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Abstract

The present paper deals with the existence of a new class of semi-Riemannian manifolds which are weakly
generalized recurrent, pseudo quasi-Einstein and fulfill the condition R · R = Q(S, R). For this purpose, we presented a
metric, computed its curvature properties, and finally checked various geometric structures arising out from the
different curvatures by means of their covariant derivatives of first and second order.
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Introduction
A topological manifold is a connected, second-countable
Hausdorff topological space which is locally Euclidean.
A smooth manifold is a topological manifold endowed
with a smooth structure, which is a maximal collec-
tion of coordinate charts whose transition functions are
smooth. A semi-Riemannian manifold is a smooth mani-
fold endowed with a semi-Riemannian metric. LetM, dim
M = n ≥ 3, be a connected semi-Riemannian smooth
manifold endowed with a semi-Riemannian metric g of
signature (s, n − s), 0 ≤ s ≤ n. If s = 0 or s = n, then
M is a Riemannian manifold, and if s = 1 or s = n − 1,
then M is a Lorentzian manifold. A semi-Riemannian
manifold has mainly three notions of curvature tensors,
namely, Riemann-Christoffel curvature tensor R (simply
called curvature tensor), the Ricci tensor S, and the scalar
curvature r. The curvature tensor R consists of second-
order partial derivatives of the metric g with respect to
the coordinate functions. Hence, the curvature tensor R
provides the complete information of the manifold at the
curvature level on g. Therefore, the metric plays the key
role in the study of differential geometry of manifolds and
their applications to the general theory of relativity and
cosmology. The Ricci tensor S is the trace of Rwith respect
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to g while r is the trace of S with respect to g. We men-
tion that any one-dimensional semi-Riemannian manifold
is a void field because a change of metric can be translated
as a mere change of parametrization for the curve. How-
ever, any two one-dimensional semi-Riemannian mani-
folds are locally isometric. Also for any two-dimensional
semi-Riemannian manifold, the notions of three curva-
tures are equivalent. Hence, throughout the paper we will
confine ourselves with a semi-Riemannian manifold M of
dimension n ≥ 3, and all the manifolds to be consid-
ered throughout the paper are assumed to be smooth and
connected. Let ∇ be the Levi-Civita connection on M,
which is a unique torsion-free metric connection onM. In
terms of local coordinates, the components of R and S are
respectively given by Rhijk and Sij.
Symmetry plays an important role in the natural life

of all living beings of our universe. Symmetry means
something that is well proportioned and well balanced,
and symmetry denotes the sort of concordance of sev-
eral parts by which they integrate into a whole. Every
spatial object in nature bears a symmetry and the beauty
is bound up with symmetry. The geometric concept of
symmetry has various forms such as bilateral, transla-
tory, rotational, ornamental, crystallographic symmetry,
etc. The main idea behind all these special forms is the
invariance of a configuration of elements under a group of
automorphic transformations. The principle of symmetry
has wide applications in arts and in inorganic and organic
nature for harmonious perfection of any spatial objects.
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Symmetry is a relative term which is significant in art and
nature. Symmetry plays a great role in ordering the atomic
and molecular spectra, for the understanding of which the
principles of quantum physics provide the key. The phys-
ical occurrences are happening not only in space but also
in space and time, and the world is spread out not as a
three- but a four-dimensional continuum. The symme-
try, the relativity, or homogenity of the four-dimensional
medium was first correctly described by Albert Einstein.
If nature were all lawful, then every phenomenon would
share the full symmetry of the universal laws of nature as
formulated by the theory of relativity. For details about the
various forms of symmetry, we refer to the book of Weyl
[1]. For physical significance of natural symmetries and
Deszcz pseudosymmetries, we refer the reader to the work
of Deszcz et al. [2].
It is well known that M is called locally symmetric [3,4]

if ∇R = 0 (i.e., if Rhijk,l = 0, ‘,’ denotes the covariant
derivative with respect to coordinate functions), which
can be stated that the local geodesic symmetry at each
point of M is an isometry. The study on generalization of
locally symmetric manifolds started in 1946 and contin-
ued to date in different directions such as κ-space by Ruse
[5-7] (which is called recurrent space by Walker in 1950
[8]), two-recurrent manifolds by Lichnerowicz [9], weakly
symmetric manifolds by Selberg [10], generalized recur-
rent manifolds by Dubey [11], quasi-generalized recur-
rent manifolds by Shaikh and Roy [12], hyper-generalized
recurrent manifolds by Shaikh and Patra [13], weakly
generalized recurrent manifolds by Shaikh and Roy [14],
pseudosymmetric manifolds by Chaki [15], semisymmet-
ric manifolds by Cartan [16] (which was classified by
Szabó [17-19]), pseudosymmetric manifolds by Deszcz
[20,21], weakly symmetric manifolds by Tamássy and
Binh [22], conformally recurrent manifolds by Adati and
Miyazawa [23], and projectively recurrent manifolds by
Adati and Miyazawa [24]. It may be mentioned that the
notion of weakly symmetric manifold by Selberg is dif-
ferent from that by Tamássy and Binh, and the pseu-
dosymmetric manifold by Chaki is also different from the
pseudosymmetric manifold by Deszcz.
The manifoldM is said to be Ricci symmetric if ∇S = 0

(i.e., if Sij,k = 0). The notion of Ricci symmetry was
also weakend by various ways such as Ricci recurrent by
Patterson [25], Ricci pseudosymmetric by Deszcz [26],
Ricci semisymmetric by Szabó [17-19], pseudo Ricci sym-
metric by Chaki [27], and weakly Ricci symmetric by
Tamássy and Binh [28]. Weakly symmetric and weakly
Ricci symmetric spaces by Tamássy and Binh were studied
by Shaikh and his coauthors in various papers (see [29-42]
and also references therein).
Again, a semi-Riemannian manifold is Einstein if its

Ricci tensor is constant multiple to the metric tensor.
As a generalization of Einstein manifold, the notion of

quasi-Einstein manifold arose during the study of exact
solutions of Einstein’s field equation as well as during
the study of quasi-umbilical hypersurfaces. The pro-
cess of quasi-Einstein manifold generalization was started
in different ways by various authors such as general-
ized quasi-Einstein manifold by Chaki [43] and also by
De and Ghosh [44], pseudo quasi-Einstein manifold by
Shaikh [45], pseudo generalized quasi-Einstein manifold
by Shaikh and Jana [46], hyper-generalized quasi-Einstein
manifold by Shaikh et al. [47], and generalized pseudo
quasi-Einsteinmanifold by Shaikh and Patra [48]. The def-
initions of all the notions described above are given in the
section ‘Preliminaries’.
By the decomposition of the covariant derivative ∇S,

Gray [49] obtained two classes, A and B, of Riemannian
manifolds which lie between the class of Ricci symmetric
manifolds and the manifolds of constant scalar curvature.
The class A (respectively B) is the class of Riemannian
manifolds whose Ricci tensor is cyclic parallel (respec-
tively Codazzi tensor). Every Ricci symmetric manifold is
of class B but not conversely. We note that every manifold
of constant curvature and hence Einstein manifold are of
classA as well as B. The existence of both classes is given
in [50].
Hence, a natural question arises:

Q.1 Does there exist a weakly generalized recurrent
manifold which is not any one of the following?
(i) Einstein, (ii) quasi-Einstein, (iii) locally symmetric,
(iv) Ricci symmetric, (v) recurrent, (vi) Ricci
recurrent, (vii) generalized recurrent, (viii)
hyper-generalized recurrent, (ix) quasi-generalized
recurrent, (x) Codazzi-type Ricci tensor, (xi) cyclic
Ricci parallel, (xii) semisymmetric, (xiii) weakly
symmetric, (xiv) weakly Ricci symmetric, (xv) Chaki
pseudosymmetric, and (xvi) Chaki pseudo Ricci
symmetric.

The geometric structures stated in (iii) to (xvi) of Q.1
involve the first-order covariant differentials of curva-
ture tensor and Ricci tensor. A semi-Riemannian mani-
fold is said to be semisymmetric [16-19] if R · R = 0
(locally, Rhijk,lm − Rhijk,ml = 0). We mention that every
locally symmetric space is semisymmetric but the con-
verse is not true, in general. However, the converse is true
for n = 3. As a proper generalization of semisymmet-
ric manifold, the notion of pseudosymmetric manifolds
arose during the study of semisymmetric totally umbili-
cal submanifolds in manifolds admitting semisymmetric
generalized curvature tensors [51]. A semi-Riemannian
manifold (M, g), n ≥ 3, is said to be pseudosymmetric
by Deszcz [20,21] (respectively Ricci pseudosymmetric
[26,52]) if R · R (respectively R · S) and the Tachibina ten-
sor Q(g,R) (respectively Q(g, S)) are linearly dependent at
every point ofM.
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It is well known that the conformal transformation is an
angle-preserving mapping, the projective transformation
is a geodesic-preserving mapping whereas concircular
transformation is the geodesic circle-preserving mapping,
and conharmonic transformation is a harmonic function-
preserving mapping. Again, a semi-Riemannian manifold
(M, g), n ≥ 4, is said to be conformally pseudosymmet-
ric [53,54] if the tensor R · C and the Tachibana tensor
Q(g,C) are linearly dependent at every point of M. The
conditions of pseudosymmetric, Ricci pseudosymmetric,
and conformally pseudosymmetric or other conditions of
this kind are called conditions of pseudosymmetry type.
The explicit local expressions of various pseudosymmet-
ric type conditions and their systematic developments are
given in the section ‘Preliminaries’.
Now, another question arises:

Q.2 Does there exist a semi-Riemannian manifold
realizing the condition R · R = Q(S,R) which is not
any one of the following?
(i) Pseudosymmetric, (ii) Ricci pseudosymmetric,
(iii) R · W = LQ(g,W ), (iv) R · W1 = LQ(S,W1),
(v) C · W = LQ(g,W ), (vi) C · W = LQ(S,W ),
(vii) P · W = LQ(g,W ), (viii) P · W1 = LQ(S,W1),
(ix) K · W = LQ(g,W ), (x) K · W1 = LQ(S,W1),
(xi) Z · W = LQ(g,W ), (xii) Z · W = LQ(S,W ),
(xiii) Z · S = LQ(g, S),
where L is any smooth function; W is any one of
R,C,P,K , and Z; andW1 is any one of C,P, and Z.
Here C,P,K , and Z respectively denote the
conformal, projective, concircular, and conharmonic
curvature tensor.

All the notions of Q.2 involve the second-order covari-
ant differentials of different curvature tensors. The answer
to question Q.2 is given partially by Deszcz and his coau-
thors in ([21,55-57] and also references therein). However,
combining questions Q.1 and Q.2, it is natural to ask the
following question:

Q.3 Does there exist a semi-Riemannian manifold which
is a weakly generalized recurrent, pseudo
quasi-Einstein and fulfills the condition
R · R = Q(S,R) but not realizing any one of (i) to
(xvi) of Q.1 and (i) to (xiii) of Q.2?

This paper provides the answer to this question as affir-
mative by an explicit example which induces a new class
of semi-Riemannian manifolds. The paper is organized
as follows. The definitions of all the notions and their
interrelations in questions Q.1 and Q.2 are given in the
section ‘Preliminaries’. In the last section, we compute the
curvature properties of the metric given by

ds2 = gijdxidxj = x1x2x3(dx1)2 + 2dx1dx2 + (dx3)2

+ (dx4)2, i, j = 1, 2, 3, 4,

which produces the answer to Q.3 as affirmative, and
hence, we obtain a new class of semi-Riemannian man-
ifolds realizing the conditions of Q.3. The applications
of pseudo quasi-Einstein manifolds are presented in [45].
Since the metric described above is a model of pseudo
quasi-Einstein manifold, it is significant geometrically and
relevant physically.

Preliminaries
It is well known that in a semi-Riemannian manifold
(M, g), the local expression of the curvature tensor R is
given by

Rh
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Here gij are the components of g−1. The local expres-
sion of the Ricci tensor Sij and the scalar curvature r are
respectively given by
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r = ghkShk ,
where Sij = ghkRhijk .
A connected semi-Riemannian manifold (M, g), n ≥ 3,

is Einstein if its Ricci tensor S of type (0, 2) is given by S =
r
n g. We mention that any two-dimensional manifold is
always Einstein. Let (M, g), n ≥ 3, be a semi-Riemannian
manifold and US = {x ∈ M :

(
S − r

n g
)
x �= 0}. Then

the manifold M is said to be quasi-Einstein [58-67] if on
US ⊂ M we have

S − αg = βA ⊗ A

for some 1-form A on US and for some functions α,β
on US, where ⊗ is the tensor product. It is clear that the
1-form A as well as the function β are non-zero at every
point of US.
Again, let US1 = {x ∈ M :

(
S − ν1g − ν2A1 ⊗ A1

)
x �= 0

for any scalars ν1, ν2 and any 1-form A1}. Then the mani-
foldM is said to be pseudo quasi-Einstein [45] if onUS1 ⊂
M we have

S − αg − βA ⊗ A = γD,

where α,β , and γ are some functions on US1 , and A is any
non-zero 1-form such that g(X,U) = A(X) for all vector
fields X with U being a unit vector field called the gener-
ator of the manifold. It is clear that the 1-form A as well
as the functions β and γ are non-zero at every point on
US1 .D is a symmetric tensor of type (0, 2) onUS1 such that
tr D = 0 and satisfying D(X,U) = 0 for all vector fields X,
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and D is called the structure tensor of the manifold. Such
a manifold is denoted by PQEn.
It follows that every quasi-Einstein manifold is pseudo

quasi-Einstein but not conversely, which follows from the
metric presented in the present paper. It is known that the
outer product of two covariant vectors is a tensor of type
(0, 2), but the converse is not true in general [68]. Conse-
quently, the tensor D cannot be decomposed into product
of two 1-forms. In particular, if D = B ⊗ B, B being a
non-zero 1-form, then a pseudo quasi-Einstein manifold
reduces to a generalized quasi-Einstein manifold by De
and Ghosh [44]. Again, if D = A ⊗ B + B ⊗ A, then a
pseudo quasi-Einstein manifold turns into a generalized
quasi-Einstein manifold by Chaki [43].
Again in 2008, Shaikh and Jana [46] introduced a gen-

eralized class of quasi-Einstein manifolds called pseudo
generalized quasi-Einstein manifold, defined as follows:
Let M be a semi-Riemannian manifold. Let US2 = {x ∈

M : S−ν3g−ν4A2⊗A2−ν5B2⊗B2 �= 0 at x, for any scalars
ν3, ν4, ν5 and any 1-forms A2,B2}. Then the manifold M
is said to be a pseudo generalized quasi-Einstein manifold
[46] if on US2 ⊂ M the relation

S = αg + βA ⊗ A + γB ⊗ B + δD

holds for some 1-forms A, B, and some functions α,β , γ ,
δ on US2 , where D is any symmetric (0, 2) tensor with
zero trace, which satisfies the condition D(X,U) = 0 for
all vector fields X. It is obvious that the 1-forms A, B,
and D, as well as the functions α,β , γ , δ, are non-zero at
every point ofUS2 . Also α, β , γ , δ are called the associated
scalars; A, B are the associated 1-forms of the manifold
and D is called the structure tensor of the manifold. Such
an n-dimensional manifold is denoted by PGQEn. If γ =
0, then a PGQEn turns into a PQEn.
Recently, Catino [69] introduced the notion of gener-

alized quasi-Einstein manifolds which are different from
that of Chaki [43] and also from De and Ghosh [44].
A complete semi-Riemannian manifold M is said to be
a generalized quasi-Einstein manifold [69] if there exist
three smooth functions f, μ and λ onM such that

S + ∇2f − μdf ⊗ df = λg.

Extending the notion of generalized quasi-Einstein mani-
folds by Chaki [43], recently Shaikh et al. [47] introduced
the notion of hyper-generalized quasi-Einstein manifold.
Let M be a semi-Riemannian manifold. Let US3 = {x ∈

M : S − ν6g − ν7A3 ⊗ A3 − ν8[A3 ⊗ B3 + B3 ⊗ A3] �= 0 at
x for any scalars ν6, ν7, ν8 and any 1-forms A3,B3}. Then
the manifold M is said to be a hyper-generalized quasi-
Einstein manifold [47] if on US3 ⊂ M the relation

S−αg−βA⊗A−γ [A⊗B+B⊗A]= δ[A⊗ I+ I⊗A]

holds for some 1-forms A, B, I and some functions
α,β , γ , δ on US3 . It is clear that the 1-forms A, B, I, as
well as the functions α,β , γ , δ, are non-zero at every point
of US3 . The scalars α,β , γ , δ are known as the associated
scalars of the manifold, and A, B, D are called the asso-
ciated 1-forms of the manifold. Such an n-dimensional
manifold is denoted by HGQEn.
Extending the notion of PQEn of [45], recently Shaikh

and Patra [48] introduced the notion of generalized
pseudo quasi-Einstein manifold, defined as follows:
Let M be a semi-Riemannian manifold. Let US4 = {x ∈

M : S − ν9g − ν10A4 ⊗ A4 − ν11D4 �= 0 at x for any
scalars ν9, ν10, ν11, any 1-form A4, and any tensor D4 of
type (0, 2)}. Then the manifold M is said to be a general-
ized pseudo quasi-Einstein manifold [48] if on US4 ⊂ M
the relation

S − αg − βA ⊗ A − γD = δJ

holds for any 1-form A on US4 , some smooth functions α,
β , γ , δ on US4 , and for some trace-free symmetric tensors
D, J of type (0, 2) such that D(X,U) = 0 and J(X,U) = 0
for any vector field X. It is obvious that the 1-form A and
the tensors D and J, as well as the functions α,β , γ , δ, are
non-zero at every point of US4 . Such an n-dimensional
manifold is denoted by GPQEn. It follows that every quasi-
Einstein manifold as well as PQEn is a GPQEn but not
conversely. Especially, if δ = 0, then a GPQEn turns into a
PQEn, and if δ = γ = 0, then a GPQEn reduces to a quasi-
Einstein manifold. We note that if D = B ⊗ B, B being a
non-zero 1-form, then a GPQEn turns into a pseudo gen-
eralized quasi-Einstein manifold by Shaikh and Jana [46].
Also, if D = A ⊗ B + B ⊗ A and J = A ⊗ N + N ⊗ A, N
being a non-zero 1-form, then a GPQEn turns into a hyper
generalized quasi-Einstein manifold [47].
In a semi-Riemannian manifold (M, g), n ≥ 3, the Ricci

tensor S is said to be a Codazzi tensor [70,71] (respectively
cyclic Ricci parallel [49]) if it satisfies

(∇XS)(Y ,Z) = (∇Y S)(X,Z) (locally, Sij,k = Sik,j)
(respectively (∇XS)(Y ,Z)+(∇Y S)(Z,X)+(∇ZS)(X,Y ) = 0,
locally, Sij,k + Sjk,i + Ski,j = 0)

for all vector fields X,Y ,Z ∈ χ(M), where χ(M) is the Lie
algebra of all smooth vector fields onM.
Let UL = {x ∈ M : R �= 0 and ∇R �= 0 at x}.

A semi-Riemannian manifold (M, g), n ≥ 3, is said to be
recurrent [8] if onUL ⊂ M the curvature tensor R satisfies
the following:

∇R = A ⊗ R,

where A is any non-zero 1-form. The defining condition
of a recurrent manifold in local form is given by

Rhijk,l = AlRhijk .
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Let UL1 = {x ∈ M : S �= 0 and ∇S �= 0 at x}. Then the
manifold (M, g), n ≥ 3, is said to be Ricci recurrent [25] if
on UL1 ⊂ M the Ricci tensor S satisfies the following:

∇S = A ⊗ S,

where A is any non-zero 1-form. Also the defining con-
dition of a Ricci recurrent manifold in local form is given
by

Sij,k = AkSij.

Generalizing the notion of recurrent manifold and
extending the notion of generalized recurrent mani-
folds by Dubey [11], recently Shaikh and his coauthors
[12-14] introduced three classes of generalized recur-
rent manifolds, namely, quasi-generalized recurrent man-
ifolds, hyper-generalized recurrent manifolds, and weakly
generalized recurrent manifolds.
Let UQ = {x ∈ M : (R)x �= 0 and (∇R − � ⊗ R)x �=

0 for any 1-forms �}. A non-flat semi-Riemannian man-
ifold (M, g), n ≥ 3, is said to be a quasi-generalized
recurrent manifold [12] (briefly QGKn) if on UQ ⊂ M the
condition

∇R = A ⊗ R + B⊗[G + g ∧ H] ,

holds for some non-zero 1-forms A,B, where H = η ⊗
η, η being a non-zero 1-form, and the Kulkarni-Nomizu
product E1 ∧ E2 of two (0,2)-tensors, E1 and E2, is defined
by (see, e.g., [64,72,73])

(E1 ∧ E2)(X1,X2;X,Y ) =E1(X1,Y )E2(X2,X)

+ E1(X2,X)E2(X1,Y )

− E1(X1,X)E2(X2,Y )

− E1(X2,Y )E2(X1,X),

X1,X2,X3,X4 ∈ χ(M). Especially if η = 0, then a QGKn
turns out to be a generalized recurrentmanifold (i.e., GKn)
by Dubey [11]. In terms of local coordinates, the defining
condition of a QGKn is given by

Rhijk,l = AlRhijk + Bl
[
Ghijk + ghkηiηj + gijηhηk − ghjηiηk

−gikηhηj
]
.

The manifold (M, g), n ≥ 3, is said to be a hyper-
generalized recurrent manifold [13] (briefly HGKn) if on
UQ ⊂ M, the condition

∇R = A ⊗ R + B ⊗ (S ∧ g)

(locally, Rhijk,l = AlRhijk + Bl[Shkgij + Sijghk − Shjgik − Sikghj] )

holds for some non-zero 1-forms A,B.

Again the manifold (M, g), n ≥ 3, is said to be a weakly
generalized recurrent manifold [14] (briefly WGKn) if on
UQ ⊂ M, the condition

∇R = A ⊗ R + B ⊗ 1
2
(S ∧ S)

holds for some non-zero 1-forms A,B such that A(X) =
g(σ ,X) and B(X) = g(ρ,X). In terms of local components,
the defining condition of a WGKn can be written as

Rhijk,l = AlRhijk + Bl[ShkSij − SikShj] . (1)

We note that for α = β , a quasi-Einstein manifold is
WGKn if and only if it is QGKn. Again, we also note that
for 2α = β , a quasi-Einstein manifold is HGKn if and only
if it is QGKn.
A semi-Riemannian manifold (M, g), n ≥ 3, is said to be

weakly symmetric by Tamássy and Binh [22] if on UQ ⊂
M, ∇R = L, where L is a tensor of type (0, 5) defined by

L(X,X1,X2,X3,X4) = A(X)R(X1,X2,X3,X4)

+ B(X1)R(X1,X2,X3,X4) + B(X2)R(X1,X,X3,X4)

+ D(X3)R(X1,X2,X,X4) + D(X4)R(X1,X2,X3,X)

for all vector fields X,Xi ∈ χ(M) (i = 1, 2, 3, 4) and for
some 1-forms A,B,D onM. In terms of local coordinates,
the above expression can be written as

Rhijk,l = AlRhijk + BhRlijk + BiRhljk +DjRhilk +DkRhijl.

Again, in 1993 Tamássy and Binh [28] introduced the
notion of weakly Ricci symmetric manifold defined as
follows:
Let UT = {x ∈ M : (∇S − �1 ⊗ S)x �= 0 for any

1-forms �1}. Then the semi-Riemannianmanifold (M, g),
n ≥ 3, is called weakly Ricci symmetric if on UT ⊂ M
its Ricci tensor S is not identically zero and satisfies the
condition

(∇XS)(Y ,Z) = A(X)S(Y ,Z)+B(Y )S(X,Z)+D(Z)S(Y ,X)

(2)

for some 1-forms A,B,D (not simultaneously zero), where
X,Y ,Z ∈ χ(M). The local form of the above condition is
given as

Sij,k = AkSij + BiSkj + DjSik .

A non-flat semi-Riemannian manifold (M, g), n ≥ 3, is
said to be pseudosymmetric by Chaki [15] if on UL ⊂ M
its curvature tensor R satisfies the relation

(∇XR)(Y ,Z,U ,V ) = 2A(X)R(Y ,Z,U ,V )

+ A(Y )R(X,Z,U ,V )

+ A(Z)R(Y ,X,U ,V )

+ A(U)R(Y ,Z,X,V )

+ A(V )R(Y ,Z,U ,X)
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(or locally, Rhijk,l = 2AlRhijk + AhRlijk + AiRhljk + AjRhilk

+ AkRhijl)

for any 1-forms A, where X,Y ,Z,U ,V ∈ χ(M).
In 1988, Chaki [27] introduced the notion of pseudo

Ricci symmetric manifolds defined as follows:
A semi-Riemannian manifold (M, g), n ≥ 3, is said to be

pseudo Ricci symmetric if on UL1 ⊂ M its Ricci tensor S
is not identically zero and satisfies the relation

(∇XS)(Y ,Z) = 2A(X)S(Y ,Z) + A(Y )S(X,Z) + A(Z)S(X,Y )

(3)

(or locally,Sij,k = 2AkSij + AiSkj + AjSih)

for any non-zero 1-form A, where X,Y ,Z ∈ χ(M).
We define on a semi-Riemannian manifold (M, g), n ≥

3, the endomorphisms X ∧E Y andR(X,Y ) by [58,64,72]

(X ∧E Y )Z = E(Y ,Z)X − E(X,Z)Y ,
R(X,Y )Z = [∇X ,∇Y ]Z − ∇[X,Y ]Z,

respectively, where E is a (0, 2)-tensor on M, X,Y ,Z ∈
χ(M).
Now we define the Gaussian curvature tensor G, the

Riemann-Christoffel curvature tensor R, the Weyl con-
formal curvature tensor C, projective curvature tensor P,
concircular curvature tensor K, and conharmonic curva-
ture tensor Z of (M, g) respectively by [58,64,72,74-76])

G(X1,X2,X3,X4) = g((X1 ∧g X2)X3,X4),
R(X1,X2,X3,X4) = g(R(X1,X2)X3,X4),
C(X1,X2,X3,X4) = R(X1,X2,X3,X4)

− 1
n − 2

(g ∧ S)(X1,X2,X3,X4)

+ r
(n − 2)(n − 1)

G(X1,X2,X3,X4),

P(X1,X2,X3,X4) =R(X1,X2,X3,X4)

− 1
n − 1

[
g(X1,X4)S(X2,X3)

−g(X2,X4)S(X1,X3)
]
,

K(X1,X2,X3,X4) =R(X1,X2,X3,X4)

− r
n(n − 1)

G(X1,X2,X3,X4),

Z(X1,X2,X3,X4) =R(X1,X2,X3,X4)

− 1
n − 2

(g ∧ S)(X1,X2,X3,X4).

In terms of local coordinates, the expressions of C, P, K,
and Z are respectively given by

Chijk =Rhijk − 1
n − 2

[
Shkgij + Sijghk − Shjgik − Sikghj

]
+ r

(n − 1)(n − 2)
[
ghkgij − gikghj

]
,

Phijk = Rhijk − 1
n − 1

[
Shkgij − Shjgik

]
,

Khijk = Rhijk − r
n(n − 1)

[
ghkgij − gikghj

]
,

Zhijk = Rhijk− 1
n − 2

[
Shkgij + Sijghk − Shjgik − Sikghj

]
.

For a (0, k)-tensor T, k ≥ 1, and a symmetric (0, 2)-tensor
E, we define the (0, k)-tensor E·T and the (0, k+2)-tensors
R · T , C · T , and Q(E,T) by [58,64,72,77]

(E · T)(X1, · · · ,Xk) = −T(EX1,X2, · · · ,Xk) − · · ·
− T(X1,X2, · · · , EXk),

(R · T)(X1, · · · ,Xk ;X,Y ) = (R(X,Y ) · T)(X1, · · · ,Xk)

= −T(R(X,Y )X1,X2, · · · ,Xk) − · · ·
− T(X1, · · · ,Xk−1,R(X,Y )Xk),

(C · T)(X1, · · · ,Xk ;X,Y ) = (C(X,Y ) · T)(X1, · · · ,Xk)

= −T(C(X,Y )X1,X2, · · · ,Xk) − · · ·
− T(X1, · · · ,Xk−1, C(X,Y )Xk),

Q(E,T)(X1, · · · ,Xk ;X,Y ) = ((X ∧E Y ) · T)(X1, · · · ,Xk)

= −T((X ∧E Y )X1,X2, · · · ,Xk) − · · ·
− T(X1, · · · ,Xk−1, (X ∧E Y )Xk),

where E is the endomorphism of χ(M) defined by
g(EX,Y ) = E(X,Y ). In terms of local components, these
tensors can be written as

(E · T)i1 i2 ···ik = − gpq(Eqi1Tpi2 ···ik + Eqi2Ti1p···ik + · · ·
+ Eqik Ti1 i2 ···p),

(R · T)i1 i2 ···ik uv = − gpq(Ruvqi1Tpi2 ···ik + Ruvqi2Ti1p···ik
+ · · · + Ruvqik Ti1 i2 ···p),

(C · T)i1 i2 ···ik uv = − gpq(Cuvqi1Tpi2 ···ik + Cuvqi2Ti1p···ik
+ · · · + Cuvqik Ti1 i2 ···p),

Q(E,T)i1 i2 ...ik uv =Ei1uTvi2 ...ik + Ei2uTi1 v···ik + · · ·
+ Eik uTi1 i2 ···v − Ei1 vTui2 ···ik
− Ei2 vTi1u···ik − · · · − Eik vTi1 i2 ···u.

Putting in the above formulas T = R,T = S, T = C,
T = K , T = Z or T = P, E = g or E = S, we obtain the
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following tensors: R ·R, R · S, R ·C, R ·K , C ·R, C · S, C ·C,
C · K , Q(g,R), Q(g, S), Q(g,C), Q(g,K), Q(S,R), Q(S,C),
Q(g,K), S ·R, S ·C, S ·K , Z ·Z, Z ·R, R ·Z, Z · S, P ·R, P ·P,
R · P, P · S, etc. The tensor Q(E,T) is called the Tachibana
tensor of the tensors E and T, or the Tachibana tensor for
short [77].
A semi-Riemannian manifold (M, g), n ≥ 3, is said to be

pseudosymmetric [20,21] if the condition

R · R = LR Q(g,R) (4)

holds on UR = {x ∈ M :
(
R − r

n(n−1)G
)
x

�= 0}, where LR
is some function on this set.
A semi-Riemannian manifold (M, g), n ≥ 3, is Ricci

pseudosymmetric [26,52] if and only if

R · S = LS Q(g, S) (5)

holds on US, where LS is some function on this set. We
note that US ⊂ UR.
A semi-Riemannian manifold (M, g), n ≥ 4, is said to be

a manifold with pseudosymmetricWeyl conformal curva-
ture tensor [53,54] if the tensor C · C and the Tachibana
tensor Q(g,C) are linearly dependent at every point ofM,
that is,

C · C = LC Q(g,C) (6)

on UC = {x ∈ M : C �= 0 at x}, where LC is some function
on this set. We note that UC ⊂ UR.
A semi-Riemannian manifold (M, g), n ≥ 3, is said to

be Ricci-generalized pseudosymmetric [55,56] if at every
point of M, the tensor R · R and the Tachibana tensor
Q(S,R) are linearly dependent. Hence, (M, g) is Ricci-
generalized pseudosymmetric if and only if

R · R = LQ(S,R) (7)

holds on U = {x ∈ M : Q(S,R) �= 0 at x}, where L is
some function on this set. An important subclass of Ricci-
generalized pseudosymmetric manifolds is formed by the
manifolds realizing the condition [54,55]

R · R = Q(S,R). (8)

We note that from [14] (see Theorem 2.1(v) and
equation (2.17) of [14]), it follows that a WGKn is
semisymmetric if σ , ρ are codirectional. But in general,
a WGKn is not semisymmetric. Also, a WGKn is not,
in general, pseudosymmetric and Ricci-generalized pseu-
dosymmetric, but we presented a metric in the present
paper which fulfills the condition R · R = Q(S,R).

Examples of WGKn and R · R = Q(S,R)

Let M be an open connected subset of R4 endowed with
the product metric

ds2 = gijdxidxj = x1x2x3(dx1)2 + 2dx1dx2 + (dx3)2

+ (dx4)2, i, j = 1, 2, 3, 4,
(9)

x1 > 0, x2 > 0, x3 > 0.

Then the non-zero components of the Christoffel sym-
bols of second kind are given by

�1
11 = − x1x3

2
,�2

11 = 1
2
x2x3

(
(x1)2x3 + 1

)
,

�3
11 = − x1x2

2
,�2

12 = x1x3

2
,�2

13 = x1x2

2
.

The non-zero components of curvature tensor and Ricci
tensor (up to symmetry) are given by

R1213 = −x1

2
, S13 = −x1

2
. (10)

The scalar curvature of this metric is given by r = 0.
Again the non-zero components Rhijk,l and Sij,l of the
covariant derivatives of curvature tensor and Ricci tensor
(up to symmetry) are given by

R1213,1 = −1
4

(
(x1)2x3+2) , R1313,1 = (x1)2x2

2
, (11)

S11,1 = − (x1)2x2

2
, S13,1 = −1

4
(
(x1)2x3 + 2

)
.

The non-zero components of (R · R)hijklm, (R · S)ijlm,
(R · C)hijklm, (R · P)hijklm, (R · K)hijklm, (R · Z)hijklm,
(C · R)hijklm, (C · S)ijlm, (C · C)hijklm, (C · P)hijklm,
(C ·K)hijklm, (C ·Z)hijklm, (P ·R)hijklm, (P ·S)ijlm, (P ·C)hijklm,
(P ·P)hijklm, (P ·K)hijklm, (P ·Z)hijklm, (K ·R)hijklm, (K ·S)ijlm,
(K · C)hijklm, (K · P)hijklm, (K · K)hijklm, (K · Z)hijklm,
(Z ·R)hijklm, (Z ·S)ijlm, (Z ·C)hijklm, (Z ·P)hijklm, (Z ·K)hijklm,
(Z · Z)hijklm, Q(g,R)hijklm, Q(g, S)ijlm, Q(S,R)hijklm,
Q(g,C)hijklm, Q(S,C)hijklm, Q(g,P)hijklm, Q(g,K)hijklm,
Q(S,K)hijklm, Q(g,Z)hijklm, Q(S,Z)hijklm, and Q(S, P)hijklm
are respectively given below:

(R · R)131312 = −2(R · R)121313 = (x1)2

2
,

(R · S)1112 = 2(R · S)1313 = − (x1)2

2
.

(12)

(R · C)131312 = − (R · C)141412 = −2(R · C)121313

= − 2(R · C)143413 = (x1)2

4
.

(13)
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(R · P)133112 = 2(R · P)121313 = −2(R · P)132113 = − (x1)2
2 , (R · P)131312

= 2(R · P)123113 = −2(R · P)121112 = −2(R · P)141412 = −2(R · P)131213,
= 4(R · P)231113 = 4(R · P)341413 = −4(R · P)133313 = −4(R · P)143413 = (x1)2

3 ,
(R · P)131113 = 1

12 (x
1)3x2x3,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14)

(R · K)131312 = −2(R · K)121313 = (x1)2

2
. (15)

(R · Z)131312 = −(R · Z)141412 = −2(R · Z)121313 = −2(R · Z)143413 = (x1)2

4
. (16)

(C · R)131312 = 2(C · R)121414 = 2(C · R)131434 = −2(C · R)121313 = (x1)2

4
. (17)

(C · S)1112 = 2(C · S)1313 = −2(C · S)1414 = − (x1)2

4
. (18)

(C · C)131312 = (C · C)131434 = −(C · C)141412 = 2(C · C)121414 = −2(C · C)121313

= −2(C · C)143413 = −2(C · C)133414 = (x1)2
8 .

}
(19)

(C · P)131113 = −(C · P)141114 = 1
24 (x

1)3x2x3,
(C · P)121414 = (C · P)131434 = (C · P)132113 = (C · P)141334 = −(C · P)121313

= −(C · P)134134 = −(C · P)142114 = −(C · P)143134 = − 1
2 (C · P)133112 = (x1)2

8 ,
(C · P)123113 = (C · P)141214 = −(C · P)121112 = −(C · P)124114 = −(C · P)131213

= −(C · P)141412 = 1
2 (C · P)131312 = 2(C · P)134314 = 2(C · P)144414

= 2(C · P)231113 = −2(C · P)133313 = −2(C · P)143413 = −2(C · P)241114

= −2(C · P)341314 = −2(C · P)341413 = (x1)2
12 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)

(C · K)131312 = 2(C · K)121414 = 2(C · K)131434 = −2(C · K)121313 = (x1)2

4
. (21)

(C · Z)131312 = (C · Z)131434 = −(C · Z)141412 = 2(C · Z)121414

= −2(C · Z)121313 = −2(C · Z)133414 = −2(C · Z)143413 = (x1)2
8 .

}
(22)

(P · R)131312 = −(P · R)131321 = 2(P · R)121331 = −2(P · R)121313 = (x1)2

3
. (23)

(P · S)1121 = −(P · S)1112 = 2(P · S)1331 = −2(P · S)1313 = (x1)2

2
. (24)

(P · C)141421 = −(P · C)141412 = 2(P · C)143431 = −2(P · C)143413 = (x1)2
4 ,

(P · C)131312 = −(P · C)131321 = 2(P · C)121331 = −2(P · C)121313 = (x1)2
6 ,

(P · C)131434 = (P · C)133441 = −(P · C)131443 = −(P · C)133414 = (x1)2
24 .

⎫⎪⎬
⎪⎭ (25)

(P · P)132113 = −(P · P)121112 = −(P · P)121313 = −(P · P)141412 = −2(P · P)143413

= −2(P · P)341413 = (x1)2
6 , (P · P)131113 = 1

36 (x
1)3x2x3,

(P · P)123113 = −(P · P)131213 = 2(P · P)231113 = −2(P · P)131123 = (x1)2
9 ,

(P · P)131434 = −(P · P)133414 = −(P · P)143134 = −(P · P)143314 = −(P · P)341134

= −(P · P)341314 = 1
7 (P · P)131312 = − 1

5 (P · P)133313 = − 1
13 (P · P)133112 = (x1)2

36 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(26)

(P · K)131312 = −(P · K)131321 = 2(P · K)121331 = −2(P · K)121313 = (x1)2

3
. (27)
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(P · Z)144112 = −2(P · Z)143413 = (x1)2
4 ,

(P · Z)131312 = −2(P · Z)121313 = 4(P · Z)131434 = −4(P · Z)133414 = (x1)2
6 .

}
(28)

(K · R)131312 = −2(K · R)121313 = (x1)2

2
, (K · S)1112 = 2(K · S)1313 = − (x1)2

2
. (29)

(K · C)131312 = −(K · C)141412 = −2(K · C)121313 = −2(K · C)143413 = (x1)2

4
. (30)

(K · P)133112 = 2(K · P)121313 = −2(K · P)132113 = − (x1)2
2 ,

(K · P)131312 = 2(K · P)123113 = −2(K · P)141412 = −2(K · P)121112

= −2(K · P)131213 = (x1)2
3 , (K · P)131113 = 1

12 (x
1)3x2x3,

(K · P)341413 = (K · P)133313 = (K · P)143413 = −(K · P)231113 = − (x1)2
12 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(31)

(K · K)131312 = −2(K · K)121313 = (x1)2

2
. (32)

(K · Z)131312 = −(K · Z)141412 = −2(K · Z)121313 = −2(K · Z)143413 = (x1)2

4
. (33)

(Z · R)131312 = 2(Z · R)131434 = 2(Z · R)121414 = −2(Z · R)121313 = (x1)2

4
. (34)

(Z · S)1112 = 2(Z · S)1313 = −2(Z · S)1414 = − (x1)2

4
. (35)

(Z · C)131312 = (Z · C)131434 = −(Z · C)141412 = 2(Z · C)121414

= −2(Z · C)121313 = −2(Z · C)133414 = −2(Z · C)143413 = (x1)2
8 .

}
(36)

(Z · P)121414 = (Z · P)132113 = (Z · P)141334 = (Z · P)131434 = −(Z · P)121313

= −(Z · P)134134 = −(Z · P)142114 = −(Z · P)143134 = − 1
2 (Z · P)133112 = (x1)2

8 ,
(Z · P)123113 = (Z · P)141214 = −(Z · P)121112 = −(Z · P)124114 = −(Z · P)131213

= −(Z · P)141412 = 1
2 (Z · P)131312 = 2(Z · P)134314 = 2(Z · P)144414 = 2(Z · P)231113

= −2(Z · P)133313 = −2(Z · P)143413 = −2(Z · P)241114 = −2(Z · P)341314

= −2(Z · P)341413 = (x1)2
12 , (Z · P)131113 = −(Z · P)141114 = 1

24 (x
1)3x2x3.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(37)

(Z · K)131312 = 2(Z · K)121414 = 2(Z · K)131434 = −2(Z · K)121313 = (x1)2

4
. (38)

(Z · Z)131312 = (Z · Z)131434 = −(Z · Z)141412 = 2(Z · Z)121414

= −2(Z · Z)121313 = −2(Z · Z)133414 = −2(Z · Z)143413 = (x1)2
8 .

}
(39)

Q(g,R)121312 = Q(g,R)121434 = Q(g,R)131424 = −Q(g,R)132313 = −Q(g,R)123414
= −Q(g,R)132414 = 1

2Q(g,R)131323 = −2Q(g,R)121213 = x1
2 .

}
(40)

Q(g, S)1312 = −Q(g, S)1213 = Q(g, S)3414 = Q(g, S)1434 = − 1
2Q(g, S)1123

= 1
2Q(g, S)3313 = x1

2 , Q(g, S)1113 = −(x1)2x2x3.

}
(41)
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Q(S,R)131312 = −2Q(S,R)121313 = (x1)2

2
. (42)

Q(g,C)343413 = Q(g,C)131323 = Q(g,C)131424 = −Q(g,C)123414 = −Q(g,C)141423
= −Q(g,C)121213 = 2Q(g,C)121312 = 2Q(g,C)143412 = −2Q(g,C)132313
= −2Q(g,C)142413 = −2Q(g,C)132414 = 2Q(g,C)142314 = 2Q(g,C)121434

= −2Q(g,C)133434 = x1
2 , Q(g,C)141413 = −2Q(g,C)131414 = − 1

2 (x
1)2x2x3.

⎫⎪⎪⎬
⎪⎪⎭ (43)

Q(S,C)131312 = 2Q(S,C)133414 = −2Q(S,C)121313 = −2Q(S,C)131434 = (x1)2

4
. (44)

Q(g,P)141413 = Q(g,P)131313 = Q(g,P)133113 = 2Q(g,P)121113 = 2Q(g,P)131112
= 2Q(g,P)134114 = 2Q(g,P)141134 = 2Q(g,P)143114 = − 1

3 (x
1)2x2x3,

Q(g,P)121312 = Q(g,P)121434 = Q(g,P)124314 = Q(g,P)131424 = Q(g,P)141324
= Q(g,P)342114 = −Q(g,P)123414 = −Q(g,P)132112 = −Q(g,P)132414

= −Q(g,P)134124 = −Q(g,P)142134 = −Q(g,P)143124 = −Q(g,P)241314
= −Q(g,P)341214 = − 1

2Q(g,P)133123 = x1
2 ,

Q(g,P)131212 = Q(g,P)141234 = Q(g,P)134214 = Q(g,P)343413 = Q(g,P)243114
= −Q(g,P)123112 = −Q(g,P)124134 = −Q(g,P)121123 = −Q(g,P)141423
= 2Q(g,P)133213 = 2Q(g,P)134334 = 2Q(g,P)133312 = 2Q(g,P)144434
= 2Q(g,P)143412 = 2Q(g,P)233113 = Q(g,P)341412 = Q(g,P)344414

= −Q(g,P)142413 = −Q(g,P)231112 = −Q(g,P)143214 = −Q(g,P)234114
= −Q(g,P)241134 = −Q(g,P)241413 = −Q(g,P)341334 = −Q(g,P)343314

= 2
5Q(g,P)122113 = − 2

5Q(g,P)121213 = 1
2Q(g,P)131323

= − 1
2Q(g,P)132313 = − 1

2Q(g,P)231313 = x1
3 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)

Q(g,K)121312 = Q(g,K)131424 = Q(g,K)121434 = −Q(g,K)132313 = −Q(g,K)123414
= −Q(g,K)132414 = 1

2Q(g,K)131323 = − 1
2Q(g,K)121213 = x1

2 .

}
(46)

Q(S,K)131312 = −2Q(S,K)121313 = (x1)2

2
. (47)

Q(g,Z)131323 = Q(g,Z)131424 = Q(g,Z)343413 = −Q(g,Z)121213 = −Q(g,Z)123414
= −Q(g,Z)141423 = 2Q(g,Z)121312 = 2Q(g,Z)142314 = 2Q(g,Z)121434

= 2Q(g,Z)143412 = −2Q(g,Z)132313 = −2Q(g,Z)132414 = −2Q(g,Z)133434
= −2Q(g,Z)142413 = x1

2 , Q(g,Z)141413 = −2Q(g,Z)131414 = − 1
2 (x

1)2x2x3.

⎫⎪⎪⎬
⎪⎪⎭ (48)

Q(S,Z)131312 = 2Q(S,Z)133414 = −2Q(S,Z)121313 = −2Q(S,Z)131434 = (x1)2

4
. (49)

Q(S,P)132113 = −Q(S,P)121313 = (x1)2
4 , Q(S,P)123113

= Q(S,P)131123 = Q(S,P)133313 = −Q(S,P)131213 = 2Q(S,P)133414
= 2Q(S,P)143314 = 2Q(S,P)143134 = 2Q(S,P)341314 = 2Q(S,P)231113

= 2Q(S,P)341134 = −2Q(S,P)131434 = 2
5Q(S,P)131312

= − 2
5Q(S,P)133112 = (x1)2

6 , Q(S,P)131113 = 1
6 (x

1)3x2x3.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(50)

In terms of local coordinates, if we consider the components of the 1-forms A and B as

Ai(x) =
{

2x1 for i = 1
0 otherwise,

Bi(x) =
{

− 2+(x1)2x3
2x1 for i = 1
0 otherwise,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(51)

at any point x ∈ M, then by virtue of (10), (11), and (51), it follows that (1) holds for all i, j, h, k, l = 1, 2, 3, 4.
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In terms of local coordinates, the defining condition of
a pseudo quasi-Einstein manifold can be expressed as

Sij = αgij + βAiAj + γDij, 1 ≤ i, j ≤ n. (52)

We consider the associated scalars α, β , and γ , the com-
ponents of the associated 1-form A, and the structure
tensor D respectively as follows:

α = − x1

2(1 + x1x2x3)
, β = x1(2 + x1x2x3)

2(1 + x1x2x3)
(53)

and γ is any nowhere vanishing scalar function,

Ai(x) =
{

1 for i = 3,
0 otherwise, , (54)

Dij(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1)2x2x3
2γ (1+x1x2x3) for i = 1, j = 1,

x1
2γ (1+x1x2x3) for i = 1, j = 2,

x1
2γ for i = 1, j = 3,

− x1
2γ for i = 3, j = 3,
x1

2γ (1+x1x2x3) for i = 4, j = 4,
0 otherwise,

(55)

at any point x ∈ M. Then it is easy to check that the
generator U is taken as (0, 0, 1, 0) and A =< · ,U >,
the structure tensor D is symmetric such that trD = 0
and D(X,U) = 0 for all X. From (55) it follows that D
cannot be expressed as the outer product of two covec-
tors. Then from (9), (10), (53), (54), and (55), it follows
that (M4, g) endowed with the metric (9) is pseudo quasi-
Einstein. Also, from the above results, it is easy to check
that the metric (9) does not satisfy any one of (i) to (xvi) of
Q.1 and (i) to (xiii) of Q.2.
Hence from (10), (11), (12), and (42), we can state the

following:

Theorem 3.1. Let (M4, g) be a semi-Riemannian mani-
fold equipped with the metric (9). Then (M4, g) is (i) weakly
generalized recurrent, (ii) pseudo quasi-Einstein, and (iii)
fulfills the condition R · R = Q(S,R).
As a consequence of R · R = Q(S,R) and r = 0 and also

from the above calculations, we can state the following:

Theorem 3.2. Let (M4, g) be a semi-Riemannian mani-
fold equipped with the metric (9). Then (M4, g) satisfies the
following:
(i) Q(g,C) = Q(g,Z), (ii) Q(g,R) = Q(g,K),
(iii) Q(S,R) = Q(S,K), (iv) Q(S,C) = Q(S,Z),
(v) R · S = P · S, (vi) R · K = R · R,
(vii) R · K = K · R, (viii) R · K = Q(S,K),

(ix) K · R = Q(S,R), (x) K · K = Q(S,K),
(xi) P · R = 2

3Q(S,R), (xii) P · K = 2
3Q(S,K),

(xiii) C · Z = Z · C = Z · Z, (xiv) Z · R = Z · K.
Again, if we consider the signature of the metric (9) as

semi-Riemannian or Lorentzian given by

ds2 = gijdxidxj=−x1x2x3(dx1)2+2dx1dx2−(dx3)2−(dx4)2,

ds2 = gijdxidxj=−x1x2x3(dx1)2+2dx1dx2−(dx3)2+(dx4)2,

ds2 = gijdxidxj=−x1x2x3(dx1)2+2dx1dx2+(dx3)2−(dx4)2,

ds2 = gijdxidxj=x1x2x3(dx1)2+2dx1dx2−(dx3)2−(dx4)2,

ds2 = gijdxidxj=−x1x2x3(dx1)2+2dx1dx2+(dx3)2+(dx4)2,

ds2 = gijdxidxj=x1x2x3(dx1)2+2dx1dx2−(dx3)2+(dx4)2,

ds2 = gijdxidxj=x1x2x3(dx1)2+2dx1dx2+(dx3)2−(dx4)2,

i, j = 1, 2, 3, 4, then it can be easily shown that the results
of Theorem 3.1 and Theorem 3.2 remain unchanged.
Again if we consider the metric as

ds2 = gijdxidxj = x2x3(dx1)2 + 2dx1dx2 + 2dx1dx3

+ x1(dx3)2 + (dx4)2

(56)

and

ds2 = gijdxidxj = x1x2x3(dx1)2 + 2dx1dx3

+ (dx2)2 + (dx4)2,
(57)

i, j = 1, 2, 3, 4, then the results of Theorem 3.1 and
Theorem 3.2 also remain unchanged. It may bementioned
that if the signature of themetrics (56) and (57) are consid-
ered as semi-Riemannian or Lorentzian, then the results
of Theorem 3.1 and Theorem 3.2 also hold.
By extending the dimension of the metrics (9), (56), and

(57) given as

ds2 = gijdxidxj = x1x2x3(dx1)2 + 2dx1dx2 + (dx3)2

+ (dx4)2 + δabdxadxb,
(58)

ds2 = gijdxidxj = x2x3(dx1)2 + 2dx1dx2 + 2dx1dx3

+ x1(dx3)2 + (dx4)2 + δabdxadxb,
(59)

and

ds2 = gijdxidxj = x1x2x3(dx1)2 + 2dx1dx3 + (dx2)2

+ (dx4)2 + δabdxadxb,
(60)

where δab denotes the Kronecker delta, 5 ≤ a, b ≤ n, and
i, j = 1, 2, ..., n, it is easy to check that the metrics (58),
(59), and (60) are also WGKn, pseudo quasi-Einstein, and
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fulfills the condition R · R = Q(S,R). We note that if we
consider the metrics as

ds2 = gijdxidxj = f13(x1, x3)(c1 + x2c2)(dx1)2

+ 2f1(x1)dx1dx2 + f13(x1, x3)(dx3)2

+ f4(x4)(dx4)2,
(61)

ds2 = gijdxidxj = f14(x1, x4)(c1 + x2c2)(dx1)2

+ 2f1(x1)dx1dx2 + f13(x1, x3)(dx3)2

+ f14(x1, x4)(dx4)2,
(62)

and

ds2 = gijdxidxj = f13(x1, x3)(c1 + x2c2)(dx1)2

+ 2f1(x1)dx1dx2 + 2f13(x1, x3)dx1dx3

+ f13(x1, x3)(dx3)2 + f4(x4)(dx4)2,
(63)

i, j = 1, 2, 3, 4, where c1, c2 are constants, f1, f13, f14, and f4
are respectively the functions of x1, (x1, x3), (x1, x4) and
x4, then they are also WGKn, pseudo quasi-Einstein and
realizes the condition R · R = Q(S,R). This leads to the
following:

Theorem 3.3. Let (Mn, g), n ≥ 4, be a semi-Riemannian
manifold equipped with any one metric given in (58) to
(63). Then (Mn, g) is (i) weakly generalized recurrent, (ii)
pseudo quasi-Einstein, and (iii) fulfills the condition R·R =
Q(S,R).

Conclusions
From the above results and discussion, we conclude that
we obtain a new class of semi-Riemannian manifolds
which is WGKn, pseudo quasi-Einstein, and fulfills R ·R =
Q(S,R) but does not satisfy any one of conditions (i) to
(xvi) of Q.1 and conditions (i) to (xiii) of Q.2. Also, met-
rics (9) and (56) to (63) presented in the paper do not
realize the defining conditions of any one of the follow-
ing: (a) generalized quasi-Einstein by Chaki as well as
by De and Ghosh, (b) hyper-generalized quasi-Einstein,
(c) pseudo generalized quasi-Einstein, and (d) generalized
pseudo quasi-Einstein.
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57. Deszcz, R, Hotloś M: On some pseudosymmetry type curvature condition.
Tsukuba J. Math. 27, 13–30 (2003)
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