second equation, hn = (H^H^)- wn converges
to the positive eigenfunction h of

-Ah = h(d - ëû)
in £2, h = 0 on d£2 (where H/zH^ = 1). By the first equation,

-A(ü-un) + qn(ü-un) = xnunhn

where xn = H^JI^ and qn = u + un- a . Hence

ü-un = TnL(üh) + o(xn)
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where L is the inverse of -A+(2ïï-a)7 (for Dirichlet boundary conditions).
Here we are using that -A + (2u-a)I is invertible. This follows by a standard
comparison argument (cf. [4, §3] or [8]). Moreover L is a positive operator
(cf. [4]). Now, by taking the scalar product of the second equation of (8) with
t~ h , we see that

-PnTn(hl > h) - (en ~ e)(UnK > h) " *(("» " ^K • A> = °-
Here, ( , ) is the usual scalar product on L (£2). Hence, by our formula for
ïï-zz„,

(12) (en - e)(unhn , h) = ëxn(L(ûh)hn , h) + o(xn).

Recall that pn -> 0 as az -» oo . Now

(L(uh)hn , h) -> (L(uh), h ) > 0   as az -» oo

since L is a positive operator. Hence, since rn > 0, the right-hand side of (12)
has the same sign as (L(Tih)hn , h) and thus is positive. Since (unhn , h) > 0
(because h(x) > 0 on £2), it follows that en - e > 0 for large az . This is
impossible because we are assuming that en<e. Hence we have a contradiction
and our claim is proven.

Remarks. Unlike most of our proofs, this does use a little on the structure of
our nonlinearity. However, it can be easily modified to apply to a wide case
of nonlinearities including Rozenweig-Macarthur type nonlinearities. (For the
second part, we may need to scale v differently.)

Lemma 3.   T+ is closed in (c, oo) x (0, ë).
Proof. Assume that (cn, en) e T+ and (cn, en) -* (c, ë) e (c, oo) x (0, ë)
as az -» oo. Let (un,v ) be a strictly positive solution for c = cn and e =
e . Since HuJI^ < a and HvJI^ < d, a standard argument ensures that a
subsequence of (un,vn) converges to a nonnegative solution (ü,v) of (2).
Then («, v) is (0,0) or (0, v) or (ïï, 0) or a strictly positive solution of (2)
for c = c and e = ê. If we exclude the first three possibilities, (c, ë) e T+
and the proof is completed. We exclude the second. The others are similar.
By the equation for un , r((-A + K)~ (a + K - un - envn)I) = 1. Hence, by
letting az tend to infinity, r((-A + KI)~~ (a + K - ëv)I) = 1. However, since
ë < ë, r((-A + Kiyx(a + K - ëv)I) > 1. Hence we have a contradiction and
the second possibility does not occur. This completes the proof.

Proof of Theorem 1. By Lemmas 1 and 2, there is a nondecreasing function h
defined on the interval (c, p) or [c, p] and with values in the interval (0, ë)
such that (c, e) e T+ if ë > e > h(c) and c < c < p (c < c < p if
hip) is defined) while (c, e) & T+ if e < h(c) or c > p (c > p if p is
not in the domain of h). Since T+ is closed by Lemma 3, it follows that
(c, h(c)) e T+ if c < p (or c < p if p is in the domain of az) . Assume
(c, ë) e T+.   If c < r < c,  (r, ë) e T+ and, by Lemma 1 and its proof,
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there is an isolated strictly positive solution of (ü, v) of (2) for c = r and
e = ë for which indexD(A, (ü, v)) = 1. By the homotopy invariance of the
degree there is a nonnegative (and hence a strictly positive) fixed point of A
near (ü, v) for each (c, e) near (r, ë). Hence (r, e) e int T+ . In particular,
(r, h(c)) e int T+ if c < r < c. Thus h is strictly increasing. Similarly, if
(c, h(c)) e T+, (c, s) e intT+ for h(c) < s < ë. This ensures that p is not
in the domain of az and h is right continuous at c. (Remember that h is
increasing.) Since h is increasing, one easily sees that the closedness of T+
ensures that az is left continuous at c. Hence az is continuous. Nearly all the
rest of Theorem 1 follows from Lemma 1 (with f* = h). The only exception
is to prove that there is a strictly positive solution if e = ë and c < c < p .

To prove this, note that the proof of Lemma 1 shows that if (ux,vx) is
a strictly positive solution for e = f^ic), then for each e between if*(c)
and ë) there is a strictly positive solution not in C. This follows because the
sum of the indices of the strictly positive solutions in C is 1 (counted with
respect to C or D) while the sum of the strictly positive solutions is zero. In
particular there is a strictly positive solution (un, vn) not in C if e = e-n~x.
By choosing a subsequence if necessary, we can ensure that a subsequence of
(un, vn) converges to a nonnegative solution of (ü, v) of (2) for e = ë. It
remains to prove that (Ü, v) is a strictly positive solution. Thus we must show
that it is impossible that (un ,vn) —► (0,0) or (ïï, 0) or (0,v). We prove
that the last two cannot occur. The first is much easier. Since c > c, the proof
that the third possibility cannot occur is very similar to the proof of Lemma 3.
Thus we may suppose that (un,vn)-*iü,0) in E as az -> oo. By using the
regularity theory for -A, we see that un —► ü and vn -> 0 in C (£2) as az —» oo.
Now ux(x) < Ti(x) on £2 and §f < §f on <9£2. (To see the last property, we
see easily that ux is a subsolution for the equation for ïï and we can apply the
boundary point version of the maximum principle to the equation for ïï- zz, .)
Hence, for az large, un> ux . Similarly (but more easily), vn <vx for n large.
Thus (un,vn) >s (ux,vx) for az large. Since un < ïï, (un,vn) <s (ïï,0).
Thus (un,vn) e C for az large. This gives a contradiction and our result is
proved.

Remark. We have used in the last part of the proof that <9£2 is smooth. This
can be avoided by using linear operator theory ideas as in §1 of [10].

2.  NONEMPTINESS OF   T+   AND   T~

In this section, we discuss when T+ and T~ are nonempty and some esti-
mates for them. In particular, we prove that at least one of them is nonempty
for almost all (a, d) with a , d > kx.

We first fix c and increase e across ë. We consider how strictly positive
solutions bifurcate from (ïï, 0). If e < ë, (ïï, 0) has index zero in D while if
e > ë, (ïï, 0) has index 1 in D (cf. part of the proof of Lemma 1 or p. 738 of
[8]). Thus if we fix a, d, and c, a connected set of strictly positive solutions
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must bifurcate from (ïï, 0) into D as e increases across ë. To calculate the
direction of a bifurcation, we use fairly standard bifurcation theory. We omit
the details because it is almost the same as Cantrell and Cosner [4, §3]. The
only difference is that we use e as a parameter where they use d. (This has
the effect of reversing their signs.) Then the conclusion is that small strictly
positive solutions exist for all e > ë but close to ë if

f.(c) = [ h3 -ëc f h2L(uh)>0,
Jn Jn

while small strictly positive solutions exist for all e < ë but close to ë if
fx(c) < 0. Here h is the positive eigenfunction which spans the kernel of
-A - (a - eu)I (for Dirichlet boundary conditions) and normalized so that
\\h\\2 = 1 and L is the inverse of -A - (a - 2u)I for Dirichlet boundary
conditions. I should explain the argument a little. One looks for solutions of
the form (u, v) = (ïï, 0) + sh + o(s) and e(s) =ë + ßs + ys2 + o(s ), where h
spans the kernel of 7 - A'(iï, 0) (and has second component positive in £2).
It is easy to see that we only have nonnegative solutions for s > 0. One proves
that ß = 0 and y has the same sign as /, (c). The claim then follows. Note
that the test is indeterminate if /, (c) = 0. (We then need to look at higher
order terms in the bifurcation equation.) It is shown in [4] that L exists and L
is a positive operator. Hence we see that / h > 0 and / h L(üh) > 0. Thus
there is a c > 0 such that /¡(c) < 0 if c > c while /.(c) > 0 if c < c. Note
that c < c if fx(c) < 0 while c > c if /, (c) > 0.

Similarly, we define f2(e) = Jnk -cef^k L2(vk), where k is the positive
function of L2 norm 1 which spans the kernel of -A- (a-cv)I (with Dirich-
let boundary conditions) and L2 denotes the inverse of -A - (d - 2v)I (for
Dirichlet boundary conditions). Similarly to before, there is a positive ë with
f2(ë) = 0. The main result of this section is the following one.

Theorem 2. (i) T+ is nonempty if either fx(c) > 0 or f2(ë) < 0. Moreover,
v <ë if f2(ë) < 0 while p>c if /, (c) > 0.

(ii) If T+ and T~ are both empty, then fx(c) = f2(ë) = 0.
(iii) For almost all (a, d) in (kx, oo) x (kx, oo), either T+ is nonempty or

T~ is nonempty.

Remark. We will later construct examples (with £2 star-shaped) for which c <c
while T+ is nonempty and thus p > c, and where v < ë (in the latter case
when a < d). Hence c and ë do not always determine the limits of T+ . We
will also construct an example where fx(c) and f2(e) have the same sign and
thus T+ and T~ are both nonempty.

Proof of Theorem 2(i) and 2(ii). Suppose that fx(c) > 0. Hence, as we men-
tioned earlier, c >c. Assume c < cx < c. Then /,(c.) > 0. The branch of
strictly positive solutions which branch at ë bifurcates off for e < ë. Thus,
if ô is small, (2) has a strictly positive solution if c = c,  and e = ë - S.
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Thus (c,, ë - ô) e T+ . Hence T+ is nonempty and, by Theorem 1, p > c,.
Hence p > c. The other part of Theorem 2(i) is proved similarly. Theorem
2(ii) follows from Theorem 2(i) and its analogue for T~ .

We will prove Theorem 2(iii) by a series of lemmas.

Lemma 4. /.(c) and f2(ë) are real analytic functions of a and d.
Proof. By the implicit function theorem, we easily see that ïï is a real analytic
function of a (considered in C0(£2)) and û is a real analytic function of d.
(For example, in the first case, we apply the implicit function theorem to the
equation H(u, a) = 0 where H(u, a) = -Au - u(a - u) is considered as a
map of X = {v e W2'P(Q): v = 0 on dQ} x R to LP(Q) for p > \m.
Hence d - eu is a real analytic function of a, d, e (as a map into C0(£2).)
Hence by Crandall and Rabinowitz [7, Lemma 1.3], the first eigenvalue 1, and
corresponding normalized eigenfunction h of -A + (d - eu)I are real analytic
functions of a, d, e. (We consider our equation as a mapping of X into
Lp(Cl).) By standard perturbation theory (cf. Kato [23, Theorem V.1.8 and §2
of Chapter 2])

d4± = -fW<o
de Jc¡

since u(x) > 0 in £2. Hence, by the implicit function theorem, we can solve
the equation kx(a, d, e) = 0 to obtain e as a real analytic function of (a, d).
However, by the definition of ë, this solution is simply ë. Thus ë is a real
analytic function of (a, d). Since h = h (a, d, ë), it follows that az is a real
analytic function of (a, d). (h was defined at the start of this section.) Now
the map (d, e, w) -> -A - (d - ew)I is a continuous polynomial map of
Rx Rx X —> ¿ê?(X, L ) and hence is real analytic (where 38 (X, Y) denotes
the bounded linear maps from X to Y). Since the composite of real analytic
maps is real analytic, it follows that the map (a, d) —> -A - (d - ëu)I is real
analytic. Since the operation of taking inverses is real analytic (because it has
locally convergent power series expansions), it follows that the map (a, d) —> L
is real analytic (as a map into 3§(L , X)). Since c is a real analytic function
of (a, d) by similar arguments, it now follows easily from the formula for
fx(c) that fx(c) is a real analytic function of (a, d). The proof for f2(ë) is
similar.

Remark. If £2 is not smooth, we have to work with slightly different spaces but
the argument is still valid.

Lemma 5. If kx < a and d is large, fx(c) > 0 and f2(ë) < 0.
We will prove this later in the section. Note that it can be proved that the

first derivatives of /, (c) vanish on d = a and hence we cannot use this obvious
approach.

Proof of Theorem 2 (assuming Lemma 5). Now f2(ë) is real analytic in (a, d)
and does not vanish identically (by Lemma 5). Hence (cf. Federer [17, 3.4.10]),
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f2(e) ± 0 for almost all (a, d) e (kx, oo) x (kx ,00). By Theorem 2(ii), this
proves our claim.

Before proving Lemma 5, it will be convenient to have some equalities and
inequalities for /.(c) and f2(ë). We first consider /. . Now w = L(üh) is the
solution of

-Au; - (a - 2û)w = ïï/z
(with Dirichlet boundary conditions). However, by the equation for az ,

-Ah - (a - 2u)h = (d - a)h + (2 - ë)uh
(with the same boundary condition). Hence

(13) h = (d-a)Lh + (2-ë)L(ûh).
Hence, if ë ^ 2, we see by substituting for L(ïï/z) in the formula for /.(c)
that

(14) fx(c) = (2 -e)'x(2 -ë-ëc) f h3 + (ë-2)~x(d-a)ëc [ h2Lh.
Jn Jn

Note that az is positive and L is a positive operator. In a moment, we will
use this to prove part of Lemma 5. It is possible to prove a slightly different
inequality for fx(c) by using that L(üh) < aLh (since pH^ < a), hence using
(13) to obtain an inequality for L(üh) and substituting this in the definition of
A(c).

We now obtain similar results for f2. The analogue of (13) is

k = -(d- a)L2k + (2 - c)L2(vk)
and the analogue of (14) is

(15) f2(ë) = (2-c)~x(2-c-ëc) Í k3 - (2 - c)~l(d - a)ëc f k2L2k.
Jn Jn

It is easy to see that f2(ë) < 0 if c < 2, 2-c-c c < 0, and d > a. (Remember
that k > 0 in £2 and 7_2 is a positive mapping.) Once again, we could obtain
other inequalities for f2(ë) by using that L2(vk) < dL2k .

Proof of Lemma 5. We first estimate c and ë (for a fixed and d large). Let
v = d~ v . Then v is a solution of

-d~ Av = v(l - v)   on £2

with v = 0 on <9£2. From the theory in [12, §2], v -* 1 in 7/(£2) for each
p in (1, 00) as d —> 00. Let c = dc. Now A-((-A)~'(a - cv)I) = 1. Now,
if c> 0, r((-A)~x(a - cv)I) - r((-Ayx(a - c)I) = k"xx(a - c) since v -» 1
in Lp(Cl) as d -► 00 (cf. part of the proof that A-((-A)~'(a - cv)I) < 1 for
large c). Thus, since a-((-A)~ (a - cv)I) is decreasing in c, it follows that
k~x (a - c) = 1, that is c = a - kx. Hence dc —> a - kx as d —> 00.

We now consider ë. Suppose r > 0. We will prove that, if d is large,

(16) r((-A)~X(d-rdü)I)>l.
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It follows that ë > rd if d is large. Since r was arbitrary, it will follow that
d~ ë —> oo as d —> oo. This will suffice for our purposes. To prove (16), it
suffices to find pd > 1 and a nontrivial nonnegative function sd in W1' (£2)
such that

(17) -Asd < pdx(d - rdu)sd

in the sense of distributions and such that 1 - m(x) has a positive lower bound
on {x € £2 : sd(x) ^ 0} . (This follows because a simple calculation shows that
this implies (-A + KI)~ (d + K - rdu)sd > asd for some a > 1 and then, by
p. 265 in [29],

r((-A + KiyX(d + K-rdü)I)>a> 1.
Here we choose K > rda to ensure the operator is positive. To prove (17),
choose a neighbourhood N of <9£2 in £2 such that u(x) < \r~ on /Y. Let
w denote the first nonnegative eigenfunction of -A on N (with Dirichlet
boundary conditions on ÓW) and let k denote the corresponding eigenvalue.
Define sd(x) tobe w(x) on jV and to be zero otherwise. Then sd e Wx'2(Cl).
Since d - rdu(x) > \d on N (because ïï(jc) < \r~x on N), we easily see that
sd pointwise satisfies (17) on N if d is large. In addition, (17) is trivially
satisfied pointwise on £2\JV. Hence we can deduce (17) on £2 by Berestycki
and Lions [2, Lemma 1.1]. This completes the proof that d~xë -» oo as d -» oo .

It follows that ëc —»oo as d —► oo. Since c —► 0 as d -> oo, our comments
after (15) now imply that f2(ë) < 0 for large d. This proves the first part of
Lemma 5.

Now consider /,. By ( 14) and since 2 - ë < 0 and 2-ë-ëc<0 for large
d, we see that / (c) > 0 if we can prove that

h   > -(2 - ë - ëc)~ (d - a)cë     h Lh
Jn Jn

for large d . Now, by our earlier asymptotics for ë and c, we easily see that

(d - a)ëc/(2 - ë - ëc) ~ ëdc/(-ë) —► -A,

as d —► oo . Hence, it suffices to prove that, given r > 0,

/ h2Lh <r [ h3
Jn Jn

for d large. By Holder's inequality,

[ h2Lh < \\h\\23\\Lh\\3.
Jn

Hence it suffices to prove that

\\Lh\\3<r\\h\\3

for d large. Note that L is independent of d. By the usual Lp - Lq estimates
for L (cf. [18, Theorems 7.10 and 8.15]), we see that there is a q < 3 and
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a K > 0 independent of öf or az such that ||7Jz||3 < K\\h\\q. By Holder's
inequality, we can assume q > 2. Hence we have to prove that given r > 0,
\\h\\ < r\\h\\3 for d large. It suffices to prove that \\h\\3 is large for d large
because we can then obtain our estimate for \\h\\   if we note that \\h\\2 = 1 and
that ||A||J < ||/z|l3a||/z|l3(1_a) where 2a+ 3(1-a) = q by Holder's inequality (cf.
Theorem 13.19 in Hewitt and Stromberg [21]). In fact, it suffices to prove that,
if K is a compact subset of £2, then ||;^/z||2 —► 0 as d -» oo. This follows
because this last inequality implies that the L norm of h on Cl\K tends to 1
as d -> oo. Since \\h\\2 n,K < An(£2\7C)1/6||/z||3 Q,K (with the obvious notation)
by Holder's inequality, it follows by choosing K so that m(Q\K) is small that
\\h\\3 n,K is large if d is large and hence \\h\\3 is large. Now, by the equation
for h

d'x f \Vh\2= Í(l-ëd~xu)h2.
Jn Jn

Thus
[ ûh2<d(ëyx [ h2^0
Jn Jn

as d —> oo since /n h = 1 and d~ ë -> oo as d —> oo. If K is a compact
subset of £2, ïï > s > 0 on K and hence we see that

s [ h2 < [ ïï/z2 -» 0
Jk        Jn

as d -> oc . Hence our claim follows. (Note that ïï is independent of d .) This
completes the proof of Lemma 5.

Remarks. 1. The above proof of Lemma 5 uses the smoothness of £2 and the
selfadjointness of -A. However, with more care these can both be avoided. In
addition, we have used (to derive (14) and (15)) that we have the same linear
part in both equations. This can also be avoided at least for f2 for smooth
domains at the expense of aazzzcaz more effort. (To prove the result for /, one
would need better asymptotic estimates for ë and h as d —> oo. This can
probably be done. It can be done if aaz = 1.)

2. Note that the equations are of the same type if a and d and c and
e are simultaneously interchanged. Hence fx(ë)(à, d) = f2(c)(d, a), where
fx(ë)(à, d) refers to the value of /,(«?) for a = à and d = d and the other
term is defined analogously. Thus Lemma 5 includes information for a > d.
We do not need the full strength of the lemma to prove Theorem 2 but it is
needed in §3.

3. By Lemma 5 and Theorem 1, T+ is nonempty if a > kx and d is much
larger than a.

4. We conjecture that f2(ë) < 0 if d > a. On the other hand, we will give
examples in §3 where /.(c) changes sign at points with d > a .

5. Note that we have used essentially in the proof of Lemma 5 that infïï = 0.
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Thus the proof of Lemma 5 does not apply for other boundary conditions.
Indeed, one can show if the boundary conditions on the first equation are not
Dirichlet, then d~ ë —> (infïï)- as d —► oo. (Here the boundary condition
on the first equation is a Neumann or a Robin boundary condition |^ = -bu
where b > 0 and az is the outward normal.) Thus Lemma 5 does not apply
for other boundary conditions. However, a more careful asymptotic analysis
implies that Theorem 2 holds unless both boundary conditions are Neumann.
Even if both equations have Neumann boundary conditions, it turns out that
the analogue of Theorem 2 is true if we allow c and e to depend on x.
More precisely, we replace c by cC(x) and e by eE(x) where C and E
are positive continuous functions which are not constant functions. Thus the
constant coefficient Neumann case where T+ and T~ are always empty is
very much the exception. Indeed, it seems very likely that our methods can be
generalized to prove that if a and d are functions of x, then T+ U T~ is
nonempty in the Neumann case for 'most' functions a(x) and d(x). It is also
possible to prove that the analogue of T+ and T~ may be nonempty for the
time periodic Neumann problem in [6]. (One way is to use the asymptotic ideas
in §2 of [9].)

6. Note that another way to see that T+ and T are empty for Neumann
boundary conditions is to use the iteration in §2 of [9] and note that this iteration
always gives constant functions (since the starting points are constants). Now by
the theory in §2 of [9], if there is a strictly positive solution, this iteration must
converge to a strictly positive solution. Hence there must be a constant strictly
positive solution if there is a strictly positive solution. This is easily shown
to be impossible. (This same idea is useful for studying the time dependent
case discussed in [6].) As an alternative to the theory in [9], one can often
start an iteration at points close to (ïï, 0) on the centre unstable manifold of
(ïï, 0) (or of (0, v)). Here we iterate by following the flow. This method
has the advantage of applying more easily in degenerate situations but is more
awkward when d£2 is not smooth. This is discussed further in §4.

7. We do not know whether our equation always has a strictly positive solu-
tion if e = ë and c = c. This is true in the Neumann case.

8. If v < ë < ë, then it is not difficult to prove that our system has a strictly
positive solution for e = v and c = c (because one easily shows that solutions
cannot bifurcate from (ïï, 0) as we decrease e to u). An analogous statement
holds if p > c >c.

9. As d -> oo, one can prove with more care that (ë)~ ë -* 0. Thus the
closure of T+ may extend most of the way down {(c, e) : c = c, 0 < e < ë}.

Last, for this section, I want to briefly consider the implication of some of
our ideas for uniqueness. Assume v < ë and v < ë . We will prove in the next
section that this can occur. If v < t < ê, then there is an e > 0 such that (2)
has more than one strictly positive solution whenever e = t and c-e < c <c.
(This is in a region where nonuniqueness was not known previously.) To see
this, one chooses a strictly positive solution (ux ,vx)  of (2) for c = c and
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e = t (c > c could also be used). By the proof of Lemma 2 of §1, there is
an "asymptotically stable" strictly positive solution (u,v) of (2) with u>ux,
v < vx for c < c and e = t. Since u > ux, this solution does not have
small first component. On the other hand, since v < t < è, the theory at
the beginning of this section shows that a branch of strictly positive solutions
bifurcates from (0, v) as we decrease c across c (for e = t) and this branch
bifurcates into c <c. Since these solutions have small first component, this
proves our nonuniqueness claim. With a little more care, it can be shown that
these bifurcating solutions are "asymptotically stable" and e can be chosen
independent of t on compact subsets of (u, ë). Thus, if v < ê < ë, we obtain
an open subset of (0, c) x (0, ë) where there are at least two "asymptotically
stable" strictly positive solutions. A simple degree argument now implies that
there are at least three strictly positive solutions in this case.

Similarly, if p > c and p > c, a more careful use of some of our earlier
ideas (especially Lemma 1, the direction of bifurcation result in this section,
and [9]) imply that if p > t > sup{c, c) and e is small and positive, then
(2) with e = ë + e and c = t has at least three strictly positive solutions
including at least one "asymptotically stable" solution. Note this gives points
in (c, oo) x (ë, oo) where there are "asymptotically stable" solutions. In this
proof, we need to use that if we have an "asymptotically stable" solution for
particular values of c and e and then we perturb c and e slightly, we must
still have an "asymptotically stable" solution close by. In §3, we will construct
an example where c <c < p . It follows that, in this example, there exist (c, e)
in (c, oo) x (ë, oo) arbitrarily close to (c, ë) where there is an "asymptotically
stable" strictly positive solution. (This contrasts with §3 of [12].) On the other
hand, one can show that this behaviour does not occur when a = d. (One does
this by first using some of the ideas in [6] to prove uniqueness in this range of
parameters.)

Similar ideas can be used to prove that, if T+ and T~ are both nonempty,
we can perturb a and d slightly to obtain an example where either (i) (2) has
an asymptotically stable strictly positive solution for all (c, e) near (c, ë) or
(ii) the strictly positive solution of (2) is not unique for every (c, e) near (c, ë)
in [0, c) x [0, ë).

There are two last comments I would like to make on uniqueness. Assume
that a, d, c are fixed and e is small. An easy perturbation analysis shows
that, in this case, (2) has at most one strictly positive solution. A similar result
holds if a, d, e are fixed and c is small or if a, d are fixed and both c and
e are small. This is related to work in [6]. Second, one does not always expect
uniqueness for c > c and e > ë even if a = d, c = e, and £2 is convex.
If £2 is a ball, one can prove that a second radially symmetric strictly positive
solution (and also nonradially symmetric ones) bifurcate off the one with u = v
as we vary c (with c = e). An example of nonuniqueness with £2 star-shaped
can also be obtained by the method of [14, p. 147]. These results give a negative
answer to a question in [6].
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Lastly for this section, the ideas in §3 of [13] can be used to prove that
\p-c\ + \v -ë\ is o(\d-a\) as (a, d) -> (r, r) where r > kx. Thus T+ , when
it exists will be very small when d is close to a. Note that Theorem 2 implies
that there must be (d, a) near (r, r) for which T+ or T~ is nonempty. This
means that one of the comments near the bottom of p. 436 of [13] is not quite
correct. (This occurs when the dominating term of the bifurcation equation in
[13] vanishes identically.) Lastly, the methods in [13] give, for any domain £2,
examples where e > ë and c > c and there is a unique (necessary unstable)
strictly positive solution.

3. Counterexamples, uniqueness, and domain perturbation

In this section, we use our domain perturbation techniques from [14] to prove
that a number of the possibilities in the last two sections can actually occur for
star-shaped £2 if aaz > 1. We also present two different types of examples where
(ïï, 0) and (0, v) are both unstable (that is c < c and e < ë ) but (2) has more
than one strictly positive solution. These seem to be the first such examples. In
particular, we present such an example when d is much larger than a and an
example where d is close to a and neither is large. We also obtain a number
of other counterexamples. We always assume that m > 1.

We first obtain examples of nonuniqueness with d much larger than a. It is
convenient, in order to quote the theory in [9], to use the form of the equations
in [9], that is, without rescaling. More particularly, we consider the equations

-Au = u(a - bu- cv),        -Av = s~ v(e - fu- gv)

with Dirichlet boundary conditions. Note that we use s where d is used in
[9]. Note that the d of the present paper is s~xe. Thus d large corresponds
to 5 small. By the theory in §2 of [9] (especially pp. 246 and 247), we see
that we will have an example of nonuniqueness if we can find an £2 such that
a - cg~xe < A[(£2) and the equation

-Au = u(a-bu-cg~x(e- fu)+)   in £2,
u = 0   on an

has at least two isolated sets of positive solutions of nonzero index in the nat-
ural cone Kx in C0(£2). Here A, (£2) is the first eigenvalue of -A on £2
for Dirichlet boundary conditions. A couple of points need to be made here.
First, the examples are with s small, and the solutions we obtain are close to
(u, g~l(e-fu)+) where u is a positive solution of (18), and hence the Dirich-
let boundary conditions ensure that neither component can vanish identically.
Second, a slight variant of the argument on p. 247 of [9] ensures that

r((-A + KI)~X (a - cv + K)I) < 1

and
r((-A + KiyXs~X(e-fu + sK)I)> 1
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for s small and thus we are in the claimed part of the (c, e) plane (in the
notation of this paper).

Hence it suffices to construct the claimed example for (18). We first choose
£2 to be the unit ball Bx and choose b < cg~x f. This ensures that as we
decrease a from kx(Bx) + cg~ e, a branch of small positive solutions branches
from the trivial solutions. A standard bifurcation theory argument ensures that,
if a is close to kx(Bx) + cg~ e, this small positive solution ux(a) has invertible
linearization. Theorem 1 in [11] ensures that the solution ux(a) has index ±1
(in fact -1) in the cone 7^ . Here we use the map Ax :KX —► Kx defined by

Ax(u) = (-A + Kiyx(u(a + K-bu-cg~x(e- fu)+)).

As in [9, p. 247], we see that if a < kx(b) + cg~xe, the sum of the indices
of the positive solutions of (18) in Kx is zero. Hence, if Wa denotes the set
of positive solutions of (18) in Kx except ux(a), then index^. (Ax, Wa) = ±1.
Note that the above argument does not assume that Wa consists only of isolated
solutions. We now choose a second ball x + Br so that the two open balls do
not intersect but touch and such that a > kx(Br + x) + eg" e. This holds if
a > kx(Bx)r~2 + cg~xe since kx(Br + x) = r~2kx(Bx). This last result follows by
a simple scaling. Since a > kx (Br+x)+c~ ge, the theory in [9] ensures that the
sum of the indices of the positive solutions of (18) is 1. Let Z denote this set
of positive solutions. Note our condition on a ensures that zero is an isolated
nonnegative solution. Now consider (18) on £2 = Bx(0)U(Br+x). Here we look
for solutions in W/1'2(£2)nL°°(£2). As in [14, pp. 128-129], we see that «isa
solution of ( 18) on £2 (including the weak boundary condition) if and only if u
is a solution on 7^ (0) and Br + x. Moreover, by the product theorem for the
degree, the index of the set of solutions {ux(a)}xZ (of Ax on Bx(0)U(Br + x)
in the cone K2 = KX®KX) has index^ (Ax, ux(a)) x index^ (Ax, Z) = -l-l =
-1 . Here, in the first index £2 = 5, (0) while in the second £2 = Br + x. Here
we are implicitly using that the commutativity theory for the degree ensures that
indexK (AX,Z) is the same in IVX'2(Q.) or C0(£2) (or LP(Q) for large p).
Choose £2n star-shaped for az > 4 such that £2n decreases to Bx (0) U (Br + x)
as az —► oo. More precisely, we mean convergence in the sense of [15]. By a
slight variant of Theorems 1 and 2 in [14], we see that for large az the sum
of the indices of the positive fixed points of Ax in Lp(iïn) near {ua} x Z is
-1. (The variant we use really only involves a slight modification of the proof
of Step 2 of the proof of Theorem 1 in [14]. It is here that we use m > 1.)
Similarly, for large az , the sum of the indices of the positive fixed points of
Ax in Lp(Q.n) near Wa x Z is +1. In particular, we have two disjoint sets of
nontrivial positive fixed points of Ax each of which have nonzero index. By
our earlier comments (and in particular by Proposition 1 in [9]) this provides
our example of nonuniqueness. (It is an example with £2 = £2n star-shaped
and d very large.) Note that rescaling our equations to fit them into the form
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studied in the bulk of this paper does not affect the example.
We now obtain a number of counterexamples with d close to a. Later in

this section, we will construct two disjoint set £2, , £22 and d close to a such
that c, < c2 and ë2 < ëx (with the obvious notation). Moreover, £2, and
£22 are C close to balls and hence are strongly convex. Assuming this for a
moment, we will construct our counterexamples.

We can translate £22 so that £2j and £22 do not intersect but their closures
intersect at a single point. Choose £2n star-shaped for az > 4 such that £2^
decreases to £2 = £2, U £22 in the sense of [15]. We will find formulae for
c, ë, fx(c), and f2(ë) for £2 and then show that those for £2W are close to
those for £2.

We first prove that c~ = sup{c,, c2} and an analogous formula for c^.
Here c~ denotes c for the set £2. We define v~(x) to be vn (x) on £2, and
to be vQ (x) on £22 . A simple degree argument using Theorem 2 in [14] shows

that this is the nontrivial nonnegative solution on £2 which perturbs to give the
nonunique trivial positive solution of

-Av = v(d-v)   on £2^ ,        v = 0   on dQ.n.

Now the operator (-A + KI)~ (K + a - cv~)I on £2 is the direct sum of
the corresponding operators on £2, and £22. Thus its spectral radius on £2
is the larger of its spectral radii on £2. and £22. Hence this spectral radius
is 1 precisely when both of the spectral radii on £2, and £22 are less than
or equal to 1 and at least one is equal to 1. Since the spectral radii on £2,
and £22 decrease as c increases, it follows that c~ = sup{c,, c2}. Similarly
<?~ = sup{<?, ,ë2}. In addition, note that the unique nonnegative solution of
(-A + K)k = (a + K-c~v~)k (on £2) is k~ where k~(x) is k2(x) on £22
and is zero otherwise. (Remember that c2 > c,.) Here ac2 is the solution of
(-A + 7C7)ac = (a + K - c2vn )k on £22 with L norm 1. An analogous result
holds for /z~ except that /z~ is supported on £2, .

Now assume £2n are star-shaped sets (for az > 4) which converge to £2, u£22
in the sense of [15] and assume that \J^=4 Qn U £2. U £22 ç B . Then, as in the
proof of Theorems 1 and 2 in [14], one easily sees that vn —* v~ and ïïfi —> ïï~
in LP(B) for all p , cn —► c~ = sup{c, c2}, and ëQ -^ ë~ = sup{c,, ë2} as

az —> oo. Moreover kn (normalized to have L norm 1) —► k~ in LP(B) as
az —► oo and kn   are uniformly bounded in L°°.  A similar result holds for

AI

V-
We now construct some of our examples. Suppose that c> c2 and e2< e <

ëx. Thus c > cn   and e < ën   for large az . Since c >cx, the solution (0, ïï,)
Al At

of (2) on £2, has nonzero index in the cone K2 (for £2 = £2, ). Similarly, since
ë2 < e the solution (ïï2, 0) of (2) has nonzero index in K2 for £2 = £22.
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We can now use similar arguments to those in the first example to deduce
that, for az large, there is a solution (un ,vn) of (2) in K2 for £2 = £2n near
(«,, v) in LP(B) x LP(B) where ü(x) = ü2(x) if x e £22 and is zero otherwise,
and v(x) = vx(x) if x e £2, and is zero otherwise. (This is also similar to p.
147 of [14].) Since ü and v do not vanish identically, (u , v ) is a strictly
positive solution. Since c > cn   and e < <?n , it follows that (c, e) e T* for

AI AI

az large. Here T* is T+ for £2 = £2n. Hence T* is nonempty for large az .
Since we can choose c large, we also see that pn -* oo as az —► oo where our
notation follows that of §2 except that pn is p for £2 = Qn . On the other
hand, by using the definition of c and our convergence results, we easily see
that cn (that is c for £2 = £2J tends to c~ = c, as az -+ oo. Hence we have
examples of sets where c < p (and p >c). Second, since we can use a similar
argument if c, < c < c2 and e > ex, we have examples where T+ and T~
are both nonempty.

Next we show that, if either T2 or Tx is nonempty, then the above ideas
give examples where c < c and e < ë but there is more than one strictly
positive solution. To do this, we assume Tx is nonempty. The other case is
simpler. Choose (c, e) e int Tx so that cx < c <c2 and ë2 < e < ë,. Note
that Theorem 1 and our assumptions that c, < c2 and ë2 < ëx ensure that we
can do this. By Theorem 1, there is an "asymptotically stable" strictly positive
solution (u, v) on £2,. (Thus it has nonzero index in K2.) We can now argue
much as before and show that for az large there is a strictly positive solution
near (ûx, vx) in 7/(7?) x LP(B) and one near (ü, v). Here vx(x) = v2(x)
on £22 and is zero otherwise, vx is defined to be ïï, on £2, and to be zero
otherwise, and

f û(x)   on £2,, ( v(x)   on £2,,
u(x) = \ while v(x) = \ _ '

{ 0        on £22, t v2       on £22.

Thus we have nonuniqueness. Note that can -> c2 and eQn -»ê, as az —► oo
and hence we are in the parameter range we claimed. In fact, with a little more
care one can deduce that («,,«,) and (ü, v) are both "asymptotically stable"
and thus there are "asymptotically stable" solutions near (ux,vx) and (u,v)
(on £2n) for az large. Thus, we have two "asymptotically stable" solutions. It
remains to remove our condition that either T2 or Tx is nonempty. As we
will see a little later, we can find three sets £2,, £22, £23 C2 close to a ball such
that cx <c2 <c3 and c, > ë2 > ë3. By varying a and d slightly and by
using Theorem 2, we see that we can assume that either T2 is nonempty or
T2 is nonempty. In the latter case, we can apply our argument earlier in the
paragraph to £2,, £22 while in the former case we can apply our argument to
£22, £23. Thus, in all cases, we have the required example.

To complete the construction of the above examples, we need to construct c¡
and c( with the required properties. To do this, first note that, when a = d,
ïï = v, c = ë = 1, and h and k are multiples of ïï.  Since c = 1 on the
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line a = d, we see that c d = -c a when a = d, where c rf denotes the
partial derivative with respect to d of c, and c is defined analogously. By
differentiating the equation -Aac = (a - cïï)ac with respect to a and taking
the scalar product with respect to ïï, we easily see that c a = (/nïï )~ /nïï
when a = d. Similarly, ë d = (feü )_1 feü . (For future reference, note
that it follows easily that (ëc) a = 0 when ¿ = a.) If we increase ¿? slightly
while keeping a fixed, c » 1 - (¿/ - a)c Jd=a while c « 1 + (d - a)c a\d=a
(since ë a = -ë a when d = a). Thus, we can obtain our required examples if
we find three strongly convex domains £2,, £22, £23 with c   \d     all different.
Thus, it suffices to find £2,, £22, £23 as above with (feu )~ feli all different.
Now it is easy to see that this expression depends continuously on £2 as £2 is
changed smoothly (by Theorem 2 in [14], though it can be proved more easily).
We consider dilations A£2 of a fixed £2 with 0 e £2. It suffices to show our
expression is nonconstant in k. Now feïi < HïïH^ /ïï . Thus, our expression
becomes large if HwH^ issmall. This must occur because ïï bifurcates from zero
as kx(kQ) crosses a. (Equation (2) has only the trivial nonnegative solution
with v vanishing identically if a < kx(kCl).) This completes the construction
of the above examples.

We use our techniques to produce an example with c < c or equivalently
that /, (c) > 0. Since /, (c) = 0, we see easily from the definition of /, (c) and
c that

fx(c) = (c-c) [ h2L(uh)-
Jn

By differentiating this in d and letting d = a, we see after a simple calculation
that  (c,d-cd)fe(ü)3(feü2y3/2 = (f(c))Jd=a.   Here we have used that
c = c = 1, that az is a multiple of ïï when d = a, and that L(ïï ) = ïï (by
the equation for ïï). (Note that c = 1 since T+ and T~ are both empty
when a — d.) Thus c d = c d when a = d if we prove that (fx(c)) d is zero
when a = d. To prove this, we use (13). If we use this, that c = ë = I when
a = d, that LTX(ïï2) = ïï, and use our formulae for c d and ë d , we find after
a tedious calculation that (fx(c)) d = 0 when a = d and thus c d = c d when
a = d . We now consider our earlier construction of an example with c2>cx.
We did this by constructing £2,, £22 such that (c2) d > (c,) d when d = a.
Hence, (c2) d > (c,) d. Hence if we increase d slightly keeping a fixed, we
see that c2 > c, and c2 > cx. If £2^ decrease to £2, U £22 as before, we see
as before that cçin —> c2 and cn -> c,. (Remember that c, > c2.) Thus, for az
large, cn < cQn which proves our claim.

Lastly for this section, we produce an example where inf{c : (c, e) e T") <
c. (By interchanging a and d and c and e , this produces an example where
v < ê.) We fix a and let d tend to infinity. Now dc —» a- kx (£2) as í7 —» oo
(cf. the proof of Lemma 5). Hence if we choose two convex £2 's, £2,, £22, with
A,(£22) < kx(£2,), then c2 > c, if d is large. Now, if d is large, we proved in
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§2 that cx> cx and c2> c2. We will prove that if we choose £2^ as before then
liminf^^ cn > inf{c,, c2} > c,. On the other hand, by arguing as earlier, we
easily see that, if c, < c <c2 and e > sup{c,, ë2}, then (c, e) e T~ for
large az . Thus, lim supn^oo inf{c : (c, e) e T~) < c, and hence, for large
az , inf{c : (c, e) e T~} < inf{c,, c2} and thus inf{c : (c, e) e T~} < cn
for large az . This is our required counterexample. It remains to prove that
liminf^^^ > inf{c,, c2}. It suffices to prove that, on Qn, /, n(c) > 0 if
0 < c < inf{c,, c2} for az large. Here /, n is /, in £2n. Remember that
/, n(c) decreases in c. We prove this result in the case where ëx =ë2. The
other cases are easier. Now

-Ahn = (d-ënûn)hn
where \\hn\\2 = 1. By a similar argument to that in the proof of Step 1
of the proof of Theorem 1 in [14], a subsequence of hn  converges weakly
in WX'2(B) and strongly in L2(B) to h e WX'2(QX U £22) where -Ah =
(d - êa uÇ1 ïïn uí2 )h . Since \\hn\\2 = 1, ||az||2 = 1. By the same arguments as

in [14], we see that h\n e Wx'2(Çlx) and h\a e WX'2(Q2). Since ëQ un =
c, = ë2 and ïïn u£2 |n = ïï, (with an analogous result on £22), we see that
/z|n  = q/z, . Since h > 0, a > 0. Similarly h\a  = ßh2 where ß > 0. Since
||/z||2 = 1, a2 + ß2 = 1. It is easy to see using the techniques of [14] and the
formula for /, that, for fixed c, /, n(c) -<• /, a u£î (c) as az -> oo. Here we
use the obvious notation and let the eigenfunction on £2, U £22 be h . By split-
ting up the expression (equation (13)) for /, on £2, u£22 to a part on £2, and
a part on £22, we find that /, n(c) -> a fx ,(c) + ß fx 2(c) as az -> oo. Here
/, , denotes /, on £2, and /, 2 is defined analogously. Now the right-hand
side is positive if c < inf{c,, c2} (because /, ,(c) > 0, /, 2(c) > 0, a > 0,
ß > 0, a2 + ß2 = I). This completes the proof.

We do not have an example where d > a and v < ë < ë. However, if the
conjecture that ë < ë when d > a is false, it seems very likely that our domain
perturbation methods can be used to give an example.

4. Some remarks on asymptotic behaviour

In this section, we want to discuss rather briefly the implications of some of
our ideas for the asymptotic behaviour of solutions of (1). Many of our ideas
are implicit in [9] but here we emphasize their use more.

Assume that c < c and £2 is smooth enough so that the solution of the
Dirichlet problem for A (and L°° right-hand side) is continuous on £2. Later
on, we will see that either of these two assumptions can be relaxed. Assume that
(u0, v0) e 7.°°(£2) x L°°(£2), that u0 and v0 are nonnegative, and neither u0
nor v0 is equal a.e. to the zero function. Let (u(t), v(t)) denote the solution
of (1) with initial values (w0, v0). By the results in §2 of [9] there is a solution
(Ü, ù) of (2) in D other than (0, 0) such that every solution (û, v) of (2) other
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— - Au = u(a - u),        u(x, 0) = u0

than (0, v) satisfies (ü, v) <s (û,v). We prove that the w limit set of the
solution (u(t), v(t)) lies in {(z, y) e D: (z, y) >s (ü, v), z < ïï, y < v} .
In particular, it follows that, if c < c and e > ë but (c, e) £ T~, then
(Ü, v) = (ïï, 0) and (u(t), v(t)) —> (ïï, 0) as i-»oo. In this particular case,
we have a complete picture of the dynamics. To prove our claim note that, in
[9], a sequence (un , vn) was constructed such that (ux, vx) = (0, v) and either
{(un , vn)} increased to (ü, v) (for the order >5 ) or the sequence {(un , vn)}
terminates and there is no strictly positive solution. Thus it suffices to prove
for each az that the omega limit set co(u(t), v(t)) >s (un, vn). We prove this
inductively. (If the sequence terminates, we show that œ((u(t), v(t))) = (ïï, 0).)
By the first equation of (1),

^l-Au(t)<u(t)(a-u(t)).

Now by a standard argument (cf. [5]), the solution u(x, t) of
du
dt

converges to ïï in C0(£2) as t —> oo . (One proves that the solution converges
2 —in L and is compact in C0(£2).) By the parabolic maximum principle (cf.

[28, Chapter 3]) u(x, t) < u(x, t). Thus co(u(t), v(t)) ç {(z, y) : z < ïï} . By
the same argument, we can establish the corresponding result for v(t). Thus
u(x, t) < ü(x) + e for large t. Suppose we can prove u(x, t) > un(x) - e and
v(x, t) < vn(x) + e for large t. Thus,

du
(19) -g— Au = u(a - u - cv) < u(a -u- cvn- ce)

for large t. Now un+x is the unique nontrivial nonnegative solution of

-Au = u(a - cvn - u).

(As in [9], our assumptions ensure that un+x exists.) By continuity, there is a
unique nonnegative solution uen+x of -Au = u(a-cvn -ce- u) close to un+x .
Now every solution of

,~rs, 9U . „(20) —— Au = u(a -u- cvn- ce)

with nonnegative nontrivial initial-value approaches uen+x in C0(£2) as t —>
oc . Hence by comparing (19) with (20) and by using the parabolic maximum
principle, we see that u(t) > uen+x-S for large t. Hence u(t) > un+x-e for large
t. Remember that uen+x -> un+x as e —> 0. We can establish the corresponding
estimate for v (that is, v(t) <vn + e) provided that r((-A)~x(d - cun+x)) >
1. This is the condition for vn+x to exist. In fact, vn+x is the nontrivial
nonnegative solution of -Av = v(d-v- eun+x).

Thus we have proved our inductive step if the sequence {(un, vn)} does not
terminate at az . Now suppose that r((-A)~x(d -eun+x)) < 1. Thus vn+x does
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not exist. By continuity, the maximal nonnegative solution ven+x of -At; =
v(d - eun+x +ee-v) either vanishes identically or is uniformly small. We can
use the results for scalar equations, the parabolic maximum principle, and the
estimates for un+x to prove that v(t) < vEn+x + e for large t (cf. above). Thus
v(t) —> 0 uniformly as t -> oo. We can then use the first equation to prove
that u(t) —> ïï as t -> oo . Hence we see that if the sequence terminates, then
(u(t), vit)) -+ (ïï, 0) as t —> oo . This completes the proof of our claim.

There are two comments to be made on the above proof. First, with care,
the smoothness assumption on <9£2 can be avoided by working with L°° and
Lp spaces. Second, we are using that, if w0 and v0 do not vanish identically,
then neither u(t) nor v(t) vanish for / > 0. This follows easily by obtaining
a differential inequality for (u(t),cpx) where </>, is the positive eigenfunction
of -A.

There is an alternative way of proving our result above in smooth domains.
We sketch this. Since c <c (or more generally (0, ïï) is unstable to perturba-
tions in K2), the 1-dimensional unstable manifold U of (1) at (0, ïï) corre-
sponding to the smallest real eigenvalue of the linearization at (0, ïï) (or centre
manifold if c = c) has one part pointing into D and one part pointing out of
D. Denote by U+ the part pointing into D. If c <c or c = c and (0, ïï) is
unstable to perturbations in K2, we easily see that the flow n(t, (u, v)) cor-
responding to ( 1 ) moves out along the one-dimensional manifold U+ . (Note
that it is easy to prove that, for fixed /, n(t, ( , )) is monotone for our order
<s. Using this, we can easily deduce that (0, ïï) is stable to perturbations
in K2 if (0,ïï) is stable on U+.) Moreover, U+ is tangent to the positive
eigenfunction of the linearization at (0, ïï) which has both components pos-
itive. Since d £2 is smooth, we easily deduce that if s, t e U+ and s, t are
close to (0, ïï), then either s >s t or s <s t. In particular, if (x, y) e U+
and is close to (0, ïï), then n(t, (x, y)) >s (x, y) for small positive t. By
the monotonicity of n, it follows that n(t, (x, y)) is increasing in t for all
t. However, (x, y) <s (ïï, 0) if (x, y) is close to (0,ïï) on U+ and hence
n(t, (x, y)) <s n(t, (ïï, 0)) = (ïï, 0) for all t > 0 by the monotonicity. Note
that by the construction of U+ (cf. [20, §6.2]), we see that many norms in-
duce equivalent metrics on U+. Thus, if (x, y) is close to (0,ïï) in 7.°°,
it is close in C1. Hence n(t, (x, y)) increases to a solution (ü, v) of (2).
Since any solution of (2) is greater than or equal to (0, ïï) (for our order), it
follows easily from the monotonicity and smoothness that (Ü, v) is the min-
imal strictly positive solution of (2). Moreover, by the beginning of the proof
of the first method, for any nontrivial nonnegative initial value (u0, v0) with
neither component vanishing identically, co(u0, vQ) >s (0, ïï). Hence by the
monotonicity, one can deduce that œ(u0, v0) >s (x, y) if (x, y) is close to
(0, ïï) in U+ . (Here one uses that n has the stronger monotonicity property
that if (x, y) >s (xx, yx) then n(t, (x, y)) - n(t, (xx, y,)) is interior to the
cone for t > 0 if we work with C1 spaces. Here we use similar ideas to [22
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or 26].) Hence, by the monotonicity of n, co(u0, v0) >s (ü, v) as required.
It can be shown that (0, ïï) is unstable to perturbation in K2 (unstable for the
flow) is equivalent to the conditions that (0, ïï) have nonzero index in D (for
the map A ).

The proof in the last paragraph has the advantage that it sometimes applies
when c = c but it seems to need rather more smoothness on <9£2. However,
it is conceptally nicer. The first method has the advantage that it can be used
to limit co limit sets for systems without monotonicity (for example, predator
prey equations). Note that either method implies that (u,v) has the same
symmetries as £2 and is constant for Neumann boundary conditions. Either
method also implies that, if c < c and e < ë and there is a unique strictly
positive solution (ü, v), then all solutions with initial values (u0, v0) nonneg-
ative and neither uQ nor v0 vanishing identically approach (ù,v) as t -* oo.
This method can be used to give an alternative proof of the main result of [3].

The most interesting question is whether the co limit set co((u0, vQ)) need
only be made up of stationary solutions. This does not seem obvious even for
Neumann boundary conditions (at least when oc and e >ë). Note that for
the predator prey model with Neumann boundary conditions and an "asocial"
nonlinearity time-periodic solutions can bifurcate off the constant solutions.
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