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ON THE EXISTENCE OF A GENERALIZED SOLUTION

TO A THREE-DIMENSIONAL ELLIPTIC EQUATION

WITH RADIATION BOUNDARY CONDITION*

László Simon, Gisbert Stoyan, Budapest
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Abstract. For a second order elliptic equation with a nonlinear radiation-type boundary
condition on the surface of a three-dimensional domain, we prove existence of general-
ized solutions without explicit conditions (like u

∣∣
Γ ∈ L5(Γ)) on the trace of solutions. In

the boundary condition, we admit polynomial growth of any fixed degree in the unknown
solution, and the heat exchange and emissivity coefficients may vary along the radiating
surface.
Our generalized solution is contained in a Sobolev space with an exponent q which is

greater than 9/4 for the fourth power law.
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1. Introduction

Second order elliptic equations with a nonlinear radiation boundary condition have
been considered in quite a number of papers. Classical solutions for the multidimen-

sional case have been investigated in [4], and, under certain conditions, existence,
unicity and stability of positive solutions have been shown. [6] considers mainly the

parabolic case (but derives also results for elliptic equations) for a much broader
class of functions figuring in the boundary condition than [4]. For more literature on

classical solutions see the references in both the papers.

*This work was supported by the Hungarian Ministry for Culture and Education under
grant No. FKFP 0174/1997.
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For the foundation of finite element methods, weak solutions have been considered

for the same problem, e.g. in [15], [12] for the two-dimensional case. Research on weak
solutions for the three-dimensional case was restricting the Sobolev space in which
the solution was searched by requiring the trace of the solution on the boundary

to be in the space L5(Γ), see [5]. The point is that—as revealed by the imbedding
theorems—in three dimensions (as opposed to the case of two dimensions) the trace

of an H1-function is in general not contained in an Lq space convenient for the
investigation. The line of [5] has been continued in the recent paper [11] in which

the authors investigate also finite element solutions under such assumptions.

For the research presented in this paper, the motivation was [7] where the boundary

condition for temperature would have been more realistic if it were of radiation type.

We will prove existence of a generalized solution without explicit conditions on
the trace of the solution. To do so, we add, however, to the radiation boundary

condition a linear term in order to be able to guarantee the unicity of the corre-
sponding linear problem. Physically, this addition corresponds to the admission of

a convective heat transfer from the surface which anyway takes place but may be
negligible for sufficiently high temperatures.

Our main result is the existence of a generalized solution in a Sobolev space

W 2,q(Ω), for q sufficiently large, the space being defined on a general bounded and
smooth three-dimensional domain Ω, for a general nonlinear Neumann-type bound-

ary condition (with polynomial growth of any fixed degree in the unknown solution,
and admitting the heat exchange and emissivity coefficients to vary along the ra-

diating surface), and for sufficiently small σT 30 , where σ is the Stefan-Boltzmann
constant and T0 the temperature of the surrounding medium.

This result is apparently unknown and therefore of theoretical interest. Moreover,

we think that our result is interesting also from the numerical point of view (in spite
of the exponent of the Sobolev space being different from 2 and in fact greater than

9/4 for the fourth power law), since under such circumstances estimates for numerical
solutions are known in literature, see, e.g., [2], Chapter 7, and (for the interpolation

error) [3], Chapter 3.
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2. The boundary value problem

Consider a bounded open domain Ω ⊂ �
3 with a boundary ∂Ω = Γ which is

supposed to be of class C1,1 (i.e. continuously differentiable, and its derivatives are

Lipschitz continuous, see Def. 1.2.1.1 in [8]).
In Ω the following boundary value problem is given in which the derivatives are

understood in the generalized sense:

Au = − div(a gradu) = 0, x = (x1, x2, x3) ∈ Ω,(1)

a(x)
∂u

∂n
+ h(x)u = ϕ(x)− bd(x, u), x ∈ Γ.(2)

Here d is a continuously differentiable function of its arguments with polynomial
growth in u (more specific conditions will be formulated below). Moreover, b is a

small positive constant, a is a Lipschitz continuous function of x ∈ Ω and bounded
away from 0: a(x) � a0 = const > 0.

Further, n is the unit outward normal vector to Γ, h is Lipschitz continuous on Γ,
nonnegative but not identically zero, and finally, ϕ is sufficiently smooth (see below)

on Γ.
In (1), we could have added a source term f (anticipating the definition of the

solution u below: f ∈ Lq(Ω) for some q), but we will concentrate here on considering
the nonlinear boundary condition (2). Concerning the physical sense of this boundary

condition, we remark that Γ is assumed to be a surface on which the convective and
radiational heat exchange takes place. The continuity of the heat flux on Γ means

a
∂T

∂n
= qΓ(T ),

where T is the absolute temperature of the body considered and qΓ is the heat flux on

its surface, i.e. the sum of the convective and radiational heat flux (per unit surface
area). Hence, we have (see, e.g., [9], p. 546)

qΓ(T ) = α(T0 − T ) + εσ(T 40 − T 4),

with α, ε and σ being, respectively, the heat exchange coefficient, the emissivity

coefficient and the Stefan-Boltzmann constant (the last one being approximately
5.67 ·10−8 if measured in W/(m2K4)). Norming the temperature T to the (constant)
temperature T0 outside the radiating body, we obtain the function u := T/T0 sought
in (1), and for the second kind boundary condition we get

a
∂u

∂n
= qΓ(uT0)/T0 = α(1− u) + εσT 30 (1− u4)(3)

= (1− u)(α+ εσT 30 (1 + u+ u
2 + u3)).
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From here it is seen that in (2) we allow the heat transfer and emissivity coefficients

to vary along the surface, having

(4) h(x) = α(x), ϕ(x) = α(x) + bε(x), b = σT 30 , d(x, u) = ε(x)u
4.

The specific forms (3) and (4) of the boundary condition illustrate the more general

form (2) on which we focus our attention.

The generalized solution of (1)–(2) will be defined as an element of a Sobolev

space W 2,q(Ω) with an exponent 32 � q <∞ which will be chosen sufficiently large.
For details on Sobolev function spaces see [1] and [8]. As is well known, see [8],

Theorem 1.5.1.2, the trace mapping

W 1,q(Ω)→W 1−1/q,q(Γ)

is continuous. Hence

a
∂

∂n
: W 2,q(Ω)→W 1−1/q,q(Γ)

is well defined and continuous with respect to u ∈ W 2,q(Ω).

3. Existence in W 2,q(Ω) of a solution to the linear problem

Introducing the notation ψ(x) := ϕ(x) − bd(x, u(x)), instead of (1)–(2) we will

consider the linear problem (1), (5), where

(5) a(x)
∂u

∂n
+ h(x)u = ψ(x), x ∈ Γ.

Our aim in what follows is the selection of ψ ∈ W 1−1/q,q(Γ) such that the solution

of (1), (5) exists uniquely and, moreover, is a solution of (1), (2) as well.

For this we remark, first of all, that (1), (5) cannot possess more than one solution u

in W 2,q. Indeed, if this linear problem admitted two solutions u1 and u2 then
v := u1 − u2 would be a solution of the corresponding homogeneous problem. Thus,
multiplying the obtained equation for v in the L2 scalar product by v we would
obtain (observe that for q � 3

2 and in our case of three dimensions, for u ∈W 2,q(Ω)

we have gradu ∈ (L2(Ω))3)

0 =
∫

Ω
(Av)v dx =

∫

Ω
a(x)|grad v|2 dx−

∫

Γ
a(s)

∂v

∂n
v ds

=
∫

Ω
a(x)|grad v|2 dx+

∫

Γ
h(s)v2(s) ds.
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From here we get v = 0 in W 2,q since v must be constant in any case due to h � 0;
but h �≡ 0 shows that this constant must be zero.
Next observe that (1), (5) is selfadjoint [10], that is, the adjoint problem also has

at most one solution. Then we may refer to [8], Lemma 2.4.2.1, for the fact that our

linear problem possesses a solution in W 2,q(Ω) for boundary data ψ ∈ W 1−1/q,q(Γ),
and this solution satisfies the estimate

(6) ‖u‖W 2,q(Ω) � c0‖ψ‖W 1−1/q,q(Γ),

where for the W 2,q norm we employ the expression

‖u‖W 2,q(Ω) = ‖u‖q,Ω +
3∑

k=1

∥∥∥∥
∂u

∂xk

∥∥∥∥
q,Ω

+
3∑

k,�=1

∥∥∥∥
∂2u

∂xk∂x�

∥∥∥∥
q,Ω

.

Here and below, the standard Lq(Ω) norms are denoted shortly by ‖·‖q,Ω.

4. The fixed point problem

We denote the solution u of (1), (5) by u = F (ψ). By construction, u = F (ψ) ∈
W 2,q(Ω) will solve the original problem (1)–(2) iff

(7) ψ = ϕ− bd(·, F (ψ))
∣∣
Γ
.

In other terms, ψ must be a fixed point of the mapping

(8) Φ: W 1−1/q,q(Γ)→ W 1−1/q,q(Γ)

defined by

(9) Φ(ψ) := ϕ− bd(·, F (ψ))
∣∣
Γ
.

Using similar arguments as in [13]–[14], we will show that the Schauder fixed point

theorem can be applied to (8), (9).

Theorem 1. For q sufficiently large and for any ϕ ∈ W 1−1/q,q(Γ), the mapping
(8)–(9) is continuous and compact.

�����. First, from (6) and the linearity of (1), (5) we see that F is a linear

continuous mapping for ψ ∈W 1−1/q,q(Γ):

F : W 1−1/q,q(Γ)→W 2,q(Ω).

245



Next we clarify under which conditions the mapping

(10) u→ d(·, u)

is a continuous and compact mapping from W 2,q(Ω) into W 1,q(Ω), see (12)–(15)
below. Taking this for granted for a moment, we may conclude—since the trace

mapping

W 1,q(Ω)→W 1−1/q,q(Γ)

is continuous—that

u→ d(·, u)
∣∣
Γ

is a continuous and compact mapping from W 2,q(Ω) into W 1−1/q,q(Γ). Hence, for

ϕ ∈ W 1−1/q,q(Γ), (9) is also continuous and compact.

Therefore we now consider u ∈ W 2,q(Ω). We remark first that the Rellich-

Kondrashov theorem implies that the imbedding W 2,q(Ω) ↪→ W 1,r(Ω) is compact
for r appropriately chosen; specifically, from [1], p. 144, we have this property under

the following conditions:

(11) if 3 � q then for all finite r, if 3 > q then for r <
3q
3− q

.

In the following lemma we answer the question under which conditions (10) is
continuous and bounded as a mapping from W 1,r(Ω) into W 1,q(Ω). Then (10) as

a mapping W 2,q(Ω) ↪→ W 1,r(Ω) → W 1,q(Ω) is continuous and compact, and Theo-
rem 1 will be proved. �

Lemma 1. Assume that, in (2) and (9), d = d(x, v) satisfies the conditions
(12)–(16) below (where cd is a positive constant and γ � 1) for all x ∈ Ω, for all
real v, v1, v2 and for 1 � k � 3. Then (10) is a continuous and bounded mapping
W 1,r(Ω)→W 1,q(Ω) for r := q(γ + 1). We have

|d(x, v)|,
∣∣∣∣
∂d(x, v)
∂xk

∣∣∣∣ � cd(1 + |v|)γ+1,(12)

|d(x, v1)− d(x, v2)| � cd|v1 − v2|(1 + |v1|+ |v2|)γ ,(13) ∣∣∣∣
∂d(x, v1)
∂xk

− ∂d(x, v2)
∂xk

∣∣∣∣ � cd|v1 − v2|(1 + |v1|+ |v2|)γ ,(14)
∣∣∣∣
∂d(x, v)
∂v

∣∣∣∣ � cd(1 + |v|)γ ,(15)
∣∣∣∣
∂d(x, v1)

∂v
− ∂d(x, v2)

∂v

∣∣∣∣ � cd|v1 − v2|(1 + |v1|+ |v2|)γ−1.(16)
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������. Before proving Lemma 1, we observe that the conditions (2), (12)–(16)

not only are more general than (4) but also better correspond to radiation boundary
conditions in practical use, since often a polynomial expression in T with rational
exponents is taken where the highest exponent (say γ + 1) satisfies γ + 1 ∈ (3, 4].

�����. To show the boundedness, we obtain for d(x, u(x)) from (12) and from
(γ + 1)q = r that

(17) ‖d‖q
q,Ω =

∫

Ω
|d(x, u(x))|q dx � cqd

∫

Ω
(1 + |u|)(γ+1)q dx = (cd‖1 + |u| ‖γ+1

r,Ω )
q.

Next we have, for every k,

∥∥∥∥
∂[d(·, u(·))]

∂xk

∥∥∥∥
q,Ω

�
∥∥∥∥
∂d(·, u)
∂xk

∥∥∥∥
q,Ω

+

∥∥∥∥
∂d

∂v

∂u

∂xk

∥∥∥∥
q,Ω

,

where the first term on the right-hand side is further estimated analogously to (17).
Using the Hölder inequality, for the second term we find

∫

Ω

∣∣∣∣
∂d

∂v

∂u

∂xk

∣∣∣∣
q

dx � cqd

∫

Ω
(1 + |u|)γq

∣∣∣∣
∂u

∂xk

∣∣∣∣
q

dx

� cqd

(∫

Ω
(1 + |u|)r dx

) γ
γ+1

(∫

Ω

∣∣∣∣
∂u

∂xk

∣∣∣∣
q(γ+1)

dx

) 1
γ+1

= cqd‖1 + |u| ‖
qγ
r,Ω

∥∥∥∥
∂u

∂xk

∥∥∥∥
q

r,Ω

for all k.

To show the continuity take the q-th power of (13), integrate over Ω and apply

the Hölder inequality to get

∫

Ω
|d(x, u1(x))− d(x, u2(x))|q dx � cqd

{∫

Ω
|u1 − u2|r dx

} q
r

(18)

×
{∫

Ω
(1 + |u1|+ |u2|)

γqr
r−q dx

} r−q
r

.

Using γq/(r − q) = 1 and taking the qth root we find

‖d(·, u1)− d(·, u2)‖q,Ω � cd‖u1 − u2‖r,Ω‖1 + |u1|+ |u2| ‖γ
r,Ω.
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To estimate the Lq norm of ∂
∂xk
[d(x, u1(x))− d(x, u2(x))], we start from

∂

∂xk
[d(x, u1(x)) − d(x, u2(x))](19)

=

(
∂d

∂xk
(x, u1)−

∂d

∂xk
(x, u2)

)
+

(
∂d

∂v
(x, u1)−

∂d

∂v
(x, u2)

)
∂u1
∂xk

+
∂d

∂v
(x, u2)

(
∂u1
∂xk

− ∂u2
∂xk

)
.

Here, the first term on the right-hand side can be estimated as (18) by using condi-
tion (14). For the second term, we proceed similarly on the basis of (16), using once

more r = (γ + 1)q:

∫

Ω

∣∣∣∣
(
∂d

∂v
(x, u1)−

∂d

∂v
(x, u2)

)
∂u1
∂xk

∣∣∣∣
q

dx

� cqd‖u1 − u2‖q
r,Ω

{∫

Ω
(1 + |u1|+ |u2|)(γ−1)

r
γ

∣∣∂u1
∂xk

∣∣∣
r
γ

dx

} γq
r

.

By applying once more the Hölder inequality to the last integral on the right-hand

side, we see that this expression is bounded by

‖1 + |u1|+ |u2| ‖q(γ−1)
r,Ω

∥∥∥∥
∂u1
∂xk

∥∥∥∥
q

r,Ω

.

We turn therefore to the third term in (19). Using (15) we obtain similarly as above

∥∥∥∥
∂d

∂v
(·, u2)

(
∂u1
∂xk

− ∂u2
∂xk

)∥∥∥∥
q,Ω

� cd

∥∥∥∥
∂u1
∂xk

− ∂u2
∂xk

∥∥∥∥
r,Ω

‖1 + |u2| ‖γ
r,Ω.

The above estimates show the lemma to be true. �

The following result delivers the remaining part for the application of the Schauder
fixed point theorem to the mapping Φ defined in (8), (9). We shall use the notation

‖·‖Γ for the norm of the Banach space W 1−1/q,q(Γ) since here this will be the basic
space.

Lemma 2. For a γ � 1, assume (12)–(16) hold. Then, for a sufficiently small b
and for q > 3γ/(γ + 1), in W 1−1/q,q(Γ) there is a ball of some radius 	 which is
mapped by Φ into itself.

�����. From the proof of Theorem 1 and Lemma 1 we know that

ψ → D(ψ), where D(ψ) := d(·, F (ψ))|Γ, F (ψ) = u,
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as a mapping from W 1−1/q,q(Γ) into itself is bounded, i.e., for all 	 > 0 there is a

c1 = c1(	) > 0 such that

(20) if ‖ψ‖Γ � 	 then ‖D(ψ)‖Γ � c1(	).

For this to be true, in Lemma 1 we have supposed that r = q(γ+1), and if q � 3 we
have no restriction on r, whereas for q < 3 from (11) a restriction on r = q(γ + 1)

arises which means just q > 3γ/(γ + 1).
Now choose a constant 	 � 2‖ϕ‖Γ and let b satisfy b � �

2c1(�)
.

Then Φ maps the ball of radius 	 in W 1−1/q,q(Γ) into itself since ‖ψ‖Γ � 	, (9),
and (20) yield

(21) ‖Φ(ψ)‖Γ � ‖ϕ‖Γ + bc1(	) �
	

2
+
	

2
= 	.

This completes the proof of the lemma. �

We remark that for γ + 1 = 4 the estimates of Lemma 1 correspond to the fourth

power law, and then the restriction on q reads q > 9/4.

Summarizing the above results we get the following conclusion.

Theorem 2. For a γ ∈ [1,∞), assume (12)–(16) holds and let q > 3γ
γ+1 . Then for

any ϕ ∈W 1−1/q,q(Γ) there is a positive number b0(ϕ) such that for all 0 < b < b0(ϕ)
equation (7) has a solution in W 1−1/q,q(Γ), and hence (1)–(2) has a solution in

W 2,q(Ω).

Acknowledgements. The authors thank the anonymous referee for a series of
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