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On the Existence and Uniqueness of the Eigenvalue

Decomposition of a Parahermitian Matrix
Stephan Weiss , Senior Member, IEEE, Jennifer Pestana , and Ian K. Proudler

Abstract—This paper addresses the extension of the factoriza-
tion of a Hermitian matrix by an eigenvalue decomposition (EVD)
to the case of a parahermitian matrix that is analytic at least on an
annulus containing the unit circle. Such parahermitian matrices
contain polynomials or rational functions in the complex variable
z and arise, e.g., as cross spectral density matrices in broadband ar-
ray problems. Specifically, conditions for the existence and unique-
ness of eigenvalues and eigenvectors of a parahermitian matrix
EVD are given, such that these can be represented by a power or
Laurent series that is absolutely convergent, at least on the unit cir-
cle, permitting a direct realization in the time domain. Based on an
analysis of the unit circle, we prove that eigenvalues exist as unique
and convergent but likely infinite-length Laurent series. The eigen-
vectors can have an arbitrary phase response and are shown to exist
as convergent Laurent series if eigenvalues are selected as analytic
functions on the unit circle, and if the phase response is selected
such that the eigenvectors are Hölder continuous with α > 1

2
on

the unit circle. In the case of a discontinuous phase response or if
spectral majorisation is enforced for intersecting eigenvalues, an
absolutely convergent Laurent series solution for the eigenvectors
of a parahermitian EVD does not exist. We provide some examples,
comment on the approximation of a parahermitian matrix EVD
by Laurent polynomial factors, and compare our findings to the
solutions provided by polynomial matrix EVD algorithms.

I. INTRODUCTION

F
OR a multi-channel signal x[n] ∈ C

M the instantaneous

covariance matrix is R = E
{
x[n]xH [n]

}
, where E{·} de-

notes the expectation operator and xH represents the Hermitian

transpose of x. It captures the correlation and phase informa-

tion on which rests the optimal solution of many narrowband

array processing problems. For broadband signals, explicit de-

lays must be considered instead of phase shifts, and capturing
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the second order statistics can be accomplished via the space-

time covariance matrix R[τ ] = E
{
x[n]xH [n − τ ]

}
with a

discrete lag parameter τ . Since R[τ ] contains auto- and cross-

correlation terms of x[n] it follows that R[τ ] = RH [−τ ]. Tak-

ing the z-transform leads to the cross spectral density (CSD)

matrix1 R(z) =
∑

τ R[τ ]z−τ , which is a function of the com-

plex variable z. The CSD matrix satisfies the parahermitian

property R(z) = RP(z), where the parahermitian operation

RP(z) = RH(1/z∗) involves Hermitian transposition and time

reversal [1]. We call any R(z) satisfying the parahermitian prop-

erty a parahermitian matrix.

In the narrowband case, many optimal and robust solutions to

signal processing problems rely on matrix decompositions [2],

[3], particularly on the eigenvalue decomposition (EVD) of R.

To extend the utility of the EVD to the broadband case re-

quires an equivalent factorisation of the parahermitian matrix

R(z). Under the restriction of R(z) having Laurent polynomial

entries, a number of algorithms have been reported in the litera-

ture over the past decade [4]–[12] that calculate an approximate

polynomial EVD R(z) ≈ Û(z)Γ̂(z)ÛP(z) consisting of Lau-

rent polynomial factors, where Û(z) is a paraunitary matrix,

that is, Û(z) satisfies Û−1(z) = ÛP(z) [1] and Γ̂(z) is a diago-

nal polynomial matrix containing power spectral density (PSD)

terms.

The above polynomial matrix EVD algorithms have proved

useful in a number of applications, for example in denoising-

type [13] or decorrelating array preprocessors [14], transmit and

receive beamforming across broadband MIMO channels [15]–

[17], broadband angle of arrival estimation [18], [19], optimum

subband partitioning of beamformers [20], filter bank-based

channel coding [21], fixed [22] and adaptive (i.e. minimum

variance distortionless response) broadband beamforming [23],

and blind source separation [24]. The polynomial approach can

enable solutions that otherwise have been unobtainable: e.g. the

design of optimal compaction filter banks beyond the two chan-

nel case [8], the coherent estimation of broadband sources [19]

without side-information, or the decoupling of dimensions and

hence reduction of computational complexities of the quiescent

beamformer, the blocking matrix and the adaptive noise can-

celler in a polynomial generalised sidelobe canceller [23].

1In our notation, boldface upper and lower case font refers to matrices and
vectors, respectively. A bold A generally refers to a time domain quantity, while
A(z) is a transform domain quantity, with A(ejΩ ) typically its evaluation on

the unit circle, z = ejΩ .
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Despite the numerous algorithms2 and a number of success-

ful applications, the theoretical foundations of the existence and

uniqueness of a polynomial EVD have received little attention.

The book by Gohberg et al. [25] considers the related factori-

sation of a self-adjoint matrix A(x) = AH(x), x ∈ R, which

can be applied to a parahermitian matrix R(z) on the unit circle

via the reparameterisation z = ejΩ . Decompositions such as the

Smith and Smith-MacMillan forms for matrices of polynomials

and rational functions, respectively, are proven to exist [1], [25],

but do not involve paraunitary and parahermitian factors as re-

quired for the polynomial EVD in [4], [6]. Significantly, Icart

and Comon [26] prove, based on known decompositions and

the Stone-Weierstrass theorem, that the decomposition factors

of a positive semi-definite parahermitian matrix can be approx-

imated by Laurent polynomials. For the polynomial EVD in [9]

and the related problem of a Laurent-polynomial QR decom-

position [27], [28], the authors show that the factor matrices

generally cannot exist as Laurent polynomials because the re-

quired solutions involve divisions and square root operations of

polynomials.

This paper aims to extend the work in [26] and to clarify the

existence and uniqueness of factorising a parahermitian R(z)
into paraunitary and diagonal parahermitian matrices. We gen-

eralise R(z) to include not just polynomials but rational func-

tions in z ∈ C. Since the EVD even for a polynomial R(z) is

not guaranteed to exist with Laurent polynomial factors [26],

we refer to the decomposition R(z) = U(z)Γ(z)UP(z), with

absolutely convergent Laurent series3 U(z) and Γ(z) as a para-

hermitian matrix EVD (PhEVD). If it exists, the matrix of eigen-

values, Γ(z), is parahermitian and a Laurent series; the eigen-

vectors in U(z) may exist as Laurent series, and, if causal, may

even be power series. Absolute convergence—in some cases

analyticity—of these factors will ensure that these Laurent or

power series permit a direct time domain realisation. Our proof

of existence and uniqueness proceeds in two stages. First, we

characterize the PhEVD of R(z) on the unit circle, i.e. in terms

of the normalised angular frequency Ω ∈ R. We next state the

conditions that must be satisfied for the PhEVD factors to be

representable as Laurent or power series. The main thrust of our

analysis rests (i) on the analyticity of R(z) [29] to guarantee

that the CSD matrix is entirely characterised by its evaluation

on the unit circle, (ii) on matrix perturbation theory [30], [31] to

demonstrate the smooth evolution of EVD factors as functions

of Ω, and (iii) on complex function analysis [32] to extract con-

vergent Laurent or power series. Throughout we assume that

any eigenvalues of R(z) are non-negative for all |z| = 1 and

that R(z) is analytic at least on an annulus containing the unit

circle.

The paper is organised as follows. Section II provides back-

ground on the existence and uniqueness of the EVD of a

2Many of these algorithms have convergence proofs, even though it is not
clear to which matrices they converge.

3The infinite sum
∑

n
cn z−n is a power series for n ∈ N, while for a

Laurent series n ∈ Z. It does not need to converge to be called a series, but con-
vergence criteria will be discussed later. Polynomials and Laurent polynomials
are power and Laurent series, respectively, with a finite number of non-zero
coefficients cn .

Hermitian matrix, and properties of and decomposition

algorithms for parahermitian matrices. The parahermitian EVD

problem is then mapped to the unit circle, i.e. |z| = 1, in

Section III where we look at the conditions under which a func-

tion of frequency admits a time series representation. We then

apply these results to the frequency domain EVD. This is first

addressed in Section IV for the easier case that R(z) has eigen-

values of algebraic multiplicity one for all |z| = 1, i.e. when the

eigenvalues are viewed in the Fourier domain as PSDs that do

not overlap. Section V considers the case that R(z) has, at least

for some z on the unit circle, eigenvalues of algebraic multi-

plicity greater than one. It generalises the findings of Section IV

and contains the main results of this paper. A numerical example

and a comparison with results obtained by iterative polynomial

EVD algorithms are provided in Section VI, with concluding

remarks in Section VII.

II. BACKGROUND

A. Eigenvalue Decomposition

We restrict R∈ C
M ×M to be positive semi-definite—a prop-

erty guaranteed if R is e.g. a covariance matrix or emerges from

a product R = AAH , with an arbitrary A ∈ C
M ×L . For any

Hermitian matrix R = RH , its eigenvalue decomposition

R = QΛQH (1)

exists, with the diagonal matrix Λ containing the real-valued,

non-negative eigenvalues λm ∈ R, m = 1 . . . M , and the eigen-

vectors qm ∈ C
M , which we constrain to be orthonormal so that

they form the columns of a unitary matrix Q.

While the EVD in (1) has unique eigenvalues, their sequence

along the diagonal of Λ can be arbitrary. This ambiguity w.r.t. a

permutation can be removed by ordering eigenvalues in Λ in

descending sequence,

λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0 . (2)

In the case of M distinct eigenvalues, the eigenvectors of R are

unique except for a phase rotation. If qm is the eigenvector that

corresponds to the mth eigenvalue λm of R, then

Rqm ejϕ = λmqm ejϕ (3)

holds for an arbitrary phase shift ϕ. Therefore, if qm is an mth

eigenvector, then so is q′
m = qm ejϕ .

Ambiguity w.r.t. the eigenvectors also arises if eigenval-

ues have an algebraic multiplicity greater than one, i.e. when

the eigenvalues are no longer distinct. If λm = λm+1 =
. . . λm+C−1 , these eigenvalues possess an algebraic multiplic-

ity of C and only the C-dimensional subspace containing the

eigenvectors corresponding to this eigenvalue is uniquely de-

fined, within which the eigenvectors qm , qm+1 , . . . qm+C−1

can form an arbitrary orthonormal basis: if qm , . . . qm+C−1

are eigenvectors of R, then so are q′
m , . . . q′

m+C−1 ,

[q′
m , . . . q′

m+C−1 ] = [qm , . . . qm+C−1 ] V , (4)

for any arbitrary unitary matrix V ∈ C
C×C . Note that in the

case of distinct eigenvalues with C = 1, (4) incorporates the

phase ambiguity of (3) since V will be the scalar ejϕ .



WEISS et al.: ON THE EXISTENCE AND UNIQUENESS OF THE EIGENVALUE DECOMPOSITION OF A PARAHERMITIAN MATRIX 2661

B. Parahermitian Space-Time Covariance Matrix

To understand how a parahermitian matrix may be obtained,

we consider a scenario where L independent sources with non-

negative, real power spectral densities (PSD) Sℓ(z), ℓ = 1 . . . L,

contribute to M sensor measurements xm [n], m = 1 . . . M . If

these are organised in a vector x[n] = [x1 [n] . . . xM [n]]T , then

the space-time covariance matrix is

R[τ ] = E
{
x[n]xH [n − τ ]

}
. (5)

If the PSD of the ℓth source is generated by a stable and causal

innovation filter Fℓ(z) [33], and Hmℓ(z) describes the transfer

function of the causal and stable system between the ℓth source

and the mth sensor, then

R(z) = H(z)

⎡

⎢
⎣

S1(z)
. . .

SL (z)

⎤

⎥
⎦HP(z) (6)

with the element in the mth row and ℓth column of H(z) :
C → C

M ×L given by Hmℓ(z), and Sℓ(z) = Fℓ(z)FP
ℓ(z) the

ℓth element of the diagonal matrix of source PSDs.

The factorisation (6) can include the source model matrix

F (z) = diag{F1(z), . . . , FL (z)} : C → C
L×L , such that

R(z) = H(z)F (z)F P(z)HP(z) . (7)

The components of H(z) and the source model F (z) are as-

sumed to be causal and stable, and their entries can be either

polynomials or rational functions in z. For the more general lat-

ter case, let the maximum modulus of a pole of any component

of either H(z) or F (z) be ρ, where 0 < ρ < 1. Thus the region

of convergence for H(z)F (z) is |z| > ρ, while for the anti-

causal term F P(z)HP(z) it is |z| < ρ−1 . Overall, therefore, the

CSD matrix R(z) in (7) can be represented as a Laurent series

whose convergence region D is the annulus ρ < |z| < ρ−1 [29],

[34]. Hence, within this region, all entries of R(z) are analytic

and are therefore continuous and infinitely differentiable [29].

Since the PSDs satisfy Sℓ(z) = SP
ℓ (z), it is evident from both

(6) and (7) that R(z) = RP(z) and so is parahermitian. The

EVD of Section II-A can only diagonalise R[τ ] for one particu-

lar lag value τ , typically the Hermitian (narrowband) covariance

matrix R[0]. The next section reviews efforts to diagonalise

R(z) or, equivalently, diagonalise R[τ ] for all lags τ .

C. Polynomial EVD

A self-adjoint matrix A(x), with x ∈ R, which satisfies

A(x) = AH(x), has an EVD [30], [35] or spectral factorisa-

tion [25], which can therefore describe the EVD of R(z) evalu-

ated on the unit circle, but not an EVD of R(z) itself. The first

mention of a polynomial EVD is in [4], which also proposed

the second order sequential best rotation (SBR2) algorithm for

its iterative approximation using Laurent polynomials. Over the

past decade a number of algorithms have emerged [4], [6]–[12],

[36], which share the restriction of considering the EVD of a

parahermitian matrix R(z) whose elements are Laurent poly-

nomials. In cases where the support is unknown or the source

model in (7) contains rational functions, the auto- and cross-

correlation sequences in (5) may be estimated or approximated

over a finite window of lags [8].

The polynomial EVD or McWhirter decomposition in [6] is

stated as4

R(z) ≈ Û(z)Γ̂(z)Û
P
(z) , (8)

where the elements of the matrices on the r.h.s. are Laurent

polynomials, Û(z) is paraunitary and Γ̂(z) is diagonal and

spectrally majorised, such that for the PSDs along the main

diagonal,

γ̂m (ejΩ) ≥ γ̂m+1(e
jΩ) ∀ Ω ,

for m = 1 . . . (M − 1). Even though the term ‘polynomial

EVD’ is not mentioned in [37], diagonalisation and spectral

majorisation were introduced there in the context of optimising

filter banks w.r.t. subband coding gain.

The approximation sign in the McWhirter decomposition (8)

has been included in all subsequent algorithm designs over the

past decade. Even though many algorithms can be proven to

converge, in the sense that off-diagonal energy of Γ(z) is re-

duced at each iteration, see e.g. [6], [8], [10]–[12], and there is

no practical experience yet where algorithms could not find a

practicable factorisation, the only work towards the existence

of the polynomial EVD has been reported in [26]. However,

this provides limited understanding under which circumstances

existence is guaranteed and does not address the uniqueness or

ambiguity of eigenvalues and eigenvectors.

III. PARAHERMITIAN MATRIX EVD

We first focus on the task of identifying the eigenvalues of a

parahermitian matrix in the Fourier domain, and are particularly

interested in determining how smoothly these vary, before in-

vestigating the corresponding eigenvectors. Our approach rests

on the conditions under which a function on the unit circle (i.e.

a function of frequency) admits an absolutely convergent power

or Laurent series, or even permits an analytic continuation to

z ∈ C, the ultimate aim being to find a suitable representation

in the time domain.

A. EVD on the Unit Circle

We assume that the parahermitian matrix R(z) : C →
C

M ×M contains Laurent polynomials or rational functions in z,

and is analytic in the annulus D = {z : z ∈ C, ρ < |z| < ρ−1}
with 0 < ρ < 1, as motivated in Section II-B. Since the unit

circle is included in D, it follows from Cauchy’s integral for-

mula that every value of R(z) for ρ < |z| < 1 is specified by its

values for |z| = 1 [34]. Because of the parahermitian property

R(z) = RH(1/z∗), every value of R(z) for 1 > |z| > ρ−1 is

also specified by the values of R(z) for |z| = 1. From a prac-

tical aspect, the inverse z-transform requires evaluation on a

closed path in D, which here can be the unit circle. This inverse

transform leads back to the time domain, which then implies the

4The McWhirter decomposition in [6] is defined with the parahermitian

ÛP(z) instead of Û(z). W.l.g. and for consistency with (1), we use the notation
in (8).
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existence of a Laurent series R(z) =
∑

τ R[τ ]z−τ : thus R(z)
is recovered from R(ejΩ). Therefore, in D, R(z) is uniquely

characterised by R(ejΩ) = R(z)z=ejΩ and vice versa, where

R(ejΩ) is Hermitian, R(ejΩ) = RH(ejΩ) ∀ Ω.

An EVD of R(ejΩ) can be evaluated at every point along the

continuous normalised angular frequency variable Ω, such that

R(ejΩ) = Q(ejΩ)Λ(ejΩ)QH(ejΩ) . (9)

At any arbitrary frequency Ω, the properties of the EVD in (1)

apply equally to (9), with the existence and uniqueness of its

eigenvalues and -vectors as discussed in Section II-A. Since a

parahermitian matrix is Hermitian on the unit circle it has real

eigenvalues there.

B. Time-Domain Realisation

We want to form matrix functions U(z) and Γ(z) as this will

lead to a time domain representation and hence allow them to

be implemented. The matrix functions U(z) and Γ(z) need to

match Q(ejΩ) and Λ(ejΩ) in (9) at every frequency. There are

infinitely many ways to do this. However we require a mech-

anism that allows us to extract a direct realisation in the time

domain of these functions on the unit circle i.e. Λ(ejΩ) → Γ[τ ]
and Q(ejΩ) → U[n], and this restricts the acceptable choices

of U(z) and Γ(z). Ideally, we would like to extract analytic

functions Γ(z) and U(z), but we will be content if they can be

represented by absolutely convergent power or Laurent series at

least on the unit circle. Within their region of convergence, these

functions Γ(z) and U(z) are guaranteed to be unique [38], [39].

If an arbitrary 2π-periodic function X(ejΩ) : R → C has

only a finite number of discontinuities, we can write X(ejΩ) =
∑

n x[n]ejΩn . For the Fourier coefficients x[n] to represent an

absolutely convergent Laurent or power series, we require abso-

lute summability, i.e.
∑

n |x[n]| < ∞. A sufficient condition

for this is to restrict X(ejΩ) to be Hölder continuous with

α > 1
2 [40], such that

sup
Ω1 ,Ω2 ∈R

|X(ejΩ1 ) − X(ejΩ2 )| ≤ C|ejΩ1 − ejΩ2 |α (10)

with some C ∈ R. A continuous function X(ejΩ) is Hölder

continuous if it does not behave too ‘wildly’. For the remainder

of the paper, Hölder continuity always implies the condition

α > 1
2 . In this case, the time domain realisation can be obtained

by the inverse Fourier transform

x[n] =
1

2π

π∫

−π

X(ejΩ)ejΩndΩ . (11)

If, moreover, X(ejΩ) is analytic then we know that we can

apply the inverse z-transform

x[n] =
1

2πj

∮

C
X(z)zn dz

z

for C a closed counter-clockwise curve in the region of con-

vergence of X(z). Choosing C to be the unit circle the inverse

z-transform becomes the inverse Fourier transform (11). Hence

in this case the inverse Fourier transform can lead to a Laurent

series X(z) =
∑

n x[n]z−n that is valid in an annulus with non-

empty interior containing the unit circle. More generally, we can

define X(z) =
∑

n x[n]zn , |z| = 1 from the Fourier series and

attempt to analytically continue this representation. However,

the region of convergence of the resulting series is difficult to

determine.

Throughout, we use the terms “absolutely convergent power

series” and “absolutely convergent Laurent series” to represent

a power (Laurent) series that is absolutely convergent, at least

on the unit circle. While there appears to be no simple necessary

condition for X(ejΩ) to yield an absolutely convergent power

or Laurent series x[n], a discontinuous X(ejΩ) is sufficient to

exclude the existence of an absolutely convergent Fourier se-

ries and hence of an absolutely convergent power or Laurent

series x[n] [40]. In general for the case of continuity, Weier-

strass [41], [42] guarantees uniform convergence of a series of

functions. These functions may change with the approximation

order, hence it is neither possible to state a limit for infinite

order using a power series, nor to obtain an approximation by

truncation of that power series. Its use in this context is therefore

limited. Therefore, the arguments in the remainder of this paper

will focus on the Hölder continuity and potential smoothness of

the factors Q(ejΩ) and Λ(ejΩ) in (9).

C. Continuity of Eigenvalues

We now inspect how smoothly eigenvalues λm (ejΩ), m =
1 . . . M , of R(ejΩ) in (9) evolve with the frequency Ω. To

quantify the change that is induced in the eigenvalues of

R(ej(Ω+∆Ω)), with ∆Ω a small change in frequency, perturba-

tion theory for matrices [30], [31] provides some useful results.

The Hoffman-Wielandt theorem [43] shows that5

∑

i

|λi(e
jΩ) − λi(e

j(Ω+∆Ω))| ≤ ‖R(ejΩ) − R(ej(Ω+∆Ω))‖F ,

(12)

assuming that the eigenvalues are ordered, with ‖ · ‖F the Frobe-

nius norm. Since based on the source model in Section II-B,

R(z) is analytic and hence continuous,

lim
∆Ω→0

‖R(ejΩ) − R(ej(Ω+∆Ω))‖F = 0 , (13)

which also implies continuity of λm (ejΩ), m = 1 . . . M , be-

cause

lim
∆Ω→0

∑

i

|λi(e
jΩ) − λi(e

j(Ω+∆Ω))| = 0

must also hold on the l.h.s. of (12). Beyond continuity, analytic-

ity of R(z) on an annulus containing the unit circle ensures that

the eigenvalues λ1(e
jΩ), . . . , λM (ejΩ) can be chosen to be an-

alytic for Ω ∈ R [30], [35], and therefore can also be infinitely

differentiable.6

5A regular perturbation of R(z) can lead to either a regular or singular
perturbation of the eigenvalues, but we are here only interested in the continuity
of the latter.

6A similar frequency-domain approach for arbitrary matrices exists with the
analytic singular value decomposition [44], [45].
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D. Invariant Subspaces and Subspace Distance

Having characterized the eigenvalues of R(z), we now turn to

their corresponding eigenvectors, reviewing the effect of matrix

perturbations on eigenvector subspaces. As highlighted in Sec-

tion II-A, eigenvectors corresponding to multiple eigenvalues

are not unique, and even though eigenvectors corresponding to

tightly clustered eigenvalues are very likely ill-conditioned, the

subspace spanned by these eigenvectors is usually insensitive to

perturbations [31], [46].

Assume a cluster of C adjacent (potentially multiple) eigen-

values organised in the diagonal matrix Λ1(e
jΩ) : R → R

C×C ,

with Λ2(e
jΩ) : R → R

(M −C )×(M −C ) containing the remaining

M − C eigenvalues. The spread of the cluster is assumed to be

small compared to the distance δ to the next-nearest eigenvalue

outside this cluster [3], i.e.

max
λi ,λj ∈Λ1 (ejΩ )

|λi − λj | ≪ min
λ1 ∈ Λ1(e

jΩ)
λ2 ∈ Λ2(e

jΩ)

|λ1 − λ2 | ≡ δ > 0 .

(14)

The parameter δ in (14) defines the spectral distance between

the eigenvalues in Λ1(e
jΩ) and in Λ2(e

jΩ). If Q1(e
jΩ) : R →

C
M ×C is a matrix whose columns are formed by the C eigen-

vectors of R(ejΩ) corresponding to Λ1(e
jΩ), and Q2(e

jΩ) holds

the remaining M − C eigenvectors, we re-organise the EVD as

QH(ejΩ)R(ejΩ)Q(ejΩ) = diag
{
Λ1(e

jΩ), Λ2(e
jΩ)

}
, (15)

with Q(ejΩ) = [Q1(e
jΩ) , Q2(e

jΩ)]. Note that in accordance

with (4), eigenvectors can have arbitrary phase shifts, which

however does not affect the subspace analysis below.

If R(ejΩ) is perturbed by an increment in frequency, ∆Ω,

then [3], [31]

QH(ejΩ)
(

R(ej(Ω+∆Ω)) − R(ejΩ)
)

Q(ejΩ) =

[
E11(e

jΩ ,∆Ω) EH
21(e

jΩ ,∆Ω)
E21(e

jΩ ,∆Ω) E22(e
jΩ ,∆Ω)

]

. (16)

︸ ︷︷ ︸

C

︸ ︷︷ ︸

M −C

If the increment ∆Ω is selected such that [3]

‖R(ej(Ω+∆Ω)) − R(ejΩ)‖F ≤ δ

5
, (17)

i.e. such that the perturbation is small compared to the

spectral distance δ, then for the two subspaces Q1(e
jΩ) =

range
{
Q1(e

jΩ)
}

and Q1(e
(jΩ+∆Ω)) = range

{
Q1(e

j(Ω+∆Ω))
}

dist{Q1(e
jΩ),Q1(e

j(Ω+∆Ω))} ≤ 4

δ
‖E21(e

jΩ ,∆Ω)‖F . (18)

The distance metric in (18) is defined as

dist{Q1(e
jΩ),Q1(e

j(Ω+∆Ω))}=‖Π1(e
jΩ)−Π1(e

j(Ω+∆Ω))‖2

=σmax ,

where ‖ · ‖2 is the spectral norm and Π1(e
jΩ) =

Q1(e
jΩ)QH

1 (ejΩ) is the projection matrix onto the subspace

Q1(e
jΩ) with 0 ≤ σmax ≤ 1 [3].

Because of the continuity of R(ejΩ) (see (13)) and the uni-

tary invariance of the Frobenius norm, from (16) it follows

that ‖E21(e
jΩ ,∆Ω)‖F −→ 0 as ∆Ω −→ 0. Hence the subspace

evolves continuously. Interestingly, the distance between the

subspaces spanned by Q1(e
jΩ) and Q1(e

j(Ω+∆Ω)) according to

(18) is limited by the product of the perturbation-related term

‖E21(e
jΩ ,∆Ω)‖F and δ−1 . Therefore the subspace distance can

increase as the distance δ to the nearest eigenvalue outside the

cluster decreases.

E. Eigenvalue Considerations

The discussion in this section shows that different cases will

arise depending on how we choose Λ(ejΩ) and Q(ejΩ). An ar-

bitrary frequency-dependent and potentially discontinuous per-

mutation P (ejΩ) can be introduced into (9), such that

R(ejΩ) = Q(ejΩ)P H(ejΩ)P (ejΩ)Λ(ejΩ)P H(ejΩ)·

· P (ejΩ)QH(ejΩ) . (19)

Therefore, the resulting eigenvalues on the diagonal of

P (ejΩ)Λ(ejΩ)P H(ejΩ) and eigenvectors in the columns of

Q(ejΩ)P H(ejΩ) can be discontinuous. The statement of Sec-

tion III-C that Λ(ejΩ) can be continuous or even analytic for an

analytic R(z) implies that this permutation matrix is selected

appropriately.7

Based on the argument for at least continuous Q(ejΩ) and

Λ(ejΩ) made in Section III-B, we here assume that permutations

are chosen such that eigenvalues are at least continuous on

the unit circle, i.e. that permutations of eigenvalues can only

occur at algebraic multiplicities of those same eigenvalues, and

are applied such that 2π-periodicity of all functions in (19) is

retained. In the following we therefore distinguish three cases

as characterised by the examples in Fig. 1:

a) non-overlapping eigenvalues λm (ejΩ), where all eigen-

values have algebraic multiplicity one for all frequencies

Ω, such as the PSDs shown in Fig. 1(a);

b) overlapping, maximally smooth eigenvalues, such as

shown in Fig. 1(b); and

c) overlapping, spectrally majorised PSDs as shown in

Fig. 1(c).

Note that cases (a) and (c) are spectrally majorised, while cases

(a) and (b) will be seen to yield analytic eigenvalues for Ω ∈
R. Note that not all eigenvalues in (c) are differentiable for

every value of Ω, but they will later shown to be Lipschitz

continuous. In the rest of this paper we treat the cases of distinct

and overlapping eigenvalues separately.

IV. CASE OF DISTINCT EIGENVALUES

In the case of distinct, non-overlapping eigenvalues λm (ejΩ),
m = 1 . . . M , spectral majorisation in (2) holds with strict in-

equality for all Ω. As a result, the power spectra of the eigenval-

ues are smooth and distinct and, as in the example of Fig. 1(a),

do not intersect.

7Recall from Section III-B that a discontinuous function of frequency will
not admit an absolutely convergent Laurent or power series.
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Fig. 1. Examples for (a) non-overlapping and overlapping eigenvalues with
(b) smooth and (c) spectrally majorised PSDs. Non-differentiable points are
indicated by black circles.

A. Existence, Uniqueness and Approximation of Eigenvalues

Theorem 1 (Existence and Uniqueness of Distinct Eigenval-

ues): Let R(z) be a parahermitian matrix which is analytic at

least on an annulus containing the unit circle and whose EVD

on the unit circle, as defined in (9), has distinct eigenvalues

λm (ejΩ), ∀Ω and m = 1 . . . M . Then a matrix of eigenvalues

of R(z) exists as a unique analytic Laurent series Γ(z) that

matches Λ(ejΩ) = diag
{
λ1(e

jΩ) . . . λM (ejΩ)
}

on the unit cir-

cle.

Proof: If R(z) is analytic in the annulus ρ < |z| < ρ−1 then

we know from Section III-C that the eigenvalues λm (ejΩ),
m = 1, . . . ,M can be chosen to be analytic for real Ω. Since

analytic functions are Hölder continuous the discussion in Sec-

tion III-B applies and therefore a potentially infinite order,

matrix-valued Fourier series can be found that converges to

Λ(ejΩ). Further since the eigenvalues are analytic on the unit

circle, the Fourier series representation of the eigenvalues can be

analytically continued to an annulus containing the unit circle

via the substitution z = ejΩ . This gives the potentially infinite

Laurent series Γ(z) representing the M eigenvalues of R(z).
This matrix of eigenvalues, Γ(z), matches Λ(ejΩ) on the unit

circle, and therefore is unique as discussed. �

In order to find an approximation of finite length to a Laurent

or power series, consider that the Fourier series of the mth

eigenvalue takes the form λm (ejΩ) = limN −→∞ λ̂
〈N 〉
m (ejΩ), with

λ̂
〈N 〉
m (ejΩ) =

N∑

ℓ=0

cm,ℓe
jℓΩ + c∗m,ℓe

−jℓΩ , cm,ℓ ∈ C . (20)

With Λ̂〈N 〉(ejΩ) = diag
{

λ̂
〈N 〉
1 (ejΩ), . . . , λ̂

〈N 〉
M (ejΩ)

}

, absolute

convergence implies uniform convergence, such that for every

ǫΛ > 0 there exists N > 0 with

sup
Ω∈[0,2π )

∥
∥
∥Λ̂

〈N 〉
(ejΩ) − Λ(ejΩ)

∥
∥
∥ < ǫΛ , (21)

where ‖ · ‖ is any matrix norm. As N → ∞, ǫΛ → 0 at ev-

ery frequency Ω, so that the Fourier series (21) converges to

Λ(ejΩ). For finite N , an analytic continuation via the substitu-

tion z = ejΩ into (20) is always possible, and yields a Laurent

polynomial approximation Γ̂(z). Alternatively, a direct approx-

imation of Λ(ejΩ) by Laurent polynomials is available via the

Stone-Weierstrass theorem [41], [42], [47].

When approximating the exact eigenvalues Γ(z) by Laurent

polynomials of order 2N , a truncation error is incurred accord-

ing to (21). Since the region of convergence of Γ(z) may be

smaller than D, we cannot make a statement here about how

fast or slow such an approximation converges. The generally

infinite-length nature of the Laurent series representation of the

eigenvalues will be evident when we consider the “simple” case

of a 2 × 2 parahermitian matrix next, followed by an example

problem that was stated but not solved in [26].

B. Eigenvalues of 2 × 2 Parahermitian Matrices

In this section we exemplify the existence and uniqueness

of the eigenvalues of an arbitrary parahermitian matrix R(z) :
C → C

2×2 . These eigenvalues γ1,2(z) can be directly computed

in the z-domain as the roots of

det{γ(z)I − R(z)} = γ2(z) − T (z)γ(z) + D(z) = 0

with determinant D(z) = det{R(z)} and trace T (z) =
trace{R(z)}. This leads to

γ1,2(z) =
1

2
T (z) ± 1

2

√

T (z)TP(z) − 4D(z) . (22)

The argument under the square root is parahermitian and can be

factored into Y (z)Y P(z) = T (z)TP(z) − 4D(z), where Y (z)
has all zeros and poles inside the unit circle, and Y P(z) has

all zeros and poles outside the unit circle. In the rare case that

Y (z) has no poles and all zeros have multiplicity 2N , N ∈ N,

the solution for (22) is a Laurent polynomial. If both poles and

zeros of Y have multiplicity 2N , N ∈ N, the eigenvalues are

rational functions in z.

In general, the square root in (22) will be neither polyno-

mial nor rational, as recognised for a Laurent polynomial QR

decomposition in [27]. Within the convergence region |z| > ρ,

where ρ < 1 is the maximum modulus of all poles and zeros of

Y (z), we take the square root of each zero β and pole α in Y (z)
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Fig. 2. MacLaurin series expansion coefficients for square root of a zero or
pole.

separately. Then a Maclaurin series expansion gives

√

1 − βz−1 =
∞∑

n=0

ξnβnz−n (23)

1√
1 − αz−1

=

( ∞∑

n=0

ξnαnz−n

)−1

(24)

=
∞∑

n=0

χnαnz−n (25)

with

ξn = (−1)n

(
1
2
n

)

=
(−1)n

n!

n−1∏

i=0

(
1

2
− i

)

,

χn = (−1)n

(
− 1

2
n

)

=
(−1)n−1

n!

n−1∏

i=0

(
1

2
+ i

)

.

The MacLaurin coefficients ξn and χn for n = 0 . . . 50 are

shown in Fig. 2.

Thus, a stable causal square root Y (z)1/2 is obtained. The

square root of Y P(z) with a convergence region |z| < ρ−1 is

given by
(
Y P(z)

)1/2
=

(
Y (z)1/2

)P
. The representation of the

square root is therefore complete, and can be accomplished

by an infinite order rational function in z via (23) and (24),

or by a Laurent series via (23) and (25). The eigenvalues in

(22) therefore exist as convergent but generally infinite Laurent

series [41] but clearly could be approximated by finite order

rational functions or Laurent polynomials.

Example. To demonstrate the calculation of eigenvalues, we

consider the parahermitian matrix

R(z) =

[
1 1
1 −2z + 6 − 2z−1

]

(26)

stated in [26], which has poles at z = 0 and z → ∞ but is

analytic in {z : z ∈ C, z �= 0,∞}.

Using (23) and (25), the approximate Laurent polynomial

eigenvalues are characterised in Fig. 3 in terms of their PSDs

γ̂m (ejΩ), expansion coefficients γ̂m [τ ] such that γ̂m (z) =
∑

τ γ̂m [τ ]z−τ , and their log-moduli. The latter in Fig. 3(c)

shows the rapid decay of the Laurent series, justifying a Laurent

polynomial approximation.

This expands on the result in [26], where it was shown that

R(z) in (26) does not have polynomial eigenvalues, but where

Fig. 3. Approximate eigenvalues of R(z) in (26). (a) Power spectral densities.
(b) Laurent polynomial coefficients. (c) Decay of power series.

no polynomial or rational approximation was given. The ex-

ample demonstrates that an approximate solution using Laurent

polynomials exists, which can be arbitrarily accurate for a suf-

ficiently high order of γ̂1,2(z), as supported by Theorem 1.

C. Existence, Ambiguity and Approximation of Eigenvectors

Recall that the eigenvalues of R(ejΩ) are assumed to possess

non-overlapping PSDs, i.e the eigenvalues for all frequencies

Ω have algebraic multiplicity one, i.e. C = 1. The subspaces

in Section III-D can now all be treated as one-dimensional,

and eigenvectors are therefore uniquely identified, save for the

phase shift in (3). Since this phase shift is arbitrary at every

frequency Ω, the polynomial eigenvectors are defined up to an

arbitrary phase response. With this, some of the expressions in

Section III-D simplify, and permit the statement of the following

theorem.

Theorem 2 (Existence and ambiguity of eigenvectors for dis-

tinct eigenvalues): Let R(z) : C → C
M ×M be a parahermitian

matrix whose EVD on the unit circle, as defined in (9), has

distinct eigenvalues λm (ejΩ), ∀Ω and m = 1 . . . M . Each cor-

responding eigenvector qm (ejΩ) can have an arbitrary phase

response. Then for any phase response that creates a Hölder

continuous qm (ejΩ), an absolutely convergent vector-valued

series um (z) exists which matches qm (ejΩ) on the unit circle.
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Proof: Considering the mth eigenvalue and -vector, λm (ejΩ)
and qm (ejΩ), the spectral distance from its nearest neighbour at

frequency Ω is [31]

δm (ejΩ) = min
n �=m

|λn (ejΩ) − λm (ejΩ)| > 0 .

Now, in (16), E21(e
jΩ) : R → C

M −1 is a vector, and if (17)

holds, then (18) simplifies to

dist{qm (ejΩ), qm (ej(Ω+∆Ω))} ≤ 4

δm (ejΩ)
‖E21(e

jΩ ,∆Ω)‖F .

As ∆Ω −→ 0, also dist{qm (ejΩ), qm (ej(Ω+∆Ω))} −→ 0, and

the one-dimensional subspace within which each eigenvector re-

sides must evolve continuously with frequency. It can be further

shown that the eigenvectors can be chosen to be analytic [35].

Because of the phase ambiguity in (3), each eigenvec-

tor can be given an arbitrary phase response Φm (ejΩ), with

|Φm (ejΩ)| = 1 ∀ Ω ∈ [0; 2π), m = 1 . . . M without affecting

the orthonormality of eigenvectors. Only if Φm (ejΩ) is selected

such that the M elements of qm (ejΩ) vary Hölder-continuously

in Ω, then analogously to the proof of Theorem 1, a Hölder-

continuous qm (ejΩ) has an absolutely convergent Fourier se-

ries [40]

q̂〈N 〉
m (ejΩ) =

N∑

ℓ=−N

dm,ℓ · ejℓΩ , (27)

where dm,ℓ ∈ C
M and ‖q̂〈N 〉

m (ejΩ) − qm (ejΩ)‖ −→ 0 ∀Ω as

N −→ ∞. According to Section III-B, this admits an absolutely

convergent power or Laurent series um (z). If additionally the

phase response does not just create a qm (ejΩ) that is Hölder con-

tinuous but one that is also analytic in Ω, then the continuation

to an analytic um (z) exists. �

The selection of the phase response does not just cause am-

biguity of the eigenvectors, but also affects the properties of

a Laurent polynomial approximation of these eigenvectors. An

appropriate phase response may e.g. admit a causal, polyno-

mial approximation. Further, we distinguish below between the

selection of a continuous and a discontinuous phase response,

leading to matrices Q(ejΩ) that are continuous and discontinu-

ous in Ω, respectively:
� Hölder Continuous Case. This case is covered by Theo-

rem 2, which requires phase responses that are otherwise

arbitrary but constrained for qm (ejΩ), m = 1 . . . M , to

be Hölder continuous for eigenvectors U(z) to exist as

convergent Laurent or power series. Ambiguity w.r.t. the

phase response implies that for any differently selected

continuous phase response, a different U(z) emerges. Ap-

proximations of U(z) by Laurent polynomials Û(z) can

be obtained by truncation; this approximation will improve

with the approximation order and smoothness of the phase

response. A special case arises if the phase responses are

selected such that Q(ejΩ) is analytic, which directly im-

plies a convergent power series U(z).
� Discontinuous Case. If qm (ejΩ) is piecewise continu-

ous and possesses a discontinuity at Ω = Ω0 , then there

does not exist a convergent Laurent or power series

representation of the eigenvector. However since qm (ejΩ)
is periodic in Ω, an at least pointwise convergent Fourier

series does exist, and at the point Ω0 will converge to

lim
N →∞

q̂〈N 〉
m (ejΩ0 ) =

1

2
lim
Ω→0

(

qm (ej(Ω0 −Ω)) +

+ qm (ej(Ω0 +Ω))
)

. (28)

Since (28) is the mean value between the left- and right

function values at the discontinuity, a Fourier series rep-

resentation will not match qm (ejΩ) at least at Ω0 . An ap-

proximation by a Laurent polynomial Û(z) of sufficiently

high order, evaluated on the unit circle, will converge to the

mean values of Q(ejΩ) according to (28) at the disconti-

nuities, and Gibbs phenomena may occur in the proximity.

For the case where eigenvalues qm (ejΩ) are neither Hölder-

continuous nor discontinuous, uniform convergence of the

Fourier series cannot be guaranteed [40]; this case is outwith

the scope of this paper, but we refer the interested reader to

e.g. [40] for the appropriate conditions on convergence.

V. CASE OF EIGENVALUES WITH MULTIPLICITIES

Following the consideration of distinct, non-overlapping

eigenvalues λm (ejΩ), m = 1 . . . M , in Section IV, we now ad-

dress the case where the PSDs of eigenvalues intersect or touch,

i.e. there is an algebraic multiplicity of eigenvalues greater than

one at one or more frequencies. Because of an ambiguity of

how to associate eigenvalues across the frequency spectrum,

similar to the permutation problem in broadband blind source

separation, a distinction is made between maximally smooth

and spectrally majorised PSDs, as illustrated by the examples

in Fig. 1(b) and (c), respectively.

A. Existence, Uniqueness and Approximation of Eigenvalues

Section III-C indicated that eigenvalues of R(ejΩ), that have

an algebraic multiplicity of one, can be chosen to be analytic

(hence continuous and infinitely differentiable) functions on the

unit circle [35]. Therefore if we constrain the eigenvalues to be

continuous, then Λ(ejΩ) has to be at the very least piecewise

analytic on the unit circle.

It follows that if any two eigenvalues λm (ejΩ) and λn (ejΩ),
m,n = 1 . . . M , are permuted at an algebraic multiplicity

greater than one, then

sup
Ω1 ,Ω2 ∈R

|λm (ejΩ1 ) − λn (ejΩ2 )| ≤ L|ejΩ1 − ejΩ2 |

holds with m,n = 1 . . . M , the Lipschitz constant

L = max
m ∈ {1, 2, . . . M}

Ω ∈ R \M

∣
∣
∣
∣

d

dΩ
λm (ejΩ)

∣
∣
∣
∣

, (29)

and M the set of frequency points where eigenvalues have an

algebraic multiplicity greater than one. In between these points,

the r.h.s. of (29) exists because the eigenvalues are piecewise

analytic. Therefore any permutation of eigenvalues is Lipschitz

continuous, which matches with (10) for α = 1 and L = C.
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Fig. 4. Cluster of C eigenvalues in the neighbourhood of a C -fold multiplicity
at Ω = Ω0 .

Hence, this is a stronger condition than Hölder continuity, and

therefore guarantees the representation by an absolutely conver-

gent Fourier series in analogy to the arguments in Section IV-A;

an alternative representation in terms of Laurent series can be

reached via the Stone-Weierstrass theorem. This leads to the

following theorem:

Theorem 3 (Existence and uniqueness of eigenvalues of a

parahermitian matrix EVD): Let R(z) be an analytic paraher-

mitian matrix whose EVD on the unit circle, as defined in (9),

has an eigenvalue matrix Λ(ejΩ), ∀Ω ∈ R. Then the matrix of

eigenvalues Γ(z) exists as an absolutely convergent Laurent

series. Uniqueness requires additional constraints on the per-

mutation of eigenvalues on the unit circle, such as maximal

smoothness or spectral majorisation, with consequences for the

order of a Laurent polynomial approximation Γ̂(z) of Γ(z).
Proof: This is covered by Theorem 1 for distinct eigenvalues,

and otherwise follows from the above reasoning. �

The approximation of eigenvalues by Laurent polynomials,

here argued in terms of a truncated Fourier series expansion

(see Theorem 1), is guaranteed to be analytic because of the

restriction to a finite order. However, differences in the con-

vergence speed can be noted: we expect faster convergence for

analytic, i.e. maximally smooth eigenvalues than for spectrally

majorised ones, since for the latter Λ(ejΩ) is only piecewise an-

alytic on the unit circle. Therefore generally higher order Lau-

rent polynomials are required when approximating spectrally

majorised eigenvalues as compared to the maximally smooth

case, if eigenvalues have an algebraic multiplicity greater than

one on the unit circle. This outcome of Theorem 3 agrees with

results in [9], as well as with experimental findings in [48] based

on factorisations for different source models—with both distinct

and spectrally majorised sources—of a space-time covariance

matrix.

B. Uniqueness and Ambiguity of Eigenvectors

We now inspect the eigenvectors in the vicinity of a

C-fold algebraic multiplicity of eigenvalues at Ω = Ω0 , as

shown in Fig. 4. By assumption R(ejΩ) is analytic and, from

Section III-C, Λ(ejΩ) can be chosen to be analytic for all

Ω, including Ω0 . In this case, Rellich [35] shows that the

eigenvectors can be analytic. We want to explore the behaviour

of Q(ejΩ), and particularly the conditions under which it has a

unique analytic solution. That this is the case seems to be under-

stood in various texts [30], [35], [45] but the authors have not

found a definitive reference. Hence we offer Lemma 1, below,

as an alternative proof.

In rare cases we may find identical eigenvalues. Two

eigenvalues λm (ejΩ) and λℓ(e
jΩ) are identical if λm (ejΩ) =

λℓ(e
jΩ) ∀Ω. In the following we exclude this case; an ambigu-

ity is expected from (4), but the presence of identical eigenvalues

makes the analysis more involved and the case is usually avoided

by estimation and rounding errors in R(z).
Lemma 1 (Existence and uniqueness of analytic eigenspaces

on the unit circle): Under the assumptions of Theorem 3 and

in the absence of identical eigenvalues, there exist unique

1-d subspaces for analytic eigenvectors in Q(ejΩ) if and only

if eigenvalues in Λ(ejΩ) are selected to be analytic across alge-

braic multiplicities.

Proof: That it is possible to choose analytic eigenvectors

when the eigenvalues are all chosen to be analytic follows from

Rellich [35]. To see the ‘only if’ part, we now assume that the

eigenvectors are chosen to be analytic, and show that this can

only occur if the eigenvalues are also analytic.

By exploiting Theorem 1 between multiplicities, we know

that continuous eigenvalues have to be at the very least piece-

wise analytic on the unit circle. Further, between the points of

multiplicity greater than one, these functions are unique (up

to the order they appear in the matrix Λ(ejΩ)). If the analytic

eigenvalues from Rellich are Λ0(e
jΩ), then the only alternative

choice for the eigenvalue matrix is

Λ(ejΩ) =

{

Λb(ejΩ) = PbΛ0(e
jΩ)PH

b , Ω ≤ Ω0 ,

Λa(e
jΩ) = PaΛ0(e

jΩ)PH
a , Ω ≥ Ω0 ,

(30)

where subscripts ‘a’ and ‘b’ indicate ‘above’ and ‘below’ Ω0 ,

and Pa ,Pb ∈ R
M ×M are permutation matrices. Because we

can arbitrarily order the eigenvalues in Λ0(e
jΩ) and their corre-

sponding eigenvectors in Q(ejΩ) without affecting their analyt-

icity, w.l.o.g. we set Λa(e
jΩ) = Λ0(e

jΩ), i.e. Pa = I.

With reference to (19), we have

R(ejΩ) =

{

Q(ejΩ)Λb(ejΩ)QH(ejΩ), Ω ≤ Ω0 ,

Q(ejΩ)Λa(e
jΩ)QH(ejΩ), Ω > Ω0 ,

(31)

where Q(ejΩ) is assumed to be analytic, and R(ejΩ) is ana-

lytic by premise. With this, we can define nth order derivatives

approaching Ω0 from above and below,

lim
Ωa −→Ω0 +

dn

dΩn
a

R(ejΩa ) = R(n)
a , (32)

lim
Ωb −→Ω0 −

dn

dΩn
b

R(ejΩb ) = R
(n)
b , (33)

and state R
(n)
a = R

(n)
b ∀n ∈ N. From (30) it is clear that we

can define quantities Λ
(n)
a and Λ

(n)
b in analogy to (32) and (33).

In order to investigate if there is ambiguity in the choice of

eigenvectors, and to see how eigenspaces behave in the vicinity

of Ω0 , we define derivatives Q
(n)
a and Q

(n)
b of Q(ejΩ) from
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above and below Ω0 analogously to (32) and (33). Note that

because of the analyticity of Q(ejΩ), Q
(n)
a = Q

(n)
b ∀n ∈ N.

For R
(0)
a = R

(0)
b , we take the EVD on either side, and

with Q
(0)
a = Q

(0)
b and the premise of continuous eigenvalues,

i.e. Λ
(0)
a = PH

b Λ
(0)
b Pb due to (30), obtain

Q
(0)
b PH

b Λ
(0)
b PbQ

(0),H
b = Q

(0)
b Λ

(0)
b Q

(0),H
b . (34)

or

PH
b Λ

(0)
b Pb − Λ

(0)
b = 0 . (35)

For the first derivative R
(1)
a , the product rule can be applied to

the EVD factorisation,

R(1)
a = Q(1)

a Λ(0)
a Q(0)

a + Q(0)
a Λ(1)

a Q(0)
a + Q(0)

a Λ(0)
a Q(1)

a .

Taking the derivative of the r.h.s. of (34) and using a similar

expression for R
(1)
b , and equating R

(1)
a = R

(1)
b , we find that

Q
(1)
b

(

PH
b Λ

(0)
b Pb − Λ

(0)
b

)

Q
(0),H
b +

+ Q
(0)
b

(

PH
b Λ

(0)
b Pb − Λ

(0)
b

)

Q
(1),H
b +

+ Q
(0)
b

(

PH
b Λ

(1)
b Pb − Λ

(1)
b

)

Q
(0),H
b = 0 .

Because of (35), the first two terms are zero, and we obtain

PH
b Λ

(1)
b Pb − Λ

(1)
b = 0. By induction it can be shown that for

R
(n)
a = R

(n)
b indeed PH

b Λ
(n)
b Pb − Λ

(n)
b = 0 ∀n ∈ N, or

Λ
(n)
b Pb − PbΛ

(n)
b = 0 ∀n ∈ N . (36)

If pm,ℓ is the element in the mth row and ℓth column of Pb ,

then elementwise, (36) demands

pm,ℓ

(

λ
(n)
b,ℓ − λ

(n)
b,m

)

= 0 ∀n ∈ N ,

with λ
(n)
b,m the mth diagonal entry of Λ

(n)
b .

In the absence of identical eigenvalues, even if the ℓth and

mth eigenvalues, m, ℓ ∈ {1 . . . M}, m �= ℓ, belong to the clus-

ter forming a C-fold algebraic multiplicity at Ω0 , they will differ

in at least one differentiation n, and hence pm,ℓ = 0. As an ex-

ample, in Fig. 4, the 0th and 1st order derivatives of λm (ejΩ) and

λm+1(e
jΩ) match at Ω = Ω0 , but the n = 2nd order derivatives

differ. Therefore, Pb must be a diagonal matrix. Further, uni-

tarity, and the fact that Pb is a permutation matrix enforces the

constraint pm,m = 1, m = 1 . . . M i.e. Pb = I. Thus from (30),

recalling that Pa = I, we must have Λ(ejΩ) = Λ0(e
jΩ). There-

fore analytic eigenvectors are possible if and only if eigenvalues

are analytically continued across Ω0 .

Recall that the eigenvectors in Q(ejΩ) can possess arbitrary

phase responses; as long as the latter are analytic, Q(ejΩ) will

remain analytic. While this permits some ambiguity, under the

exclusion of identical eigenvalues, each eigenvector must how-

ever be orthogonal to the remaining eigenvectors, and hence

there exist unique 1-d subspaces within which analytic eigen-

vectors reside. �

Analyticity or at least Hölder continuity of Q(ejΩ) requires

that Λ(ejΩ) is analytic, and that the arbitrary phase response

of Q(ejΩ) is selected analytic or at least Hölder continuous.

We focus next on extending the eigenvalues and eigenvectors to

functions in z.

Theorem 4 (Existence and ambiguity of eigenvectors of a

parahermitian EVD): If R(z) has no identical eigenvalues, then

there exist unique 1-d subspaces for analytic eigenvectors of a

parahermitian matrix EVD, if and only if the eigenvalues are

analytic across a potential algebraic multiplicity greater than

one on the unit circle. Within this 1-d subspace, an eigenvector

exists as a convergent Laurent or power series if its arbitrary

phase response is selected such that the resulting eigenvectors

are Hölder continuous in frequency Ω.

Proof: It is known that the eigenvectors can be chosen to

be analytic on the unit circle if and only if the eigenvalues are

(e.g. Lemma 1). Each eigenvector qm (ejΩ), m = 1, . . . ,M , can

always be multiplied by an arbitrary phase response Φm (ejΩ),
provided |Φm (ejΩ)| = 1 for all Ω. If this phase response creates

an eigenvector qm (ejΩ) that is Hölder continuous for all Ω, then

qm (ejΩ) can be represented by an absolutely convergent Fourier

series as in (27). Analogous to the proof of Theorem 3, therefore

an absolutely convergent power or Laurent series um (z) exists

as the eigenvector, which matches qm (ejΩ) on the unit circle, i.e.

um (z)|z=ejΩ = qm (ejΩ). The selection of the phase response

will have an impact on the causality of um (z), i.e. whether it

will be a power or Laurent series. �

If the phase response is selected more strictly such that

qm (ejΩ) is not just Hölder continuous but analytic, then an

analytic um (z) can be obtained by analytic continuation via

z = ejΩ [29], [38], [39].

As a converse to Theorem 4, when eigenvalues are not se-

lected analytic on the unit circle, e.g. by enforcing spectral

majorisation in the case of an algebraic multiplicity of eigen-

values greater than one on the unit circle, or in the case of ana-

lytic eigenvalues but a discontinuous phase response Φm (ejΩ),
discontinuous eigenvectors qm (ejΩ) arise for which no exact

representation by an absolutely convergent power or Laurent

series exists.

C. Approximation of Eigenvectors

It is clear that if all eigenvectors qm (ejΩ), m = 1 . . . M are

Hölder continuous by virtue of analytic eigenvalues λm (ejΩ)
and appropriate phase responses, the convergent Laurent or

power series U(z) can be approximated arbitrarily closely by

Laurent polynomials Û(z)—or polynomials in the case that the

phase response admits a causal Û(z)—analogously to (21). The

speed of convergence depends on the smoothness of Q(ejΩ),
with faster convergence for smoother functions. The fastest

convergence can be expected if Q(ejΩ) is analytic, the con-

ditions for which are given by Rellich [35] and highlighted in

Lemma 1 (see Section V-B.)

For the following cases, Theorem 4 could not prove the ex-

istence of absolutely convergent power or Laurent series as

eigenvectors U(z). Nevertheless, approximations may still be

found:
� Discontinuous Phase Response. For analytic eigenvalues,

as long as the phase response qm (ejΩ) is piecewise con-

tinuous with a finite number of jump discontinuities, an
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approximation Û(z) can be reached via a Fourier series

which on the unit circle converges to Q(ejΩ) except at

these discontinuities. At discontinuities, the approxima-

tion Û(z)|z=ejΩ will converge to the average values stated

in (28).
� Spectrally Majorised Eigenvalues. If eigenvalues have an

algebraic multiplicity greater than one on the unit circle,

discontinuities arise for the corresponding eigenvectors

qm (ejΩ). Provided that these, together with any discon-

tinuities introduced by the phase responses, are finite in

number, a polynomial or Laurent polynomial approxima-

tion Û(z) via a Fourier series obeying (28) can be found.

VI. NUMERICAL EXAMPLE

We provide results for a numerical example with known

ground truth for a PhEVD with both analytic and spectrally

majorised eigenvalues, as well as for the results obtained by the

SBR2 algorithm [6]. This informs observations on differences

between the theoretical PhEVD established in terms of its exis-

tence and uniqueness in this paper, and what is obtainable via

iterative polynomial EVD algorithms.

Consider R(z) = U(z)Γ(z)UP(z) with paraunitary U(z) =
[u1(z), u2(z)] and u1,2(z)=[1,±z−1 ]T/

√
2. With the diagonal

and parahermitian Γ(z)=diag
{
z+3+z−1 ;−jz+3+jz−1

}
, the

parahermitian matrix R(z) : C → C
2×2 is

R(z) =

[
1−j
2 z + 3 + 1+j

2 z−1 1+j
2 z2 + 1−j

2

1+j
2 + 1−j

2 z−2 1−j
2 z + 3 + 1+j

2 z−1

]

. (37)

Analytic / Maximally Smooth Case. When extracting eigen-

values that are analytic on the unit circle, the so-

lution is given by the diagonal elements of Γ(z) =
diag

{
[z + 3 + z−1 ; −jz + 3 + jz−1 ]

}
, which are taken from

an example in [26]. The two eigenvalues overlap at Ω = 1
4 π and

Ω = 5
4 π, where they have an algebraic multiplicity of two, as

shown in Fig. 5(a).

The two eigenvectors u1,2(z) = [1, ±z−1 ]T/
√

2 are of order

one. To show that their evaluation on the unit circle evolves

smoothly with frequency Ω, we define ϕm (ejΩ) as the Hermi-

tian subspace angle [49], [50] relative to the arbitrary reference

vector u1(e
j0),

cos ϕm (ejΩ) = |uH
1 (ej0)um (ejΩ)| , (38)

with m = 1, 2 and 0 ≤ ϕm (ejΩ) ≤ π
2 . Similar to the subspace

distance discussed in Section III-D, in the absence of an alge-

braic multiplicity of eigenvalues greater than one, these angles

can be shown to evolve continuously under sufficiently small

perturbations of R(z) [51]–[53].

Fig. 5(b) shows the subspace angles in (38), and indicates

their smooth evolution with frequency. Note that because of

the modulus operation involved in the Hermitian angles, the

latter are reflected at ϕ = 0 and ϕ = π
2 , making ϕ(ejΩ) non-

differentiable even though the eigenvectors themselves can be

differentiated w.r.t. Ω.

Ideal Spectral Majorisation. To achieve spectral majorisa-

tion, the eigenvalues of the analytic case have to be permuted on

the frequency interval Ω = [ 1
4 π, 5

4 π] as shown in Fig. 6(a).

Fig. 5. (a) PSDs of eigenvalues that are analytic on the unit circle and (b)
subspace angles of corresponding eigenvectors.

Fig. 6. (a) Ideally spectrally majorised eigenvalues and (b) subspace angle
of corresponding discontinuous eigenvectors, defined on the unit circle; for
the latter, no power series um (z) exists; black circles indicate points of non-
differentiability and discontinuities.

Note that the resulting PSDs are Hölder continuous but no

longer differentiable at Ω = 1
4 π and Ω = 5

4 π. As a conse-

quence, the eigenvectors also must be permuted on the interval

Ω = [ 1
4 π, 5

4 π], which leads to discontinuous jumps of qm (ejΩ)
and subsequently the subspace angles at Ω = 1

4 π and Ω = 5
4 π,

as depicted in Fig. 6. For the Hölder continuous eigenvalues,

unique convergent Laurent series γm (z), m = 1, 2 exist. How-

ever in contrast to the above maximally smooth case, for the

eigenvectors, no absolutely convergent Laurent or power series

um (z) matches qm (ejΩ) on the unit circle.

Spectral Majorisation via SBR2. Applying the SBR2 algo-

rithm [6] to R(z) in (37) should give polynomial approxima-

tions of the eigenvalues and eigenvectors characterised on the

unit circle in Fig. 6 since SBR2 is proven to converge to a di-

agonal [6] and spectrally majorised parahermitian matrix [54].
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Fig. 7. (a) Approximate Laurent polynomial eigenvalues and (b) subspace
angle of corresponding approximate Laurent polynomial eigenvectors obtained
with the SBR2 algorithm [6] applied to R(z) in (37).

After 200 iterations and truncating small trailing values, SBR2

generates a polynomial approximation Γ̂(z) of the spectrally

majorised eigenvalues in Fig. 7(a). Of order 24, these spec-

trally majorised eigenvalues approximate the ideal eigenvalues

in Fig. 6(a) reasonably well, but are considerably longer than

the PSDs of order 2 for the case of selecting eigenvalues that

are analytic on the unit circle.

The paraunitary matrix obtained by SBR2 contains the poly-

nomial approximations of the eigenvectors, with their subspace

angles according to (38) shown in Fig. 7(b). Near the algebraic

multiplicities at Ω = 1
4 π and Ω = 5

4 π, the polynomial solu-

tion enforces smoothness, and approximates Q(ejΩ) as well as

possible, approximately obeying (28) at the discontinuities and

exhibiting Gibbs oscillations in their vicinity. Approximating

these jumps requires a high polynomial order, which in this

case is 84, compared to the simple first order eigenvalues that

are obtained in the maximally smooth case.

VII. DISCUSSION AND CONCLUSIONS

For an analytic, positive semi-definite parahermitian ma-

trix R(z) whose entries are Laurent polynomials or ratio-

nal functions in z, this paper has established under which

conditions there exists a parahermitian matrix EVD, R(z) =
U(z)Γ(z)UP(z), with paraunitary U(z) and parahermitian di-

agonal Γ(z). Based on an EVD on the unit circle, R(ejΩ) =
Q(ejΩ)Λ(ejΩ)QH(ejΩ), which exists for all frequencies Ω, this

paper has investigated whether the frequency domain quantities

Q(ejΩ) and Λ(ejΩ) admit representations by power or Laurent

series that are absolutely convergent (at least on the unit cir-

cle), i.e. whether they can be expressed in the time domain,

such that an exact match is achieved on the unit circle with

Γ(z)|z=ejΩ = Λ(ejΩ) and U(z)|z=ejΩ = Q(ejΩ).
We have constrained Λ(ejΩ) to be Hölder continuous in or-

der for an absolutely convergent Fourier series to exist. We

focus in particular on the cases that Λ(ejΩ) is analytic and/or

spectrally majorised. In either case, the eigenvalues in Γ(z) ex-

ist as unique, absolutely convergent Laurent series. If Λ(ejΩ) is

analytic in Ω, then additionally Γ(z) is also analytic in z within

some region of convergence. If the eigenvalues in Λ(ejΩ) pos-

sess an algebraic multiplicity greater than one, i.e. the PSDs of

eigenvalues intersect, then analyticity and spectral majorisation

cannot be reconciled, and one or the other has to be chosen.

Eigenvectors—the columns of U(z)—only exist as convergent

Laurent or power series if the eigenvalues Λ(ejΩ) are selected

analytic and if an arbitrary phase response is chosen such that

Hölder continuous eigenvectors result on the unit circle. If ad-

ditionally phase responses create eigenvectors that are analytic

in Ω, U(z) will be analytic in z within some region of con-

vergence. Eigenvectors do not exist as absolutely convergent

power or Laurent series in the case of spectral majorisation

in the presence of an algebraic multiplicity of eigenvalues in

Λ(ejΩ) greater than one, or if their arbitrary phase response is

discontinuous.

Eigenvalues can be arbitrarily closely approximated by Lau-

rent polynomials Γ̂(z) of sufficiently high order. Faster conver-

gence and therefore lower-order approximations are possible

for analytic Λ(ejΩ) compared to a case where differentiabil-

ity of Λ(ejΩ) is violated to enforce spectral majorisation. For

eigenvectors, where U(z) exists as an absolutely convergent

power series, polynomial approximations Û(z) can be obtained

by truncating U(z), and the approximation order depends on

the smoothness of the arbitrary phase response: the smoother

the phase that is selected, generally the lower the order of the

polynomial approximation that can satisfy a given limit for the

approximation error. Where an exact U(z) does not exist be-

cause of discontinuities of Q(ejΩ), a polynomial approximation

is still possible, provided that the discontinuities—due to spec-

tral majorisation in case of overlapping PSDs of eigenvalues and

to discontinuities in the arbitrary phase response—are finite in

number. However, such a polynomial approximation Û(z) will

require much higher order than in the case of an analytic Λ(ejΩ)
and a smooth phase response of Q(ejΩ).

Almost all current polynomial EVD algorithms produce a fac-

torisation R(z) ≈ Û(z)Γ̂(z)ÛP(z) that is spectrally majorised

(or very nearly so) despite there being no explicit algorithmic

step so to do. Recently it has been shown that by construction the

SBR2 algorithm implicitly produces a spectrally majorised solu-

tion [54]. Spectral majorisation is desirable for a limited number

of applications, where e.g. the coding gain maximisation [8] or

the extraction of MIMO subchannels of ordered quality [15]–

[17] matter. If the subspace decomposition of a parahermitian

matrix is important, such as for angle of arrival estimation [18],

[19] or beamforming applications [13], [14], [22], [23], then

the eigenvectors are central but not guaranteed to exist as con-

vergent power series. Polynomial EVD algorithms converge but

generally obtain solutions with a very high order associated with

high computational complexity; our results show that this is not

an algorithmic problem but associated with the fundamental ex-

istence of a PhEVD. We hope that the findings of this paper

can trigger the development of parahermitian matrix EVD al-

gorithms akin to initial efforts in [9] that target the extraction of

analytic eigenvalues, where eigenvectors can be guaranteed to
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exist as convergent power series and be approximated by much

shorter polynomials than in the case of spectral majorisation.
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[41] K. Weierstrass, “Über die analytische Darstellbarkeit sogenannter

willkürlicher Functionen einer reellen Veränderlichen. Erste Mittheilung,”
Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften

zu Berlin, Jul. 1885, pp. 633–639.
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