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Abstract. (1) In every separable Banach space X a biorthogonal sequence (,,, #3)
is congtructod such that supllw,)(lct|< oo, the linear combinations of the z,’'s are
3
dense in X and, for every o in X, if o} (x) = 0, for all ¢, ther x = 0.

(2) Tinear subspaces of L2[0, 1] which admit an orthonormal basgis consisting
o uniformly bounded functions are characterized.

The present paper consists of three sections. In the first one, using
a trick invented by Olevskil ([9], Lemmas 3 and 4), we prove

THROREM 1. 1o every separeble Banach space X there ewists a funda-
mental amd total biorthogonal sequemce (%, ®) such that

sup o gl < oo
I

Tiecall that a sequence (m,, @) of pairs consisting of elements of
a Banach space X and bounded linear functionals on X, i.e. elements
of X* — the dual of X, is said to be biorthogonal it o, (m,) = & for n, m
=1,2,... A biorthogonal sequence (w,, #,) is fundamenial if linear cox-
hinations of the @, are dense in X, and is fotal if the condition ) (w) = 0
for s = 1, 2, ... implies that o = 0.

Theorem 1 angwers o question of Banach ([1], p. 238). A slightly
woalker rosult has previously heen obtained by Davis and Johngon [4].

The inain result of the second section is

TunoreM 2. Let T be a separable linear subspace of a Hilbert space
L) where 48 @ probability messure on & sigma field of subseis of @ set 8.
Then & admits an orthonormal basis consisting of wniformly bounded functions
if and only if

(1) BAL™(u) is dense in B in the L*(u) norm,

(i) Ho{fe L®(u): iflle == 1} i not o totally bounded subset of L2(u).
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" Moreover, if ENI®(u) 18 o separable subspace of L™ (u), then the ortho-
normal basis can be construcied so that it spans ¢ linear subspace which is
dense in the norm ||| in ENL™(u).

As a corollary we obtain that every subspace of L2[0, 1] of finite
codimension admits a uniformly bounded orthonormal basis consisting
of trigonometric polynomialy, Thiy answers 2 question of TL Shapivo [14.].

In the third section we consider Banach spaces A with the following
property

(=) there emist & compact Hawsdorff space 8, on isomeirically isomorphic
embedding §: X-—C0(8) and o Borel probability measure p on & such thaet
the uwit ball of 7(X) vegarded as a subsct of L*(u) 45 not totally bounded.

Using a recent profound result of Rosenthal [15] we show that a Ba-
nach space X has the property (=) if and only if it contains a closed linear
subspace isomorphic to the space. {* of all absolutely convergent series of
scalars.

1. Proof of Theorem 1. Tf 4 is @ non-empty subset of a Banach
space X, then [A] denotes the closed linear subspace of X generated
by 4, and lin 4 the linear subspace of X generated by 4.

‘We begin with a lemma which is & modification of Olevskil’s Lemma 3
of [9].

Liyma L. Let X be a Banach $pace and let n be @ positive intoger. Let
By Bry ovey Bony be elements of X and let ay , o}, veey Wam_y be elements of
X" such that wy(z,) = 8% for p,g=0,1,...,2"~1.

Then there ewists a unitary real morin (@} Yoer <an Such that if

o2h—y an_
O = 2 of s and e = 2 apay for e 0,1,..., 9" 1,
i=o f=0
then
(1) Jnax ol < (1+3) 1 ) ax gl +27" fmy]
(2) max [l < (14V2) max llez | -+ 272 lag |,
Dgp <2 1egf<a®
(3) epleg) =0 for p,ge=0,1,...,9" -1,

(4) [{totogpam] = [{Tptop<an];

Proof. Conditions (3) and (4) are mmtle(l for every unitary 2% x 2"-
matrix. The specific unitary madrix for which (1) and (2) hold is defined to
Dbe the matrix which transforms the unit vector basis of the 2%-dimensional

[{9;}04h<2“] = [{@hhrepam].
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Hilbert space & onte the Haar basis of this space. We put

A fpe-nfd

oy o= B for 0 k<28,

- for or-8=1g,

S k< 2" 2y 1),

A gy ] BT gy R0y 1Y o o ORI (2 1 9,
0 for k< 2™2y and for k3 9475729 4-2)
{s =0,1,...,m=1; r =0,1,...,2°—1).
We have
' 2”"‘1 o)
(5) D lahgt e P2 10 YE o O R< 2

Tl Hascl)

Clearly,” (5) implies {1} and (2).

PROPOSITION 1. Let (,, 25 be a fundamental and total biorthogonal
sequence in o Banach space X such that there exists an increasing infinite
sequence (Ny) swch that m;p llmnkﬂnm;’;hll = M < co.

v

Then there exists o fundomenial and totel biovthogonal sequence (e, )
in X such that ‘

sup [, lexl) << M (1-+V2)2 +

R

and

; . *
1111167,};1'”1 = lin {-’I’n il and hn{en n=1 hn{wn};.;l'

Proof. Without loss of generaliby one may assume that [, =1
for all #. Pick o permutation p(-) of the indices and an increasing sequence
y . . p ™ ~ * 9
(mp) of the indices so that if 2, = @, aod T = ey TOT all » and
T

ge= > 2™ for wll 7, then
Mo

if n oo g, for all », then |, I0E < M,
I w =g, for some ¢ =0,1,..., then
(LA V2RI 41 2 [(L-V2)M 4 IIE'ZH""““J[ 14Y/2) 4 [, 127",

Next put:

bl * vl v oy

e, ==&, oand ¢ =&, for w3
g
2 )

T B ® Z a’m,w‘
Yl [ i wkvjmﬂ ﬂr-—l’ 6]54-(1,_.1 P kj Ay
70 =
for O0h<2™;r=1,2,

where af’; ave defined as in Lemma 1 for m = m,. Using Lemmsa 1, we
easily verify that the sequence (e, e,) has the desired properties.
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Prootf of Theorem 1. We ghall asguime that'dimX = o0. Then the
separability of X implies that there exist sequences ¥, <« I, < ... of
subspaces of X and F, < Fy < ... of subspaces of X such that din 3,

——dimF—i fori=1,2, ,UE is dense in X and if f*e) = 0, for

all f*e U F;,thenx=0. In v1ew of Proposition 1, it is enough tio coustruet
q=1

& biorthogonal sequence (z,, 7y in X such that if &,

and H, = [a7, &), ..., o] then for all s

{6) Gsz = B} Hyy = I ”"‘vss”“w;nu % 3.

Pick o, e X and @ e X* so that 0 s oye By and 2} (1) = 1. Assume thad,

for some #—1 = 1, the elements #,, @, ..., #,_, in X and the funetionals

By, %5, .y By i X7 have Deen defined to satisty (6) and so that af(s,)

=0f for p,¢=1,2,...,2—1. We consider separately three cases.
Cage L: w =3s—2. If &,_; > K, we define s, X and 2 I* arbi-

trarily, so that

dhlag) = 85 and  wh(w,) = oY for

= [y, Wy +0ny ©0,]

Py =12,...,n.
If B\G,_, is non-empty, say ec E,\G,_,, then we put
By = €6 — 2 ap(e)m, and G, =[G, Uin}).
=]

Clearly, m, 0. Bince dimE, = dim#,_,+1 and ¢¢ G, \F, , and rince
the inductive hypothesis implies that F, ; = &,_,, we infer that G,> .
Since @,¢ @, \¢,_;, there exists a bounded linear functional on @, say
g%, such that g%(®,) =1 and g*(g) = 0 for g<@,_,. We detine . to be
any extension of ¢* to a bounded linear funetional on X.

Case 2: n =3s—1. It H,_ , > F we define w, ¢ X and o)« X™ arbi-
trarily so tha,t m”(:o) = 07 and &, * (@) = gy for p,q =1 2, o, It
FANH, , Iz non-empty, say fe F\Hﬂml, then woe put;

w1
® #*
~ > 1w
=1
Since f ¢ H, ,, ther¢ exists an xe X such that

N1

() 7 Z"f* (i) ().«

- Tt is easy to check that of(w,) = 8% and

wp(m,) = 6 for p,g=1,2,...,n Let H, = [H, ,U{a}}]
inductive hypothesis 1mpheh that F,_, < H“_ and
= QmF,_,+1 and f*« F\F, ,, we infer that H, > F,.

n—1
. L . .}
We put o, = o~ 3 2 (2)m,
P}
Since the
since  dim K,
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Gase 3: n = 35 Using Muzur’s technigue (of. [10], Lemma) we pick
an @, e X with |lo,| = 1 so that w*(s,)= 0 for every s*<H,_, and, fo
all g in &, and for all sealaws 4, g4z, = (1 —3%)llgll. Define g* on &,
by g*(g4-1m,) == 1. Then

W] = lie, | =< llg + tagl 4 g 5 (L3 g + ten].
Thus [ = 3. We define o} to be any norm preserving extension of g*
to # linear functional on X,

Remark L Using in Case 3 Day’s technique (cf [3]) which bases
on the Borsuk antipodal mapping theorem onc can ¢hoose (both in the
care of real and of complex scalars) sy, and @, so that

Vool == llafl] = why(ws) =1 for s =1,2,...
Now the inspeetion of the proof of Theorem 1 yields that in every separable
Banach space for every s > 0 there existy a fundamental total and bounded.
biorthogonal sequence (e,, ¢;) such that [, ekl < l+l/2 2 +e for all n.
Ilowever, as it was observed Dy C. Bessaga, we have

Coxorncary 1, Buery separable Banach space X admils an equivalent
norwy |||+ ][] suwch that there epists in X o fundamental and total biovthogonal
sequence (6, ey with [lley|1l-11eplll = 1.

Proof, We admit ||jw]|] = max(lal, suples(x)l) for z<X where
”

(€4, n) 18 any fundamental and total bierthogonal sequence in X such
that e, = 1 for all »n and sup|e] < cc.

ki
Remark 2. A similar argument to that which was used in the proof
of Theorem 1 allows us to prove the following
Trmorkm 1. Let X and Y be Banach spaces and let T: X+ be
o one-to-one bownded linear operator. If X is separable, T (X) is dense in ¥
and I’ 18 nwot eompact, then there exist fundemental and lotal biorthogonal
sequemees (@, w) e X omd (¥, yn) 0 ¥ such that

Hul”“‘”‘-(”'l’n””'l‘nnr HUNHH?/;’:H) < oo and T("’vn) = U f()'l” oll n.

2. Comstructions of wniformly bounded orthonormal sequences. We
employ the following notation. If 4 is & probability measure (= a non-

negabive normalized measure) on a sigma field of subsets of a set § then

<ruu>w~-fm $)y(5) w(ds),

[l = int suplu(s)|

lklly = Gy 25 and
. H(B)=1 geB
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for any p-absolutely square summable scalar valued functions # and yv

on S. I¥(p) and L?{u) denote as usually the Banach spaces of those
that  [#), << oo and |z, < oo, respectively.

The proof of Theorem 2 ig similar to the proof of Theorem 1. Ingtead
of Propesition 1 we apply the following result due to Olevskil ([9], Lemma, 4).

ProrosyrroN 2. Let u be a probability measure on a sigmo field of
subsets of o set 8. Let (v,) be an infinite ovthonormal (with respect to the inner
product {, >) sequence of functions in L™{u) such that limint |, |l < oo
Then there ewists an orthonormal sequence (e,) sweh that ™

linf{a,}on, =1lin{etm;  and  supllo,ly, < oo.

£

The proof of Proposition 2 can be obtained by a non-essential mod-
ification of the proofs of Lemma 1 and Proposition 1.

To prove Theorem 2 it is convenient to use the following simple fact,

Lmnva 2. Let (g,) be a normalized sequence in L2(u) which weakly
in I (u) comwerges 1o zero amd let sup lgnllo = M << co. Then for every

o

Jimite dimensional subspace of L*(u), say T, and for k> 0 there ewist an
inden 1y > k and a function h in the orthogonal complement of F such that

[FU{gah] = [FUB}], (bl =1  ond [l < M-27".
Proof. Let p = dimF. Let ¢, é,, ..., €, be any orthonormal basis
for #. Pick ¢ > 0 so that
Fi
M e 3 el .
= M2,
l—ep

Since (g,) converges weakly to 0 in L*(u), there exists an index n, > &
such thab Ky 6591 << & for 1<j<p. Put

n
o= (g, — g_; g 694) ||g,,,0—j2’; (Inyr 08"

Olearly, i belongs to the orthogonal complement of &, [h]l, = 1 and
[Fuig,t] = [FU{h}]. We have

» » M
gnu—j;; {Gngs 65)%1‘00 < gl -+ Hf;: Gy epejums_g ML Ej;l' lesl1o
and

, .
”gn"—j‘;’: <gn07 € 3;,'“2~—>’ HQ,,nHa— Hé' <gn0, Bj>6j ”2_} L—ep.
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Thus

P
blloe << (-6 3 loyllo) (1~ 2p) ™" <M +27%,
i=1

Proof of Theorvem 2. It follows from (i) that there exists in ¥

an increasing sequence of finite dimensional subspaces F, — F, c ...
©

such that dimd,=p and ) F, is dense in B. Clearly, if BEnI® () is

Jr=al

a geparable subset of L®(u) one can choose the sequepce (F,
o™

'») 50 that

the union U1 B, is dense in BNL®(g) in the L*{u) norm. Condition
e

(i1) yields that there exists in # a sequence (g,) satisfying the assumption

of Lemima 2. In view of Propogition 2 it iy enough to define induetively

an orthonormal sequence (h,) in L™(u)NE so that, for s =1,2,...,

(7}
(8) Wiggllow << B +27*

[{Bay bgy ooy Bagi}] = o,

where M = supllg,le-
n

We define b, as any clement of F; with |k, ], = L. Suppose that for some
n—1 71 the functions Ay, by, ..., h,_, have been defined to satisfy the
conditions (7) and (8) and so that {h,, b,y = 2 forp,¢=1,2,...,2—1
Let us consider separately two cases.

Oase 1: n = 2s for some § = 1,2, ... We put k, = h where h is that
of Lemmsa 2 applied for P = [{hy, hyy ..., hy_y}] for (gp) and for k =s.

Case 2: n == 2s—1 for some s = 2,38,... I F, < [{hy, gy -y By} )y
we again define h, = b where /i ig that of Lemma 2 applied for F
= [{hyy By, ooy By }] TOr (gp) amd for k=1 I B, & [{hy, .., By},
then there exists an f which belongs to FyN[{hy, Ray .o, Ba_q}]. Lt f
be the orthogonal projection of f onto [{Ay, frgy .., ha_13]. We put h,
g (f e /N) It~ fH;l. Clearly, |k, =1 and b, belongs to the orthogonal
complement of [{fy, ha, .. oy By} Obvioudly, we have fe[{fy, hoyoony Ryd 1N
N[{hyy hgy oovy b}l By the inductive hypothesis, F,., = ‘[{hl, Bgy oo-

oy by Y] Thus, By @ [{hyy hay -y hy)] because dim B, =dimP, ,+1.

This eompletes the induction and the proof of the sufficiency of con-
ditions (3) and (i), The necessity is txivial

Romark 1. A similar argument gives

Trsorsy 2. Let T: X—H be a one-lo-one bounded linear operator
from & Banach space X into o Hilbert space H. Let E=T (X)'. If B is
separable and T i3 not compact, then there ewists & sequence {w,,) i X such
that sup iz, < oo end (T(z,)) is an orthonormal basis for B.

" .
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Moreover, if X is separable and a@ye X* is defined by @) () = {1 (=),
T(w,)sp for weX and for n=1,2,..., where (-, >y denotes the inner
product of H, then {z,) can be chosen so thal (i, wp) is o fundemental and
toial biorthogonal sequence in X amd sup fa,l |zl < oo

m

Remark 2. There exists an orthonormal decomposition of L°[0, 1]

onto subspaces E, and I, such that neither B, nor ¥, admit uniformly
bounded orthonormal bases. It is enough to define M, = [{m} U{wg, .o
and Fy = [{#.} U{By, 1} mes Wwhere (z,) i any orthodormal bhasis for
I*[0,1] sach that the functions #;, and , are unbounded, my,,., (4 = 0
for 0 Cé < § and @y, (f) =0 for 3<<i=s L (m =1,2,...). However, as
was observed earlier by F. G. Arutunian (unpublished), we have

CoroLLaRY 2. If B is a linesr subspace of a separable spuce 17 (u)
where p is 6 non-purely atomic probability measure amnd if the orthogonal
complement of B is finite dimensional, then [H)] has a wniformly bownded
orthonormal basis.

Moreover, if ENL™(u) is dense in B then the basis can be ehosen from
elements of BNL™(u).

Proof. It is enough to show that [#] satisfies conditions (i) and (i)
of Theorem 2. To check (i), fivst observe that the density of L (u) rogurded
as o subspace of L (u) in L*(x) implies that for every positive integer p
and for every linearly independent fi, fo, ..., . In L*(4) there exist
Y1y Yoy ooy Ypor I L7 (u) such that the matrix (yy, fi)crniepr: 18 invertible.

1

Lot (@ haineps be the inverse maitrix and let 2, = pj @y Yy Tor 4

fe=]
=1,2,...,p+1 Then ze L®(u) and (o, fi> = 6l fard,§=1,2, ..., p-+ 1.
The above obgervation applied to any basis of the orthogonal complement
of # and any non-zero element f of [H] yields the existence of an y in L™ ( )
such that {y, /> = 1 and {y, g> =0 for all g in the orthogonal complerment
of E. The last condition means that ye [B]. Hence there is no f#0in
[B] which is orthogonal to all ye [B]NL™(u), equivalently, [H]NL*( )
i dense in [H]. Ience [E] satisties (i).
_ Let P denote the orthogonal projection from I*(u) onto [#], T the
identity operator on L*(u), and I,: L™ (u)— () the natural injection,
I,,is not compact becanse p is not purely atomie, while (I - L) I, i8 compaed
because the orthogonal complement of J-iy finitely dimensional, Thus,
PI, is not compact, equivalently, [#] satisfies (ii).

The “moreover” part of the covollary follows from the ohservation
that in this case if [E] satisties (ii) then B also sabistios (i1).

An immediate consequence of Corollary 2 is

COROLLARY 3. Let f be any unbounded funciion in I? [0,17. Then the
orthogonal complement of § admits a uniformly bounded orthenormal basis
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eonsisting of trigonometric polynomials. This basis has no esltension to any
wniformly bounded orthonormael bagis for TF[0, 1].
Corollary 3 angwers a question of Shapiro [14].

3. Fat subspaces of C(S) spaces.

DupivirronN, Let g be a probability Borel measure on a compact
Hausdorff space 8. A closed linear subspace Z of €(8) is said to be fat
with respect to w if the unit ball of Z regarded as a subset of the Hilbert
gpace I?(n) is not totally bounded.

Lot I, L°(u)—JT7(u) denote the natural injection. Tt is clear that
Z is fat with respect to u iff-the restrietion of I, to Z is not & compact
operator or, equivalently, it B = I (%) satisfies condition (ii) of Theorem 2.

Our next result characterizes Banach spaces which admit fat iso-
metric embeddings into C(9) spaces. Some of the equivalent conditions
are stated in terms of 2-abgolutely summing operators, i.e. such bounded
linear operators which admit a factorization through a natural injection
I, for some mensure u (cf. [12] and [8]).

ProposroroN 3. For every Banach space X the following conditions
are equivalent:

(a) there emists a uniformly bounded sequensce (@,) of elements of X such
that no subsequence of (5,) 18 & weak Couchy sequence,

(b) X contains a subspace isomorphic to I,

(c) there ewists o 2-absolutely summing operator from X onto AN

() there emists a 2-absolutely summing non-compact operator from X
into 18 )

(e) for every isometric embedding j of X into & C (8) space there ewists
a probability Borel measure p on 8 such that j(X) is fat with respect to u,

(£) for seme isometric embedding § of X into & C(S) space there emists
o probability Borel measwre p on 8 such that j(X) is fab with respect to .

Proot. (8) = (b). This is a profound recent result of Rogenthal

13].

: J(b) @ (¢), Let 7 be a bounded linear operator from I onto 1% (cf.
[2] for the existence of such operstors). Then, by a result of Grothendieck
[7] (ef. also [8] ), T is Z-absolutely summing. Hence, by [12], T admits
an extension to a 2-abzolutely summing operator from X onto 2.

(e} = (d). Ohvious. :

(d) = (e). Let T': X—~I* be & non-compact 2-absolutely summing
operator and let § be a compact Fausdortt space. By a result of Persson
and Pietsch [L1], for every isometric embedding j: X—»C(8) there exists
a Borel probability measure g on § such that T' = AIj for some Dboundecl
linear operator 4 : I*(p)-- 1% Since ' is non-compacs, the image ef the unit

4 — Studla Mathematies LIV.2
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ball of j(X) under I, is not a totally bounded subset of I*{p). Thus, j(X)
is a fat subspace of ((S8) with respect to u.

(e) = (f). Obvious.

() = (a). Tt follows from (f) that there exists a uniformly bounded
sequence (#,) in X sueh that [Ij(z,) —LJ(#a)llz=>1 for o #=m (n, m
=1, 2, ...). Thus the sequence (x,) does not contain weak Cauchy sequences
because I, takes weak Catchy sequences into strong Cauchy sequences.

A similar vesult to our Proposition 3 was recently independently
diseovered by Weis [16].

Our last result is related to Gaposhkin’s [6] generalization of a resulb
of Sidon [15].

CoROLLARY 4. Leb u be a probability measure on o sigma fisld of subsels
of 8. Let (g,) be a uniformly bownded sequence in L™ (u) such that {g,) tends
weakly to zero wn I {u) and Umgup |g.l; > 0. Then there emisis an infinite

k3
subsequence (¢,,) and ¢ >0 such that

» n -
HZ cl’cgnk P > 62 mh:l
k=1 Few= ]
for every finite sequence of scalars ¢y, 65, ..., 0, (P =1,2,...).
Proof. Without loss of generality we may agsume that intllg,|ls > 0.

n
Then (g,} does not have Cauchy (in L*(g)) subsequences because (g,)
weakly converges in L*(u) to zero but no subsequence of (g,) strongly
converges to zero. Thus (g,) regarded as a sequence of elements of L™ (u)
does not contain weak (in L™ (u)) Cauchy sequences because the natural
injeetion I,: L®(p)—~L*(u) takes weak Cauehy sequences in L%(u)
into strong Cauchy sequences in I*(u). Sinee sup |9,/ < oo, to complete

k3
the proof it is enough to apply Rosenthal’s criterion (cf. Rosenthal [13]
for the real case, and Dor [5] for the complex cage).

Added in proof. Since the complelion of the present paper the sscond namod
author proved that in overy separable Banach space, for every e > 0, ihere oxista
& fundamental total and bounded by 1--¢ biorthogonal sequence (of. [177).
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