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A complementarity problem is said to be globally uniquely solvable (GUS) if it has a unique 
solution, and this property will not change, even if any constant term is added to the mapping 
generating the problem. 

A characterization of the GUS property which generalizes a basic theorem in linear 
complementarity theory is given. Known sufficient conditions given by Cottle, Karamardian, 
and MorC for the nonlinear case are also shown to be generalized. In particular, several open 
questions concerning Cottle's condition are settled and a new proof is given for the sufficiency 
of this condition. 

A simple characterization for the two-dimensional case and a necessary condition for the 
n-dimensional case are also given. 

1. Introduction 

W e  shall be dealing with the nonlinear complementarity problem which is 
defined as  follows. Let f :  R:-.Rn be a continuous mapping, where Rn is the 
n-dimensional euclidean space and R: is the nonnegative orthant in R". 

Problem 1.1 (The Complementarity Problem (CP) associated with f ) .  Find a 
vector z E R: such that f (z)  E R: and zTf (z) = 0. 

The  complementarity problem has drawn much attention during the past 
decade since it has applications to  many fields. Specifically, there are known 
applications of complentarity theory to  linear and nonlinear programming, 
mathematical economics, game theory, and mechanics. There are many exis- 
tence theorems for the nonlinear complementarity problem. Most of them can be  
derived from theorems that appeared in [6]. 

The goal of the present article is to present several results concerning the 
following property of complementarity problems. 

* T h e  research described in this paper was carried out while N. Megiddo was visiting Tokyo 
lnstitute of Technology under a Fellowship of the Japan Society for the Promotion of Science. 
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Definition 1.2. Let f :  R: + Rn be a continuous mapping. The CP associated with 
f is said to be globally uniquely solvable (GUS) if for any vector q E Rn the CP 
associated with the function f ( . )  + q has a unique solution. 

I 

The GUS property of linear complementarity (i.e., complementarity problems 
associated with affine mappings) was, as a matter of fact, characterized by 
Samelson, Thrall, and Wesler [14]. Their characterization is the following. 

Theorem 1.3 (The basic theorem on linear CP's). Let f(z) = Az + b be an afine 
mapping from Rn into itself. Then the CP associated with f is GUS if and only if 
all the principal minors o f  A are positive. 

The basic theorem has been partially generalized to the class of nonlinear 
CP's. The first generalization was given by Cottle [2]. 

Theorem 1.4 (Cottle's condition). Let f :Rn +Rn be a continuously diferentiable 
mapping such that the solutions (w,  z) of w - f(z) = 0 are nondegenerate [2]. 
Suppose that there exists a 0 < 6 < 1 such that for every principal minor JS(x)  of 
the Jacobian matrix of f at x, 6 < JS(x)  < S- ' ,  for all x E R:. Under these 
conditions the CP associated with f has a solution. 

The uniqueness of the solution in the case of Theorem 1.4 was proved by 
MorC [8]. The results of More will be discussed later. Another partial generali- 
zation of the basic theorem was later given by Karamardian [5]. 

Theorem 1.5 (Karamardian's condition). Let f: R: + Rn be a continuous map- 
ping. Suppose that f is strongly monotone, i.e., there exists a c > 0 such that for 
all x, y E R: 

( X  - ~ ) ~ L f ( x )  - f (~112 cllx - y1I2. (1.1) 

Under these conditions the CP associated with f has a unique solution. 

Karamardian's condition implies in fact the GUS property. For differentiable 
mappings Karamardian's condition is equivalent to strongi positive-definiteness 
of the Jacobian matrix. MorC [7,8] generalized Karamardian's condition. 

Theorem 1.6 (Mort's condition). Let f :  R:+Rn be a continuous mapping. Sup- 
pose that f is a uniform P-function, i.e., there exists a c > 0 such that for all 
x, Y ER: 

I A matrix-valued function M ( x )  is said to be strongly positive definite if there exists a c > 0 such 
that for every y,  yTM(x)y b cll~11~ for all x. 
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Under these conditions the CP associated with f has a unique solution. 

If (1.2) is replaced by 

Max(xi - ~i)[fi(x) - f i ( ~ ) I  > 0 (x# Y),  (1.3) 
I 

then the function f is said to be a P-function and it yields (see [8]) a CP with at 
most one solution. For differentiable functions, the property that all principal 
minors of the Jacobian matrix are positive everywhere, implies (1.3) (see [9]) and 
hence the CP has at most one solution in such a case. Even though Cottle's and 
MorC's conditions seem to be closely related, they are in fact independent (see 
Examples 6.1, 6.2). 

So far we do not know of any generalization of the necessity part of the basic 
theorem. Certainly, even in the one-dimensional case, positiveness of the Jaco- 
bian is not necessary for the uniqueness of solutions of the CP. In higher 
dimensions even nonnegativity of the principal minors of the Jacobian matrix is 
not necessary (this is necessary in the one-dimensional case). The property of a 
Po-function, i.e., that for every x #  y there is an i ,  1 5  i S n, such that xi# yi and 
(xi - yi)Lfi(x) - fi(y)] 2 0 (and this means (see [9]) nonnegative principal minors in 
the Jacobian matrix in the differentiable case) is shown not to be necessary for 
the GUS property (see Example 6.3). However we do provide a generalization in 
this direction in section 4. 

The present paper introduces generalizations of the basic theorem in both 
directions. In particular we provide a sufficient condition that covers both 
Cottle's and MorC's (and hence Karamardian's) conditions. We hope that the 
examples in section 6 clarify several characteristics of the GUS property. 

2. Preliminaries 

Let N = (1, .  . . , n). For every nonempty subset S of N we denote by RS an 
euclidean space whose coordinates are indexed by the elements of S. By R: we 
denote the nonnegative orthant in RS. We shall sometimes regard RS and R: as 
subsets of RN. For every vector x in Rn and S C N let xS = (x?)~,, be the 
restriction of x to the coordinates of S. The null vector xe is assumed to be 
equivalent to both the number 0 and the empty set. The orthants of Rn will be 
denoted by QS (S C N) where 

If f :  R" +Rn is any mapping and S c N we define the S-principal subfunction2 
of f, fs: RS+RS, as follows. For any y E RS let (y, 0) denote the extension of y 
into an n-dimensional vector by adding zero coordinates in the appropriate 

'The reader who is familiar with the literature concerning nonlinear complementarity theory 
should notice the difference between MorC and Rheinboldt's [9, Def. 3.51 and our definition. 
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places. Then let f s ( y )  denote the restriction of f ( y ,  0 )  to the coordinates in S, i.e., 
fs(Y) = L f ( r 9  O)lS. 

Throughout this paper the symbol f will be saved for the mapping of the 
complementarity problem under consideration, i.e., f : R:+ Rn. Under this con- 
vention we also save the symbol F for denoting the following extension 
F : R n + R n  of f 

F ( x )  = f (x') + x- (2.2) 

where 
xi if xi 2 0, xi if xi 5 0, 

x', X -  E Rn, x;={ 
0 otherwise, 0 otherwise. 

The following theorem suggests a clarifying interpretation for the GUS 
property of a complementarity problem. 

Theorem 2.1: Let f :  R: + Rn be a continuous mapping. Then the CP associated 
with the mapping f is GUS if and only if the extension, F, (see (2.2)) of f is a 
homeomorphism of  Rn onto itself. 

Proof. Obviously, F is continuous since f was assumed to be continuous. The 
CP associated with the mapping f is GUS if and only if for every q E Rn there is 
a unique x = x ( q )  E R: such that f (x)  + q E R: and f i (x)  + qi = 0 for each i such 
that xi > 0. The GUS property is thus equivalent to the existence of a unique 
z = z (q )  E Rn such that f(z+) + q = - 2 - .  The latter equality is however 
equivalent to F ( z )  = - q, and therefore the CP has the GUS property if and only 
if F is a bijection of Rn (i.e., a one-to-one mapping from Rn onto itself). The 
remainder of the proof follows from the fact that the inverse of a continuous 
bijection of Rn is also continuous. We prove this assertion in the Appendix. 

Corollary 2.2. Let f :  R:+Rn be a continuous mapping such that the CP as- 
sociated with f is GUS. Then the solution of  the CP associated with f ( . )  + q is a 
continuous function of the vector q for every q E Rn. 

This follows from the fact that if z = F-'(- q ) ,  then x = z', is a solution for the 
CP associated with f ( . )  + q. 

Although Theorem 2.1 is just an observation, we are able at this point to 
provide the following necessary and sufficient condition. 

Theorem 2.3. Let f :  R:+Rn be a continuous mapping. Then the C P  associated 
with f is GUS if and only if F is norm-coercive on Rn, i.e., 

lim IIF(x)ll = m, 
IIxII-xL. 

and locally univalent (i.e. univalent in the neighbourhood of every x) .  

The proof follows from [13; Th. 5.3.81 and Theorem 2.1. 
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3. On sufficient conditions for the GUS property 

Obviously, the condition given in Theorem 2.3 generalizes all the sufficient 
conditions for existence and uniqueness (Theorems 1.4, 1.5, and 1.6). All these 
known conditions have the property that if the function f satisfies them then so 
do all its principal subfunctions. It is the goal of this section to present a 
sufficient condition that covers Cottle's [2], MorC's [7,8], and Karamardian's [51 
conditions and at the same time has that property concerning the principal 
subfunctions. 

Theorem 3.1. Let f :  R: + Rn be a continuous mapping and assume that 
(i) All the principal subfunctions o f f  are univalent. 

(ii) For every S C N (S#  0)  the principal subfunction f s  is norm-coercive on 
S R+,  i.e., 

(iii) For all x, y E Rn and every i ,  i = 1 , .  . . , n, if 

Under these conditions the C P  associated with f is GUS. 

Proof. First we shall show that F is univalent on Rn. Suppose that F(x)  = F(y) 
for some x, y E Q S  (S C N ) .  Then we have 

Since x, y E Q S ,  it follows from condition (i) that x' = y f  and hence x- = y - .  
Thus, F is univalent on each orthant Q S .  We now consider the case that there is 
no S C  N for which x, y E Q S .  In this case we can assume without loss of 
generality that there is an i ,  1 5 i 5 n, such that xi > 0 > y,. If F(x)  = F ( y )  then 

This contradicts condition (iii). Hence F ( x )  # F(y). Thus we have shown that F 
is univalent on Rn. 

It follows from Theorem A.l that F is a homeomorphism of Rn into itself. On 
the other hand, condition (ii) implies the norm-coercivity of F. By Theorem 2.3 F 
is a homeomorphism from Rn onto itself. The GUS property follows from 
Theorem 2.1. 



N. Megiddo and M. Kojimal Solutions in nonlinear complementarity theory 115 

Remark 3.2. Most of the conditions stated in Theorem 3.1 are necessary for the 
GUS property. Univalence of F, which is necessary by Theorem 2.1, implies that 
all the principal subfunctions o f f  are univalent (see (2.2)). Also, F is necessarily 
norm-coercive (Theorem 2.3) and therefore f must be norm-coercive. However, 
it is not necessary for all of the principal subfunctions of f to be norm-coercive. 
Indeed, in Example 6.4 we present a function which induces a GUS com- 
plementarity problem and yet one of its principal subfunctions is not norm- 
coercive. Condition (iii) is also necessary for F to be univalent; if Fj(x) = Fj(y) 
for all j #  i, yi = 0 <xi, and F,.(x) 9 F,(y), then 

We would like to draw attention to the fact that condition (ii) of Theorem 3.1 
cannot be relaxed. Specifically, in Example 6.5 we present a function which 
satisfies conditions (i) and (iii) and which is also norm-coercive, but the CP 
associated with it is not GUS, due to the fact that one of the principal 
subfunctions is not norm-coercive. 

The conditions given by Cottle and MorC (and Karamardian) have the pro- 
perty that if a function satisfies them then all of its principal subfunctions do the 
same. Thus, in view of Remark 3.2, the fact that Cottle's and MorC's (and 
Karamardian's) conditions imply our condition (i.e., the conditions listed in 
Theorem 3.1) can be proved indirectly using their sufficiency and the above 
mentioned property. We consider it interesting to provide a direct proof, 
especially in the case of Cottle's condition. It is also important to mention that 
Cottle's and MorC's conditions are independent, as demonstrated by Examples 
6.1 and 6.2. 

Cottle's theorem, which was given an algorithmic proof, requires two con- 
ditions, namely nondegeneracy of solutions and continuity of the Jacobian 
matrix, which are eliminated by the new proof that we give here. 

Theorem 3.3. I f f :  RI: -, Rn is a differentiable mapping, such that all the principal 
minors of the Jacobian matrix of f are bounded between S and 8-' ,  for  some 
0 < S < 1, then the CP associated with f is GUS. 

Proof. (a) First, note the following properties of the extension F (see (2.2)) in 
our case. Since the mappings x + x +  and x + x -  are differentiable in points x 
such that xi# 0 (i = 1, .  . . , n), it follows that F is differentiable in the interior of 
every orthant of Rn. In general, F satisfies something weaker than diff- 
erentiability, which is the following. Given y E Q', define a matrix F~ = 

(F:) lsi, j s n  by 

if j € S ,  
if i = j b f S ,  (3.1) 
otherwise. 

It is easy to verify that for every Ay such that y +Ay E Q' 

F(y  + Ay) - F(y) = F~ - Ay + o(Ay) (3.2) 



116 N. Megiddo and M. Kojimal Solutions in nonlinear complementarity theory 

where limllArll-o o(Ay )lllAy (1 = 0. 
(b) We have to prove that F is a homeomorphism onto Rn. The univalence of 

F was as a matter of fact proved by Mort in [a], even though he did not refer to 
F itself but to the uniqueness of solution in CP's associated with P-functions. In 
our approach, the univalence of F can be either derived from Gale and 
Nikaido's theorem on global univalence [4, 111 or proved directly by slightly 
modifying Gale and Nikaido's theorem. The two proofs are outlined in the 
Appendix. Thus, we only have to prove that F(Rn) = Rn. Our proof is based on 
Nikaido [12]. 

(c) We use induction on the dimension. First, if n = 1, then F is continuous 
and monotone and lirnlxl,(F(x)l = m. This implies that every real number is attained 
by F. Suppose that n > 1 and assume, by induction, that the theorem is true in lower 
dimensional cases. Let a = (a,, . . . , a,) by an arbitrary fixed vector. For any fixed 
value of x,, the function F*(xI , .  . . , x,-,) = (F,(x), . . . , Fn-,(x)) (x = (x,, . . . , x,)) is 
a homeomorphism onto Rn-', by the induction hypothesis. Thus, for every x, there 
exists a unique vector 4(xn) in Rn-' such that q(+(x,), x,) = ai, j = 1, .  . . , n - 1. 
Define 

t = *k) = Fn(4(x,), x,). 

In order to complete the proof of F(Rn)  = Rn, it suffices to show that there is an 
X, such that I,!(x,) = a,. 

(d) We shall prove that the mappings 4 and I,! are continuous. Since F is 
univalent, it is inversible and F-' is continuous (see Theorem A.l). It also 
follows that I,! is univalent, 

Thus, + is inversible. Moreover, I,!-' is continuous since I,!-'(t) is the n-th 
coordinate of ~ - ' ( a , ,  . . . , a,-,, t). Since F is a homeomorphism, F(Rn)  is open, 
and therefore I,!-' is defined on an open subset of R'. This implies that I,! is 
continuous (Theorem A.l). The continuity of follows from the equality 

(e) We shall prove that I,!(R1) = R'. A sufficient condition for this is that for 
every value of x, 

lim inf (llAx)[I,!(x, + Ax) - $(x,)] > a2. 
A x 4  

Let {hk};=, be any sequence of non-zero real numbers, such that lim,, hk = 0. 
We use the following notation 

if A;# 0 (1 5 i, j 5 n, k = 1 ,2 , .  . . , 
otherwise 
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where ( A k (  = ~ Y = ~ J A $ ) ,  

Also, if M E Rnxn and x  E Rn,  we denote by M and x' the principal submatrix of 
M and the subvector of x, respectively, that correspond to the indices 
1 , 2  ,..., n - 1 .  

Under this notation, 

E ( y k ) = F ( y ) =  a' for k  = 1 , 2 , .  . . . 
Assume that all the vectors yk  ( k  = 1 , 2 , .  . .) belong to the same orthant QS.  

Since 4 is continuous (see (d)), it follows that also y  E QS.  It also follows from 
(3.2)  that 

The latter can be written also as follows. 

where F.: and gt are the n-th columns of F S  and g k ,  respectively. Since Ak, = hk 
( k  = 1 , 2 ,  . . .), we can write 

( E S  + i k ) d k / h k  = - F . S , - ~ . ) ,  (3 .4)  
n-1 

(lIhk)(+(xn + hk) - 44xn)) = 2 (F:+ g : j ) ~ f l h k  + F,S, + g:,. 
j =  1 

(3 .5 )  

Consider the definition of F S  (see (3.1)) .  It can be verified that the determinant 
of F S  is equal to the Jacobian of f, evaluated at yS. Also, the determinant of E S  
is equal to the Jacobian of fS,{, ,  evaluated a t  yS""'. Thus, P S  is non-singular. 
Moreover, since 

it follows that E S  + g k  is non-singular, for k  sufficiently large. Hence (see (3 .4 ) ) ,  
the following limit exists 

Substituting into ( 3 . 9 ,  we have in the limit, 

It can be verified that (3.6)-(3.7) implies 
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However, since there is only a finite number of orthants in Rn, the latter implies 
(3.3). 

This completes the proof. 

The following theorem introduces an explicit condition, sufficient for the GUS 
property, which generalizes Cottle's, More's (and Karamardian's) conditions. It 
arises naturally from our proof of Theorem 3.3. 

Theorem 3.4. Let f :  R:+Rn be a differentiable mapping. Let JS(x) denote the 
principal minor (corresponding to S C N )  of the Jacobian matrix o f f  evaluated 
at x E R:. Suppose that there exists E > 0  such that for every x E R:, S 5 N and 
i E N\S 

Jsu{~)(x) 2 €Js(x) (3.9) 

(where J@(x) = 1 for every x). Under these conditions, the CP associated with f is 
GUS.  

The proof is essentially the same as that of Theorem 3.3. Here, E plays the 
role of a2 in the proof of Theorem 3.3, and it is easy to observe that (3.9) suffices 
for establishing (3.8). 

Remark 3.5. In fact, it is sufficient that (3.9) holds for every x E R:, S 5 N and 

i E N\S such that i > j for every j E S ;  only these combinations of S and i 
appear in the induction procedure in the proof of Theorem 3.3. 

Proposition 3.6. Let f :  R:+Rn be a differentiable mapping. If f satisfies either 
Cottle's condition (i.e., the condition specified in Theorem 3.3; even without 
continuity of the Jacobian matrix and nondegeneracy of solutions) or Mori's 
condition (Theorem 1.6) then f satisfies the condition specified in Theorem 3.4. 

Proof. It is trivial that Cottle's condition implies the condition of Theorem 3.4. 
Assume that f is a differentiable uniform P-function. Let c > O  be the ap- 
propriate constant (see (1.2)). 

Let i E N be fixed, and let ei denote the unit vector defined by e; = 0  if j #  i, 
ef = 1. Define 

g(x) = f (x) - cxiel for every x E R:. 

We shall first show that g is a Po-function (see Section 1). Let x, y E R: be any 
two distinct vectors. Since f is a uniform P-function, there exists a j E N such 
that 

If j = i ,  then 
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If j # i, then 

Since in either case yj# xi, it has been proved that g is a Po-function. Let GS(x) 
denote the principal minor (corresponding to S C N) of the Jacobian matrix of g 
evaluated at x E R: (G@(x) = 1). By [9, Theorem 5.81 all these principal minors 
are non-negative, 

This implies that for S such that i& S, 

Gsu{il(x) = Js,{il(x) - c Js(x) 2 0 (for every x E R:) . 
Thus, f satisfies the condition specified in Theorem 3.4. 

Remark 3.7. The condition specified in Theorem 3.4 implies the conditions of 
Theorem 3.1.'This follows from the fact that (i) and (iii) are necessary and the 
property that all the principal subfunctions of a function f that satisfies the 
condition of Theorem 3.4 also satisfy this condition. Thus, such an f is 
norm-coercive and therefore all its principal subfunctions are norm-coercive. 

Remark 3.8. In spite of the fact that Cottle's theorem can be proved without 
principal pivot operations (Theorem 3.3), it is not true that his positively 
boundedness can be weakened. Cottle showed that positively boundedness 
below is necessary for his theorem. On the other hand, Cottle [2, p. 1551 
expressed the desirability to have shown the same for boundedness above3, even 
though he suggested the possibility that weaker conditions on the principal 
minors of the Jacobian matrix are sufficient. In Section 6 we give an example of 
a differentiable function f (see Example 6.6) such that all the principal minors of 
the Jacobian matrix of f are greater than the unit everywhere. Moreover, for 
every constant term q there is an x such that x Z 0 and f (x) + q Z 0. Yet, there is 
a q for which there is no x such that xTv(x) + q ]  = 0, f (x) + q 2 0,  and x 2 0. 
Also, the CP associated with f ( a )  + q satisfies the condition of nondegeneracy of 
solutions. 

4. A necessary condition for the differentiable case 

In this section we generalize a part of the basic theorem for linear CP's (Theorem 
1.3). In fact we shall prove a necessary condition for a differentiable CP to have at 
most one solution for every constant term. 

Theorem 4.1. Let f :  R:+Rn be a differentiable mapping such that for  every 
q E Rn the CP associated with f(.)+ q has at most one solution. For every 
O f  S C N let Js(x) denote the Jacobian (i.e., the determinant of the Jacobian 

'Notice that in the one-dimensional case boundedness above is not necessary. 
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matrix) of the S-principal subfunction4 fs (see Section 2) evaluated a t  the point 
x E R:. Under these conditions, for every +# S C N there exists a set xS C R: 
such that Js(x) > 0 for x E R:\xS and Js(x) = 0 for x E x S ;  i f f  is continuously 
diflerentiable then xS is nowhere dense in R:. 

Proof. Sard 1151 proved that the set of singular values of a continuously 
differentiable function g: R n + R n  is of measure zero in Rn. Thus, since the 
functions fs are univalent (see Remark 3.2), it follows that the set of singular 
points of fs is nowhere dense in the domain R:, if f is continuously diff- 
erentiable. 

Consider the extention F (see (2.2)) of f and its principal subfunctions Fs 
( S  C N). Under the conditions specified in our theorem, it follows that Fs is a 
homeomorphism of RS into itself. This implies that the local degree of Fs is 
constant over the whole Rs (see [ I ;  Ch. XVI, $41). This implies that the Jacobian 
of Fs is either nonnegative everywhere or nonpositive everywhere in RS (see [I ;  
Ch. XVI, 05.7, Exc. 11). On the other hand, the restriction of Fs to the 
nonpositive orthant in RS is the identity and therefore has positive Jacobian. It 
thus follows that Fs has a nonnegative Jacobian. This implies that Js(x) is 
positive everywhere except for a set in R:, over which it assumes the value zero. 
This set is nowhere dense if f is continuously differentiable. 

Corollary 4.2. If f is linear and for every q the CP associated with f (a) + q has at 
most one solution then, according to Theorem 4.1, the Jacobian of f is a 
P-matrix. It follows from the basic theorem (Theorem 1.3) that for every q there 
is exactly one solution. 

This result is by no means new and in fact appeared in Murty [lo]. 

Remark 4.3. It is interesting to mention that positiveness of the Jacobians of 
the principal subfunctions is not sufficient to the uniqueness of solutions. This is 
demonstrated in Example 6.7. 

5. Necessary and sufficient conditions 

In Section 2 it was shown that (Theorem 2.1) a function f yields a GUS 
complementarity problem if and only if a certain extension F (see (2.2)) of f is a 
homeomorphism of the space onto itself. It is the goal of the present section to 
provide necessary and sufficient conditions for the same property which assume 
just the existence of some extention5 G of f which turns out to be a homeomor- 
phism of the space onto itself. 

Our condition is not necessary for all the principal subfunctions in the sense of More and 
Rheinboldt [9, Def. 3.51. Example 6.3 demonstrates this fact. 

In some of the theorems G does not even have to exactly extend f. 
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We first state a theorem for the two-dimensional case. 

Theorem 5.1. Let f :  R:+ R' be a continuous mapping such that f (0) = 0. Then 
the CP associated with f is GUS if and only if: 

(i) The principal subfunctions f{,,, f[,, are monotone increasing and f is 
univalent. 

(ii) If lim,,, f,(x,, 0) # +a, then lim,,, f,(x,, 0) = -a and if lirn,,, f2(0, x,) 
# +a, then lim,,, f ,(O, x2) = - m. 

(ii.i) There exists a homeomorphism G of R2 onto itself such that G extends 
both f and the identity function of the nonpositive orthant R2. 

The proof is postponed. The following theorem provides a necessary and 
sufficient condition for any dimension. 

Theorem 5.2. Let f :  R",Rn be a continuous mapping. Then the CP associated 
with f is GUS if and only if 

(i) The principal subfunctions of f are univalent. 
(ii) There exists a homeomorphism G of Rn onto itself such that 

for  all S C N (see (2.1)). 

Proof. Notice that f (R?) - R ? ' ~  = F ( Q ~ )  (see (2.2)). Necessity is immediate since 
the extension F can serve as the homeomorphism G. 

Suppose that conditions (i)-(ii) hold. It follows from condition (ii) that 
F(R" j = R". 

We shall show now that F is univalent. First, it can be easily verified that by 
condition (i) F is univalent in each orthant Q~ of R ~ .  Notice that F is locally 
univalent in interior points of any orthant of R ~ .  This implies that F is a local 
homeomorphism in such points (see Theorem A.l).  It follows from this fact that 
F(int QS) C G(int QS). For any x E Rn denote 

I (x)={i :  xi =0}. (5.1) 

Let x, y E Rn be such that F(x)  = F(y). We shall prove by induction on (I(x)( + 
IZ(y)l that x = y. Suppose, first that IZ(x)l+ IZ(y)l = 0. Then x and y are interior 
points of some orthants; suppose x E int QS and y E int QT. Thus, there exist 
u E int Q~ and v E int Q T  such that G(u) = F(x)  and G(v) = F(y). But G is 
univalent, so u = v. This obviously implies S = T and, since F is univalent in 
esch orthant, x = y. 

Assume, by induction, that F(x)  = F(y)  and Il(x)l+ IZ(y)) 5 k imply x = y. 
Consider any two points x #  y such that F(x)  = F(y) and Jl(x)J  + JZ(y)J = k + 1. 
Without loss of generality, assume ( I ( x ) ( S  II(y)l. We shall show that F is locally 
univalent in x. Let U denote a neighbourhood of x such that y e  U and 
I(u) C l ( x )  for every u in U. We claim that F is univalent in U.  Let u and v be 
two distinct points of II. We distinguish two cases. First, Z(u) = I(x). In this case 
there exists an orthant QS such that x, u, v E QS. This implies F (u )  # F(v). 
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Second, I (u)  5 I(x). In this case II(u)J + lI(v)1< 21I(x)( 5 k + 1, so that the 
induction hypothesis implies F(u)  # F(v). This proves that F is univalent in U. 

It follows from the invariance theorem of domain ([3, Lemma 3.9, p. 3031) that 
F ( U )  is an open set which contains F(y). Since F is continuous at y, there exists 
w e  U such that I (w) = 0 and F(w) E F(U) .  Thus, there is a u in U such that 
F(w) = F(u). Since Il(w)lJ + II(u)l< k + 1, it follows from the induction hypo- 
thesis that w = u, and hence, a contradiction. This proves that F is globally 
univalent. 

Thus, having proved that F is univalent and continuous mapping of Rn onto 
itself, we deduce (Theorem 2.1) that our complementarity problem is GUS. 

Another necessary and sufficient condition for the n-dimensional case is given 
in the following theorem. We denote 

Q;= {x E Rn:  xi L 0 if i E S, xi 5 0 if i E T, and xi = 0 otherwise}. 

Notice that QS = Q&. 

Theorem 5.3. Let f :  R:+Rn be a continuous mapping. Then the CP associated 
with f is GUS if and only if: 

(i) The principal subfunctions o f f  are univalent. 
(ii) There exists a homeomorphism G of Rn onto itself such that for  all pairs of 

disjoint S, T 

Proof. Notice that f (R:) - RT = F(Q;) (see (2.2)). Thus, necessity is immediate 
since, as in Theorem 5.2, F can serve as the homeomorphism G. 

Suppose that conditions (i), (ii) hold. As in Theorem 5.2, condition (ii) implies 
that F(Rn) = Rn and it will suffice to show that F is also univalent. However, 
condition (i) implies that F is univalent in each orthant. 

We shall prove that if S f l  T = 0 then G(Q;) = F(Q;). First, if S = T = 0 then 
the above equality is trivial. We proceed by induction on IS1 + ITI. Assume that 
G(Q;) = F(Q;) for any S, T such that S f l  T = 0 and IS(+  IT1 = k. Consider two 
disjoint sets S, T such that IS(+  I T ( =  k + 1. Let B and C denote the boundary 
and the interior, respectively, of Q; with respect to RSUT. Thus, Q;= B U C and 
B fl C = 0. Since F is univalent in every orthant, F(B)  n F(C)  = 0. Also, G(B) n 
G(C) = 0. Since B = UiEs Q;"~' U UiET  Q;\{~, it follows from the induction hypo- 
thesis that G(B) = F(B).  But G(B U C) C F ( B  U C), hence, G(C) C F(C). The 
set G(C) is closed with respect to F(C)  since G is a homeomorphism of Rn onto 
itself, B U C = Q; is closed, and G(C) = F(C)  n G(B U C). It should also be 
observed that F maps C homeomorphically because of the following. FSUT is 
univalent in Q; (using condition (i) and (2.2)) and hence maps6 (relint R:) x 
(relint R?) homeomorphically (see Theorem A. 1). Also, C = (relint R:) x 
  re lint^?) X{O). Having proved that F maps C homeomorphically, we de- 
duce that F-'(G(c)) is closed in C and also the composition F - ' 0  G maps C 

We denote the relative interior of a set P by relint P. 
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homeomorphically. This implies that F-'(G(c)) is open in RSUT ([3, Lemma 
3.9, p. 3031) and since it is a subset of C, F-'(G(c)) is open in C too. The 
connectedness of C implies that C = F-'(G(c)), hence, F(C)  = G(C). Thus, 
G(Q;) = F(Q~), and by Theorem 5.2, this suffices for the GUS property. 

We shall now prove the theorem concerning the two-dimensional case. 

Proof of Theorem 5.1. The necessity of conditions (i) and (iii) follows from 
arguments that have already been used several times in our proofs. We now 
prove the necessity of condition (ii). Suppose lirn,,, f,(x,, 0) = t # +a (the limit 
exists because of condition (i)). Since G is a homeomorphism of R2 onto itself 
and extends f,  it follows that lirn,,, 11 f (x,, 0))I = +w. This implies that, as x, tends 
to infinity, f2(xl, 0) tends either to +w or to -w. Suppose, per absurdum, that 
lirn,, f , ( x , ,  0) = +w. Using the Jordan-curve theorem (11, Chapter 11, •˜1.1]), we 
deduce that L = f (R:', 0) U R? is a separating curve and f (R:) lies in one of the 
closed components generated by L. Since the extension F is univalent in our 
case, it follows that f (R:) fl [f(RJ") - Rf'] = f (R:'). It can now be easily verified 
(see Fig. 1) that F(R~) does not meet the set (x E R2: x, 2 t), and therefore F 
does not map the plane onto itself. This implies that the CP is not GUS in this 
case. The remainder of condition (ii) follows by symmetry. 

We now prove the sufficiency of our conditions. We do so by showing that the 
extension F is a homeomorphism of the plane onto itself. The set G(Q"') 
coincides with one of the closed components generated by the separating curve 

f ( ~ ? )  :\ - -- -- 

- 121 I l l -  
i ( R + ) - R +  - -- 

-- - -- 

Fig. 1 
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Fig. 2. 

L. In view of our condition (ii) this implies that for every y E G(Q'") there is a 
vector z E R: such that y + z E ~(RY') (Fig. 2). In other words, there is an x in 
Q"' such that y = F(x). It can now be easily verified that for every orthant QS of 
R2, if y E G(Q') then y E F(Q~).  Since we are concerned with the two-dimen- 
sional case, this implies that all the conditions of Theorem 5.3 are satisfied and 
therefore F is a homeomorphism. 

6. Examples 

Example 6.1 (Cottle's condition does not imply MorC's condition). Let f(x,, ~ 2 )  = 

(x, + x:, x,). All the principal minors of the Jacobian matrix are constant and 
equal to unit. Thus, Cottle's condition holds. The function f is not a uniform 
P-function since if xk = (1 - 2/k, k + l/k2) and yk = (1, k), k = 2 , 3 , .  . . , then 

(x: - Y : ) [ ~ ~ ( X ~ )  k ) ~  = -2/k5 < 0, 

(xi - y:)[f2(xk) -fAyk)l = 1/(4k2+ 1) - llxk - yk1I2. 

Example 6.2 (MorC's condition does not imply Cottle's condition). Let f (x) = 
ex - 1. Obviously, f is a uniform P-function (MorC's condition) but the derivative 
o f f  is not bounded above, so that Cottle's condition is not satisfied. On the other 
hand, the positively boundedness below is not accidental. Indeed, if f is a 
uniform P-function and differentiable, then there is a positive c such that for any 
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x E R:, Ax E Rn, and A > 0, if IIAxlJ = 1 and x + AAx E R:, then 

cA 5 Max{Axi[fi(x + A . Ax) - fi(x)]) 
1 

n 

5 IAxi)(fi(x + A . Ax) -fi(x)l 

It follows that c 5 IIJ(x)Ax + o(A)/A~(,  where lim,,, o(A)lA = 0. As A tends to zero 
we have 

AX~[J(X)]~J(X)AX 2 c2  

which means that the Jacobian IJ(x)l is positively bounded below. The same is 
true for all the other principal minors of the Jacobian matrix since all the 
principal subfunctions (in the broad sense [9, Def. 3.51) are also uniform 
P-functions. 

Example 6.3 (Non-necessity of the Po-function condition). Let g(x,, x,) = (x, - 10, 
x, - 101, 

jrr sin2(x: + xi) if xy + x; 5 .rr, 

otherwise, 

cos B(xl, x,) - sin 8(x,, x,) 
h(x,, x,) = (xi, x2) 

sin e(x,, x,) cos e ( ~ , ,  x,) I 
and f = g-l o h 0 g.  The function f (Fig. 3) is differentiable and its Jacobian is unit 
valued everywhere. Using Theorem 3.1, it follows that the CP associated with f 
is GUS. Yet f is not even a Po-function, namely, if x(10, 10) and y = 

[lo, 10 + VG], then x, = y, and (x, - y,)[f,(x) - f,(y)] < 0. 

Example 6.4 (Non-necessity of principal subfunctions' norm-coercivity). Let 
f (x,, x,) = (x, - x,, x,x, + 1 - e-"~). The principal subfunction f{?,(x,) = 1 - e-"~ is 
not norm-coercive. Univalence of f and its principal subfunctions follows from 
the fact that f is a P-function. It is easy to verify (see Fig. 4), using Theorem 2.3, 
that the CP associated with f is GUS. 

Example 6.5 (Principal subfunctions' norm-coercivity is vital for Th. 3.1). 
Let f (x,, x,) = (x, + x,, 1 - e-"2). The function f is a P-function and therefore 
all of its principal subfunctions are univalent. Also it is norm-coercive on R: and 
the extension F (see (2.2)) associated with it satisfies condition (iii) of Theorem 
3.1. However, for q = (0, - I), the CP associated with f(.) + q does not have a 
solution (see Fig. 5). This is due to the fact that f{,, is not norm-coercive. 
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Fig. 3. 

I 2 

Fig. 4. 
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Fig. 5 .  

Fig. 6. 

Example 6.6 (Boundedness above is necessary in Cottle's condition). Let f :  R:+ 
R~ be defined by 
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The principal minors of the Jacobian matrix of f are all bounded below by the 
unit. Cottle's condition is not satisfied since some principal minors are not 
bounded above. The complementarity problem associated with f is not GUS 
since f is not norm-coercive (lim,, f(t, t, 1) = (e, e, 1)) and the norm-coercivity 
condition is necessary according to Theorem 2.3. Particularly, the CP  associated 
with f(.)  - (e, e, 1) is not solvable (see Fig. 6).  Notice that for any q in Rn the CP 
associated with f (a) + q is feasible7 since lim,, f (1, 1, t )  = (w, m, w). 

Example 6.7 (Positiveness of Jacobians of principal subfunctions does not suffice 
for the uniqueness of solutions). Let 

g(x,, x,) = (exl sin x,, 1 - ex! cos xz), 

h (x,, x,) = (x, - x,, ~ ( ( 1 -  e-"]) ex2 + (1 - e-5) exl}) 

and 

f =gob. 

The Jacobian of g is equal to eX1 and the Jacobian of h is equal to $r(eX1 + ex2). 
Thus, the Jacobian off  is everywhere positive. The other principal subfunctions of 
f are 

f{,,(x,) = ex) sin{i.rr . (1 - e-"I)), 

fr2,(x2) = 1 - e-xZ COS[;T - (1 - e-"])] 

and both of them have positive derivatives. However, letting t, = log(2k + 1) we 
have f(t,, t,) = 0 for k = 1,2, . . . . Thus, f is not univalent and the CP associated 
with f has infinitely many solutions. 

7. Concluding remarks 

We have stated a sufficient condition for the GUS property of complementarity 
problems. This condition generalizes the other known sufficient conditions. We 
have also given other characterizations of the GUS property and, obviously, the 
sufficiency part of any characterization generalizes all other sufficient conditions. 

The case of the plane seems to us clearer than the general n-dimensional one. 
Specifically, Theorem 5.1 tells us about the function f itself more than Theorems 
5.2 and 5.3 do. We were able to prove a slight generalization of the necessity part 
of Theorem 5.1, for the n-dimensional case, but since it seemed rather unsatis- 
factory, we decided not to include that result in the present paper. 

We conjecture that Theorems 5.2 and 5.3 can be somewhat unified in the 
following way. Assuming f(0) = 0, if condition (ii) of Theorem 5.2 or, 
equivalently, of Theorem 5.3 is replaced by: 

(ii)" There exists a homeomorphism G of Rn onto itself that coincides with f on 

'The CP associated with f(.) + q is feasible if there exists z 2 0 such that f(z) + q 2 0. 
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RI: and with the identity function on Rn such that 

then, obviously, the condition is necessary. We conjecture that the modified 
condition (together with univalence of principal subfunctions) is also sufficient. 

Positiveness of the Jacobians of all principal subfunctions (in the narrow 
sense; see Section 2) was shown to be insufficient for uniqueness while non- 
negativity is necessary. Nevertheless, nonnegativity of the Jacobians of More 
and Rheinboldt's principal subfunctions (this is the broad sense; see [9, Def. 3.51) 
was shown to be unnecessary for uniqueness, even though their positiveness is 
sufficient. It would be desirable to have a sufficient condition in terms of strict 
inequalities on the Jacobians, which will also be necessary if the strict inequality 
signs are replaced by nonstrict ones. 

Finally, we suggest that the theory of nonlinear equations may be applicable to 
nonlinear complementarity theory in view of the observation given in Theorem 
2.1, and the approximation used in the proofs of the Appendix. 

Appendix 

Theorem A.1. Let f :  G + R n  be a continuous and univalent mapping, where G is 
an open subset of  Rn. Under these conditions f maps G homeomorphically. 

Proof. We use the invariance theorem of domain ([3, Lemma 3.9, p. 3031) which 
states as follows. If U and V are homeomorphic subsets o f  Rn then U is open i f  
V is open. Let x be any point of G. Let B = { y  E R n :  Ilx - yll5 e} be a closed ball 
contained in G ( E  > 0). By compactness, f maps B homeomorphically. Using the 
invariance theorem of domain, we deduce that f(int B) is an open set. It follows 
that f- '  is continuous at f(x). This completes the proof. 

Proof (Uniqueness of solutions under Cottle's condition). (a) The extension F 
(see (2.2)) is differentiable everywhere except for points of the coordinates 
surfaces of Rn. Therefore, Gale and Nikaido's theorem [4,11] cannot be applied 
directly to F in order to deduce its univalence in Rn. However, by slightly 
modifying their proof this can be proved. Essentially, one has to distinguish 
cases and deal with the different orthants separately. We omit the details. 

(b) Another proof can be worked out by approximating F by differentiable 
functions F,(x) and applying Gale and Nikaido's theorem to these functions. 
Specifically, for any a > 0 and any real number 6 let 

Denote u i ( x ;  a) = y ( x i ;  a), i = 1 , .  . . , n, and u = ( u , ,  . . . , u,) and define 

F,(x) = f(u(x;  a ) ) -  u(-X; a ) .  (A. 1) 
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It is easily verified that Fa is differentiable everywhere and its Jacobian matrix is 
everywhere a P-matrix. By Gale and Nikaido's theorem, F, is univalent in Rn. 
This implies that if x and y are interior points of orthants in Rn then F ( x )  = F ( y )  
implies x = y .  The same implication can be proved for all pairs x, y in Rn by 
using induction on II(x)l+ II(y)l (see (5.1) and the proof of Theorem 5.2). 

Another proof (of existence of solutions under Cottle's condition). Consider the 
approximations F, of F (see (A.1)). It can be observed that if the principal 
minors of the Jacobian matrix of f lie between 8 and 8-' (8  > 0), then so do the 
principal minors of the Jacobian matrices of the functions F,. The result of 
Nikaido [12] can be applied to Fa and hence F,(Rn) = Rn. Thus, for any q in Rn 
there is a set { x u }  of points in Rn such that F,(xa)  = q. If a is restricted to the 
interval (O,1]  then the resulting set of x" is bounded. This property can be 
shown to suffice to the existence of an x such that F ( x )  = q. Again, we omit the 
details. 
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