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Abstract: In the present paper, we investigate the existence of solutions for the following inhomogeneous
singular equation involving the p(x)-biharmonic operator:

{
∆(|∆u|p(x)−2∆u) = g(x)u−γ(x) ∓ λf(x, u) in Ω,
∆u = u = 0 on ∂Ω,

where Ω ⊂ ℝN (N ≥ 3) is a bounded domain with C2 boundary, λ is a positive parameter, γ : Ω → (0, 1) is
a continuous function, p ∈ C(Ω) with 1< p− := infx∈Ω p(x)≤ p+ := supx∈Ω p(x)< N2 , as usual, p∗(x)= Np(x)

N−2p(x) ,
g ∈ L

p∗(x)
p∗(x)+γ(x)−1 (Ω),

and f(x, u) is assumed to satisfy assumptions (f1)–(f6) in Section 3. In the proofs of our results, we use
variational techniques and monotonicity arguments combined with the theory of the generalized Lebesgue
Sobolev spaces. In addition, an example to illustrate our result is given.

Keywords: Navier boundary condition, singular problem, p(x)-biharmonic operator, variational methods,
existence results, generalized Lebesgue Sobolev spaces
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1 Introduction
Let Ω be a smooth bounded domain inℝN (N ≥ 3) with C2 boundary condition. In this paper, we are dealing
with the following problem:

{
∆(|∆u|p(x)−2∆u) = g(x)u−γ(x) ∓ λf(x, u) in Ω,
∆u = u = 0 on ∂Ω,

(P∓λ)
where λ is a positive parameter, γ(x) ∈ C(Ω) satisfying 0 < γ− = infx∈Ω γ(x) ≤ γ+ = supx∈Ω γ(x) < 1, p ∈ C(Ω)
with 1 < p− := infx∈Ω p(x) ≤ p+ := supx∈Ω p(x) < N2 , as usual, p∗(x) = Np(x)

N−2p(x) , and
g ∈ L

p∗(x)
p∗(x)+γ(x)−1 (Ω)
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and is almost everywherepositive inΩ. In the sequel,Xwill denote theSobolev spaceW2,p(x)(Ω) ∩W1,p(x)

0 (Ω).
Associated to problem (P∓λ), we have the singular functional I∓λ : X → ℝ given by

I∓λ(u) = J(u) − Φ∓λ(u),
where

J(u) = ∫
Ω

1
p(x)
|∆u|p(x) dx

and
Φ∓λ(u) = ∫

Ω

g(x)
1 − γ(x) |u|

1−γ(x) dx ∓ λ∫
Ω

F(x, u(x))dx,

where F(x, t) = ∫t0 f(x, s)ds.

Definition 1.1. If for all v ∈ X,

∫
Ω

|∆u|p(x)−2∆u∆v dx = ∫
Ω

g(x)|u|−γ(x)v dx ∓ λ∫
Ω

f(x, u)v dx,

then u ∈ X is called a weak solution of (P∓λ).
The operator ∆2p(x)u := ∆(|∆u|p(x)−2∆u) is called the p(x)-biharmonic operator of fourth order, where p is
a continuous non-constant function. This differential operator is a natural generalization of the p-biharmonic
operator ∆2pu := ∆(|∆u|p−2∆u), where p > 1 is a real constant. However, the p(x)-biharmonic operator pos-
sesses more complicated non-linearity than the p-biharmonic operator, due to the fact that ∆2p(x) is not
homogeneous. This fact implies some difficulties; for example, we can not use the Lagrange multiplier
theorem in many problems involving this operator.

The study of this kind of operators occurs in interesting areas such as electrorheological fluids (see [19]),
elastic mechanics (see [25]), stationary thermo-rheological viscous flows of non-Newtonian fluids, image
processing (see [6]) and the mathematical description of the processes filtration of an ideal barotropic gas
through a porous medium (see [1]).

Problem (P∓λ) is a new variant of p(x)-biharmonic equations due to the singular term and the indefinite
one. Note that results for p(x)-Laplace equations with singular non-linearity are rare. Meanwhile, elliptic
and singular elliptic equations involving the p(x)-Laplace and the p(x)-biharmonic operators can be found
in [1, 2, 5, 8–10, 13, 14, 17, 18, 20–23].

Recently, Ayoujil and Amrouss [4] studied the following problem:

{
∆(|∆u|p(x)−2∆u) = λ|u|q(x)−2u in Ω,
∆u = u = 0 on ∂Ω.

(P)

In the casewhenmaxx∈Ω q(x)<minx∈Ω p(x), they proved that the energy functional associated to problem (P)
has a nontrivialminimum for any positive λ; see [4, Theorem3.1]. In the casewhenminx∈Ω q(x)<minx∈Ω p(x)
and q(x) has a subcritical growth, they used Ekeland’s variational principle in order to prove the existence of
a continuous family of eigenvalues which lies in a neighborhood of the origin. Finally, when

max
x∈Ω p(x) < min

x∈Ω q(x) ≤ max
x∈Ω q(x) < Np(x)

N − 2p(x) ,

they showed (see [4, Theorem 3.8]) that for every Λ > 0 the energy functional Φλ corresponding to (P) has
a Mountain Pass-type critical point which is nontrivial and nonnegative, and hence Λ = (0, +∞), where Λ is
the set of the eigenvalues. The same problem, for p(x) = q(x), is studied by Ayoujil and Amrouss in [3]. They
established the existence of infinitely many eigenvalues for problem (P) by using an argument based on the
Ljusternik–Schnirelmann critical point theory. They showed that supΛ = +∞, and they pointed out that only
under special conditions, which are somehow connected with a kind of monotony of the function p(x), one
has inf Λ > 0 (this is in contrast with the case when p(x) is a constant, where one always has inf Λ > 0).
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Later, Ge, Zhou and Wu [10] considered the following problem:

{
∆(|∆u|p(x)−2∆u) = λV(x)|u|q(x)−2u in Ω,
∆u = u = 0 on ∂Ω,

(P1)

where V is an indefinite weight and λ is a positive real number. They considered different situations concern-
ing the growth rates, and they proved, using themountain pass lemma and Ekeland’s principle, the existence
of a continuous family of eigenvalues. A recent paper concerning this type of problems is [12].

Inspired by the above-mentioned papers, we study problem (P∓λ), which contains a singular term and
indefinite many more general terms than the one studied in [10]. In this new situation, we will show the
existence of aweak solution for problem (P∓λ). The paper is organized as follows: In Section 2, we recall some
definitions concerning variable exponent Lebesgue spaces, Lp(x)(Ω), as well as Sobolev spaces, Wk,p(x)(Ω).
Moreover, some properties of these spaces will also be exhibited to be used later. Our main results are stated
in Section 3. The proofs of our results will be presented in Section 4 and Section 5.

2 Notations and preliminaries
To study p(x)-biharmonic problems, we need some results on the spaces Lp(x)(Ω),W1,p(x)(Ω) andWk,p(x)(Ω)
(for details, see [9, 18]) and some properties of the p(x)-biharmonic operator, which will be needed later. Set

C+(Ω) := {h : h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.
Let p be a Lipschitz continuous function on Ω. We set 1 < p− := minx∈Ω p(x) ≤ p+ = maxx∈Ω p(x) <∞ and

Lp(x)(Ω) = {u : Ω → ℝmeasurable such that ∫
Ω

|u(x)|p(x) dx <∞}.
We recall the following so-called Luxemburg norm on this space defined by the formula

|u|p(x) = inf{μ > 0 : ∫
Ω


u(x)
μ

p(x)

dx ≤ 1}.

Clearly, when p(x) = p, a positive constant, the space Lp(x)(Ω) reduces to the classical Lebesgue space Lp(Ω),
and the norm |u|p(x) reduces to the standard norm

‖u‖Lp = (∫
Ω

|u|p dx)
1
p

in Lp(Ω).

For any positive integer k, as in the constant exponent case, let

Wk,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},
where α = (α1, . . . , αN) is a multi-index, |α| = ∑Ni=1 αi and

Dαu = ∂|α|u
∂α1x1 ⋅ ⋅ ⋅ ∂αN xN

.

ThenWk,p(x)(Ω) is a separable and reflexive Banach space equipped with the norm
‖u‖k,p(x) = ∑|α|≤k|Dαu|p(x).

Furthermore,Wk,p(x)
0 (Ω) is the closure of C∞0 (Ω) inWk,p(x)(Ω). Let Lp(x)(Ω) be the conjugate space of Lp(x)(Ω)

with 1
p +

1
p = 1. Then the Hölder-type inequality


∫
Ω

uv dx

≤ (

1
p− + 1
(p)− )|u|p(x)|v|p(x), u ∈ Lp(x)(Ω), v ∈ Lp(x)(Ω) (2.1)

holds.
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The modular on the space Lp(x)(Ω) is the map ρp(x) : Lp(x)(Ω)→ ℝ defined by

ρp(x)(u) := ∫
Ω

|u|p(x) dx,
and it satisfies the following propositions.

Proposition 2.1 (see [16]). For all u ∈ Lp(x)(Ω), we have the following assertions:
(i) |u|p(x) < 1 (resp. = 1, > 1) if and only if ρp(x)(u) < 1 (resp. = 1, > 1).
(ii) min(|u|p

−
p(x), |u|p+p(x)) ≤ ρp(x)(u) ≤ max(|u|p

−
p(x), |u|p+p(x)).

(iii) ρp(x)(un − u)→ 0 if and only if |un − u|p(x) → 0.

Proposition 2.2 (see [7]). Let p and q be twomeasurable functions such that p ∈ L∞(Ω) and 1 ≤ p(x)q(x) ≤∞
for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u ̸= 0. Then

min(|u|p
+
p(x)q(x), |u|p−p(x)q(x)) ≤ ||u|p(x)|q(x) ≤ max(|u|p

−
p(x)q(x), |u|p+p(x)q(x)).

For more details concerning the modular, see [9, 16].

Definition 2.3. Assuming that E and F are Banach spaces, we define the norm on the space X := E ∩ F as
‖u‖X = ‖u‖E + ‖u‖F .

In order to discuss problems (P∓λ), we need some theories on the space X := W1,p(x)
0 (Ω) ∩W2,p(x)(Ω). From

Definition 2.3 we know that for any u ∈ X,

‖u‖ = ‖u‖1,p(x) + ‖u‖2,p(x),
and thus

‖u‖ = |u|p(x) + |∇u|p(x) + ∑|α|=2|Dαu|p(x).
Zang and Fu [24], proved the equivalence of the norms, and they even proved that the norm |∆u|p(x) is equiv-
alent to the norm ‖u‖ (see [24, Theorem 4.4]). Let us choose on X the norm defined by ‖u‖ = |∆u|p(x). Note
that (X, ‖ ⋅ ‖) is also a separable and reflexive Banach space and that the modular is defined as ρp(x) : X → ℝ
by ρp(x)(∆u) = ∫Ω|∆u|dx and satisfies the same properties as in Proposition 2.1. Hereafter, let

p∗(x) = {{{{{{
{

Np(x)
N − 2p(x) , p(x) < N2 ,

+∞, p(x) ≥ N2 .

Remark 2.4. If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, by [4, Theorem 3.2] we deduce that X is continu-
ously and compactly embedded in Lq(x)(Ω).
Throughout this paper, the letters k, c, C, Ci , i = 1, 2, . . . , denote positive constants which may change from
line to line.

3 Hypotheses and main results
Let us impose the following hypotheses on the non-linearity f : Ω ×ℝ→ ℝ:
(f1) f is a C1 function such that f(x, 0) = 0.
(f2) There exists Ω1 ⋐ Ω with |Ω1| > 0, and a nonnegative function h1 on Ω1 such that h1 ∈ Ls1(x)(Ω) with

lim|t|→0 f(x, t)
h1(x)|t|r1(x)−1 = 0 for x ∈ Ω uniformly.
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(f3) There exists a positive function h on Ω such that h ∈ Ls(x)(Ω) and
lim|t|→+∞ f(x, t)

h(x)|t|r(x)−1 = 0 for x ∈ Ω uniformly,

where s, s1, r and r1 ∈ C(Ω) are such that1 < max{r(x), r1(x)} < p(x) < N2 < min(s(x), s1(x)) for all x ∈ Ω.
(f4) There exists A > 0 such that

∫
Ω

F(x, t)dx > 0 for all t > A.

(f5) f(x, t) ≤ Ch(x)|t|r(x)−2t for all t ∈ ℝ and all x ∈ Ω, where C is a positive constant, h ∈ Ls(x)(Ω) and
s, r ∈ C(Ω) are such that for all x ∈ Ω we have 1 < r(x) < p(x) < N2 < s(x).

(f6) There exists Ω1 ⋐ Ω with |Ω1| > 0 such that f(x, t), h(x) > 0 in Ω1.
Some remarks regarding the hypotheses are in order.

Remark 3.1. Under assumptions (f3) and (f4), we have the following assertions.
(i) (1 − γ(x))p(x) < p(x) < p∗(x) for any x ∈ Ω, so the injection of X → L(1−γ(x))p(x)(Ω) is compact and con-

tinuous.
(ii) s(x)r(x) < p∗(x) for any x ∈ Ω, where 1

s(x) + 1
s(x) = 1, so X → Ls(x)r(x)(Ω) is compact and continuous.

(iii) s1(x)r1(x) < p∗(x) for any x ∈ Ω, where 1
s1(x) + 1

s1(x) = 1, so X → Ls1(x)r1(x)(Ω) is compact and continuous.
(iv) X → Lp∗(x)(Ω) is continuous.
Moreover, under conditions (f5) and (f6), we remark the following.

Remark 3.2. (i) There exists K > 0 such that ηf(x, η) ≤ Kr(x)F(x, η) for all x ∈ Ω1, η ∈ ℝ+.
(ii) Due to condition (f5), there exists C > 0 such that

F(x, η) ≤ Ch(x)|η|r(x)−1η in Ω ×ℝ.

(iii) Conditions (f5) and (f6) assure that F(x, η) > 0 for all x ∈ Ω1, η ∈ ℝ.
(iv) Put f(x, t) = Ch(x)|t|r(x)−2t, x ∈ Ω, t ∈ ℝ. Then the first condition in the remark is satisfied.

Here we state our main results asserted in the following two theorems.

Theorem 3.3. Assume that hypotheses (f1), (f2), (f3) and (f4) are fulfilled. Then for all λ > 0 problem (P−λ) has
at least one nontrivial weak solution with negative energy.

Theorem 3.4. Assume that hypotheses (f5) and (f6) are fulfilled. Then for all λ > 0 problem (P+λ) has at least
one nontrivial weak solution with negative energy.

4 Proof of Theorem 3.3
The study of the existence of solutions to problem (P−λ) is done by looking for critical points to the functional
I−λ : X → ℝ defined by

I−λ(uλ) = ∫
Ω

|∆uλ|p(x)
p(x)

dx − ∫
Ω

g(x)u1−γ(x)λ
1 − γ(x) dx + λ∫

Ω

F(x, uλ)dx

in the Sobolev space X. Theproof of the Theorem3.3 is organized in several lemmas. Firstly, underRemark3.1
one has

|uλ|(1−γ(x))p(x) ≤ C2‖uλ‖ for all uλ ∈ X (4.1)

and
|uλ|s(x)r(x) ≤ C3‖uλ‖ for all uλ ∈ X.

Now, we are in a position to show that I−λ possesses a nontrivial global minimum point in X.
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Lemma 4.1. Under assumptions (f2), (f3) and (f4), the functional I−λ is coercive on X.
Proof. First, we recall that in view of assumptions (f3), (f4), inequality (4.1), Remark 3.1 and Proposition 2.1
one has for any uλ ∈ X with ‖uλ‖ > max(1, A),

I−λ(uλ) ≥ ∫
Ω

1
p(x)
|∆uλ|p(x) dx − C4|g| p∗(x)

p∗(x)+γ(x)−1 ||uλ|1−γ(x)|p∗(x) + λ∫
Ω

F(x, uλ)dx

≥ ∫
Ω

1
p(x)
|∆uλ|p(x) dx − C4|g| p∗(x)

p∗(x)+γ(x)−1 ||uλ|1−γ(x)|p(x)
≥ ∫

Ω

1
p(x)
|∆uλ|p(x) dx − C4|g| p∗(x)

p∗(x)+γ(x)−1 ‖uλ‖1−γ−
≥

1
p+ ρp(x) (∆uλ) − C4|g| p∗(x)

p∗(x)+γ(x)−1 ‖uλ‖1−γ−
≥

1
p+ ‖uλ‖p− − C4|g| p∗(x)

p∗(x)+γ(x)−1 ‖uλ‖1−γ− .
Since 1 − γ− < p−, we infer that I−λ(uλ)→∞ as ‖uλ‖→∞; in other words, I−λ is coercive on X. The proof of
Lemma 4.1 is now completed.

Lemma 4.2. Suppose assumptions (f2) and (f3) are fulfilled. Then there exists φ ∈ X such that φ ≥ 0, φ ̸= 0 and
I−λ(tφ) < 0 for t > 0 small enough.
Proof. Letφ ∈ C∞0 (Ω) such that supp(φ) ⊂ Ω1 ⋐ Ω, φ = 1 in a subsetΩ ⊂ supp(φ)and0 ≤ φ ≤ 1 inΩ1. Using
assertions on the functions g and F and assumption (f2), we have

I−λ(tφ) = ∫
Ω

1
p(x)
|∆tφ|p(x) dx − ∫

Ω

1
1 − γ(x) g(x)|tφ|

1−γ(x) dx + λ∫
Ω

F(x, tφ)dx

≤
tp−
p− ρp(x)(∆φ) − t1−γ−1 − γ− ∫

Ω

g(x)|φ|1−γ(x) dx + λC1tr−1 ∫
Ω1

h1(x)|φ|r1(x) dx
≤ tr

−
1[

1
p− ρp(x)(∆φ) + λC1 ∫

Ω1

h1(x)|φ|r1(x) dx] − t1−γ−1 − γ− ∫
Ω

g(x)|φ|1−γ(x) dx,
so

I−λ(tφ) < 0 for t < ψ
1

r−1−(1−γ−)
with

0 < ψ < min{1,
1

1−γ− ∫Ω g(x)|φ|1−γ(x) dx
1
p− ρp(x)(∆φ) + λC1 ∫Ω1

h1(x)|φ|r1(x) dx}.
Finally, we point out, using the hypothesis on φ and the definition of the modular on X, that

1
p− ρp(x)(∆φ) + λC ∫

Ω1

h1(x)|φ|r1(x) dx > 0.
In fact, if

1
p− ρp(x)(∆φ) + λC1 ∫

Ω1

h1(x)|φ|r1(x) dx = 0,
then ρp(x)(∆φ) = 0, and consequently ‖φ‖ = 0, which contradicts the choice of φ and gives the proof of
Lemma 4.2.

In the sequel, we put mλ = infuλ∈X I−λ(uλ). Then we have the following lemma.

Lemma 4.3. Let λ ≥ 0, γ ∈ C(Ω̄, (0, 1)),
g ∈ L

p∗(x)
p∗(x)+γ(x)−1 (Ω)

with g(x) > 0 for almost every x ∈ Ω, and assume that hypothesis (f1), (f2), (f3) and (f4) are fulfilled. Then I−λ
reaches its global minimizer in X, that is, there exists uλ ∈ X such that I−λ(uλ) = mλ < 0.
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Proof. Let {un} be a minimizing sequence, that is to say I−λ(un)→ mλ. Suppose {un} is not bounded, so
‖un‖→ +∞ as n → +∞. Since Iλ is coercive, we have

I−λ(un)→ +∞ as ‖un‖→ +∞.

This contradicts the fact that {un} is a minimizing sequence, so {un} is bounded in X, and therefore, up to
a subsequence, there exists uλ ∈ X such that

un ⇀ uλ weakly in X,
un → uλ strongly in Ls(x)(Ω), 1 ≤ s(x) < p∗(x),
un(x)→ uλ(x) a.e. in Ω.

Since J : X → ℝ is sequentially weakly lower semi-continuous (see [12]), we have

∫
Ω

1
p(x)
|∆uλ|p(x) ≤ lim inf

n→+∞ ∫
Ω

1
p(x)
|∆un|p(x). (4.2)

On the other hand, by Vital’s theorem (see [16, p. 113]), we can claim that

lim
n→∞∫

Ω

g(x)|un|1−γ(x) dx = ∫
Ω

g(x)|uλ|1−γ(x) dx. (4.3)

Indeed, we only need to prove that
{∫
Ω

g(x)|un|1−γ(x) dx : n ∈ ℕ}
is equi-absolutely-continuous. Note that {un} is bounded in X, so Remark 3.1 implies that {un} is bounded in
Lp∗(x)(Ω). For every ε > 0, using Proposition 2.1 and the absolutely-continuity of

∫
Ω

|g(x)|
p∗(x)

p∗(x)+γ(x)−1 dx,
there exist ζ, ξ > 0 such that

|g|ζ p∗(x)
p∗(x)+γ(x)−1 ≤ ∫

Ω

|g(x)|
p∗(x)

p∗(x)+γ(x)−1 dx ≤ εζ for any Ω2 ⊂ Ω with |Ω2| < ξ.

Consequently, by the Hölder inequality and Proposition 2.1 one has

∫
Ω

|g(x)| |un|1−γ(x) dx ≤ |g| p∗(x)
p∗(x)+γ(x)−1 ||un|1−γ(x)|p∗(x) ≤ |g| p∗(x)

p∗(x)+γ(x)−1 |un|k(1−γ(x))p∗(x).
Since (1 − γ(x))p∗(x) < p∗(x), we have

|un|(1−γ(x))p∗(x) ≤ C7|un|p∗(x),
so

∫
Ω

|g(x)| |un|1−γ(x) dx ≤ |g| p∗(x)
p∗(x)+γ(x)−1 ||un|1−γ(x)|p∗(x) ≤ |g| p∗(x)

p∗(x)+γ(x)−1 |un|k(1−γ(x))p∗(x) < εCk7|un|kp∗(x).
Since |un|p∗(x) is bounded, claim (4.3) is valid.

In what follows, we remark, using assumptions (f2) and (f3), that for all ε > 0 there exists Cε such that

|F(x, uλ(x))| ≤ ε
C1
r−1 |h1(x)| |uλ|r1(x) + Cε Cr− |h(x)| |uλ|r(x).

Then by the Hölder inequality one has

∫
Ω

|F(x, uλ(x)| ≤ ε
C1
r−1 |h1|s1(x)||uλ|r1(x)|s1(x) + Cε Cr− |h|s(x)||uλ|r(x)|s(x).
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Besides, if un ⇀ uλ in X, then we have strong convergence in Ls

(x)r(x)(Ω) and Ls1(x)r1(x)(Ω). So the Lebesgue
dominated convergence theorem and Proposition 2.2 enable us to state the following assertion: If

u → λ∫
Ω

F(x, uλ(x))dx

is weakly continuous, then
lim
n→+∞Φ−λ(un) = Φ−λ(uλ). (4.4)

Using (4.2), (4.3) and (4.4), we deduce that I−λ is weakly lower semi-continuous, and consequently

mλ ≤ I−λ(uλ) ≤ lim inf
n→+∞ I−λ(un) = mλ .

The proof of Lemma 4.3 is now completed.

Proof of Theorem 3.3. Now, let us show that the weak limit uλ is a weak solution of problem (P−λ) if λ > 0 is
sufficiently large. Firstly, observe that I−λ(0) = 0. So, in order to prove that the solution is nontrivial, it suffices
to prove that there exists λ∗ > 0 such that

inf
uλ∈X I−λ(uλ) < 0 for all λ > 0.

For this purpose, we consider the variational problem with constraints

λ∗ := inf {∫
Ω

1
p(x)
|∆w|p(x) dx + ∫

Ω

g(x)
1 − γ(x) |w|

1−γ(x) dx : w ∈ X and ∫
Ω

F(x, w(x))dx = 1}, (4.5)

and define
Λ∗ := inf{λ > 0: (P−λ) admits a nontrivial weak solution}.

From above we have
I−λ(uλ) = λ∗ − λ < 0 for any λ > λ∗.

Therefore, the above remarks show that λ∗ ≥ Λ∗ and that problem (P−λ) has a solution for all λ > λ∗.
We now argue that problem (P−λ) has a solution for all λ > Λ∗. Fixing λ > Λ∗, by the definition of Λ∗ we

can take μ ∈ (Λ∗, λ) such that I−μ has a nontrivial critical point uμ ∈ X. Since μ < λ, we obtain that uμ is a sub-
solution of problem (P−λ). We now want to construct a super-solution of problem (P−λ) which dominates uμ.
For this purpose, we introduce the constrained minimization problem

inf{I−λ(w) : w ∈ X and w ≥ uμ}.

By using the previous arguments to treat (4.5), follows that the above minimization problem has a solution
uλ > uμ. Moreover, uλ is also a weak solution of problem (P−λ) for all λ > Λ∗. With the arguments developed
in [15], we deduce that problem (P−λ) has a solution if λ = Λ∗.

Now, it remains to show that ∆uλ = 0 on ∂Ω. Due to the above arguments, one has

∫
Ω

|∆uλ|p(x)−2∆uλ∆v dx = ∫
Ω

m(x)v dx for all v ∈ X, (4.6)

where
m(x) = g(x)u−γ(x)λ − λf(x, uλ).

Relation (4.6) implies that

∫
Ω

|∆uλ|p(x)−2∆uλ∆v dx = ∫
Ω

m(x)v dx for all v ∈ C∞0 (Ω). (4.7)

Let ζ be the unique solution of the problem

{
∆ζ = m(x) in Ω,
ζ = 0 on ∂Ω.
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Relation (4.7) yields

∫
Ω

|∆uλ|p(x)−2∆uλ∆v dx = ∫
Ω

(∆ζ)v dx for all v ∈ C∞0 (Ω).
Using the Green formula, we have

∫
Ω

(∆ζ)v dx = ∫
Ω

ζ∆v dx.

Therefore,

∫
Ω

|∆uλ|p(x)−2∆uλ∆v dx = ∫
Ω

ζ∆v dx for all v ∈ C∞0 (Ω). (4.8)

On the other hand, for all ̃uλ ∈ C∞0 (Ω) there exists a unique v ∈ C∞0 (Ω) such that ∆v = ̃uλ in Ω. Thus,
relation (4.8) can be rewritten as

∫
Ω

(|∆uλ|p(x)−2∆uλ − ζ) ̃uλ dx = 0 for all ̃uλ ∈ C∞0 (Ω).
Applying the fundamental lemma of the calculus of variations, we deduce that

|∆uλ|p(x)−2∆uλ − ζ = 0 in Ω.

Since ζ = 0 on ∂Ω, we conclude that ∆uλ = 0 on ∂Ω. Thus, uλ is a nontrivial weak solution of problem (P−λ)
such that ∆uλ = 0. This completes the proof of Theorem 3.3.

5 Proof of Theorem 3.4
The proof of Theorem 3.4 is organized in several lemmas. Firstly, we show the existence of a local minimum
for I+λ in a small neighborhood of the origin in X.

Lemma 5.1. Under assumption (f5), the functional I+λ is coercive on X.
Proof. Using Remark 3.1, inequality (2.1) and Proposition 2.1, we obtain that for any vλ ∈ X with ‖vλ‖ > 1,

I+λ(vλ) = ∫
Ω

1
p(x)
|∆vλ|p(x) dx − 1

1 − γ(x) ∫
Ω

g(x)|vλ|1−γ(x) dx − λ∫
Ω

F(x, vλ(x))dx

≥
1
p+ ρp(x)(∆vλ) − 1

1 − γ+ ∫
Ω

g(x)|vλ|1−γ(x) dx − λ∫
Ω

F(x, vλ(x))dx

≥
1
p+ ‖vλ‖p− − 1

1 − γ+ |g| p∗(x)
p∗(x)+γ(x)−1 ||vλ|1−γ(x)|p∗(x) − Cλ∫

Ω

h(x)|vλ|r(x) dx
≥

1
p+ ‖vλ‖p− − 1

1 − γ+ |g| p∗(x)
p∗(x)+γ(x)−1 ||vλ|1−γ(x)|p(x) − Cλ|h|s(x)||vλ|r(x)|s(x) dx

≥
1
p+ ‖vλ‖p− − 1

1 − γ+ |g| p∗(x)
p∗(x)+γ(x)−1 min(|vλ|

1−γ+(1−γ(x))p(x), |vλ|1−γ−(1−γ(x))p(x))
− Cλ|h|s(x)min(|vλ|r

+
s(x)r(x), |vλ|r−s(x)r(x))

≥
1
p+ ‖vλ‖p− − 1

1 − γ+ |g| p∗(x)
p∗(x)+γ−1 min(C1−γ+1 ‖vλ‖

1−γ+ , C1−γ−1 ‖vλ‖
1−γ− )

− Cλ|h|s(x)min(Cr+2 ‖vλ‖r+ , Cr−2 ‖vλ‖r− ).
Since 1 − γ− < r+ < p−, we infer that Iλ(vλ)→∞ as ‖vλ‖→∞ and I+λ is coercive on X. This ends the proof of
Lemma 5.1.
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Lemma 5.2. Under assumptions (f5) and (f6), there exists φ ∈ X such that φ ≥ 0, φ ̸= 0 and I+λ(tφ) < 0 for
t > 0 small enough.

Proof. Letφ ∈ C∞0 (Ω) such that supp(φ) ⊂ Ω1 ⋐ Ω, φ = 1 in a subsetΩ ⊂ supp(φ)and0 ≤ φ ≤ 1 inΩ1. Using
assertions on the functions g and F, we have

I+λ(tφ) = ∫
Ω

1
p(x)
|∆tφ|p(x) dx − ∫

Ω

1
1 − γ(x) g(x)|tφ|

1−γ(x) dx − λ∫
Ω

F(x, tφ)dx

≤ ∫
Ω

tp(x)
p− |∆φ|p(x) dx − ∫

Ω

g(x)
1 − γ(x) |tφ|

1−γ(x) dx − λ∫
Ω

F(x, tφ)dx

≤
tp−
p− ∫

Ω

|∆φ|p(x) dx − t1−γ− ∫
Ω

g(x)|φ|1−γ(x)
1 − γ(x) dx − λ ∫

Ω1

F(x, tφ)dx.

Then
I+λ(tφ) ≤ tp−p− ∫

Ω

|∆φ|p(x) dx − t1−γ−1 − γ− ∫
Ω

g(x)|φ|1−γ(x) dx.
Since p− > 1 − γ−, we have I+λ(tφ) < 0 for t < ψ1/(p−−(1−γ−)) with

0 < ψ < min{1,
p−

1−γ− ∫Ω g(x)|φ|1−γ(x) dx
ρp(x)(∆φ) }.

Finally, we point out that ρp(x)(∆φ) > 0. In fact, if ρp(x)(∆φ) = 0, then ‖φ‖ = 0, and consequently φ = 0 in Ω,
which is a contradiction.

In the sequel, put m1
λ = infvλ∈X I+λ(vλ). As a last proposition, we have the following.

Lemma 5.3. Let λ ≥ 0, γ ∈ C(Ω̄, (0, 1)),
g ∈ L

p∗(x)
p∗(x)+γ(x)−1 (Ω)

with g(x) > 0 for almost every x ∈ Ω, and assume that assertions (f5) and (f6) hold. Then I+λ reaches its global
minimizer in X, that is, there exists vλ ∈ X such that I+λ(vλ) = m1

λ < 0.

Proof. The proof of Lemma 5.3 is word for word as the one of Lemma 4.3.

Proof of Theorem 3.4. From Lemma 5.3, vλ is a local minimizer for I+λ, with I+λ(vλ) = mλ < 0, which implies
that vλ is nontrivial. Now, we prove that vλ is a positive solution of problem (P+λ). Our proof is inspired by
Saoudi and Ghanmi in [11].

Let ϕ ∈ X and 0 < ϵ < 1. We define Ψ ∈ X by Ψ := (vλ + ϵϕ)+, where (vλ + ϵϕ)+ = max{vλ + ϵϕ, 0}. Since
vλ is a local minimizer for I+λ, one has

0 ≤ ∫
Ω

|∆vλ|p(x)−2∆vλ∆Ψ dx − ∫
Ω

g(x)v−γ(x)λ Ψ dx − λ∫
Ω

f(x, vλ)Ψ dx

= ∫{x:vλ+ϵϕ>0} |∆vλ|p(x)−2∆vλ∆(vλ + ϵϕ)dx − ∫{x:vλ+ϵϕ>0} g(x)u−γ(x)(vλ + ϵϕ)dx
− λ ∫{x:vλ+ϵϕ>0} f(x, vλ)(vλ + ϵϕ)dx

= ∫
Ω

|∆vλ|p(x)−2∆vλ∆(vλ + ϵϕ)dx − ∫
Ω

g(x)u−γ(x)(vλ + ϵϕ)dx − λ∫
Ω

f(x, vλ)(vλ + ϵϕ)dx

− ∫{x:vλ+ϵϕ≤0} |∆vλ|p(x)−2∆vλ∆(vλ + ϵϕ)dx − ∫{x:vλ+ϵϕ≤0} g(x)u−γ(x)(vλ + ϵϕ)dx
− λ ∫{x:vλ+ϵϕ≤0} f(x, vλ)(vλ + ϵϕ)dx
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= ∫
Ω

|∆vλ|p(x) dx − ∫
Ω

g(x)v1−γ(x)λ dx − λ∫
Ω

f(x, vλ)vλ dx

+ ϵ(∫
Ω

|∆vλ|p(x)−2∆vλ∇vλ∇ϕ dx − ∫
Ω

g(x)v−γ(x)λ ϕ dx − λ∫
Ω

f(x, vλ)ϕ dx)

+ ϵ2 ∫
Ω

|∆vλ|p(x)−2∆vλ∆ϕ dx − ∫{x:vλ+ϵϕ≤0} |∆vλ|p(x)−2∆vλ∆(vλ + ϵϕ)dx
− ∫{x:vλ+ϵϕ≤0} g(x)v−γ(x)λ (vλ + ϵϕ)dx − λ ∫{x:vλ+ϵϕ≤0} f(x, vλ)(vλ + ϵϕ)dx

= ϵ(∫
Ω

|∆vλ|p(x)−2∆vλ∇u∇ϕ dx − ∫
Ω

g(x)v−γ(x)λ ϕ dx − λ∫
Ω

f(x, vλ)ϕ dx)

+ ϵ2 ∫
Ω

|∆vλ|p(x)−2∆vλ∆ϕ dx − ∫{x:vλ+ϵϕ≤0} |∆vλ|p(x)−2∆vλ∆(vλ + ϵϕ)dx
− ∫{x:vλ+ϵϕ≤0} g(x)v−γ(x)λ (vλ + ϵϕ)dx − λ ∫{x:vλ+ϵϕ≤0} f(x, vλ)(vλ + ϵϕ)dx

≤ ϵ(ϵ∫
Ω

|∆vλ|p(x)−2∆vλ∆ϕ dx − ∫
Ω

g(x)v−γ(x)λ ϕ dx − λ∫
Ω

f(x, vλ)ϕ dx)

+ ϵ∫
Ω

|∆vλ|p(x)−2∆vλ∇vλ∇ϕ dx − ϵ2 ∫{x:vλ+ϵϕ≤0} |∆vλ|p(x)−2∆vλ∆ϕ dx

≤ ϵ(∫
Ω

|∆vλ|p(x)−2∆vλ∆ϕ dx − ∫
Ω

g(x)v−γ(x)λ ϕ dx − λ∫
Ω

f(x, vλ)ϕ dx)

− ϵ ∫{x:vλ+ϵϕ≤0} |∆vλ|p(x)−2∆vλ∆ϕ dx.

Since the measure of the domain of integration {x : vλ + ϵϕ ≤ 0} tends to zero as ϵ → 0+, it follows as ϵ → 0+
that

∫{x:vλ+ϵϕ≤0} |∆vλ|p(x)−2∆vλ∆ϕ dx → 0.

Dividing by ϵ and letting ϵ → 0+, we get
∫
Ω

|∆vλ|p(x)−2∆vλ∆ϕ dx − ∫
Ω

g(x)v−γ(x)λ ϕ dx − λ∫
Ω

f(x, vλ)ϕ dx ≥ 0.

Since the equality holds if we replace ϕ by −ϕ, which implies that vλ is a positive solution of problem (P+λ),
this completes the proof of Theorem 3.3.

6 An example
In this section, we give an example to illustrate our results.

Example 6.1. Let Ω be a smooth bounded domain in ℝN (N ≥ 3), let p be a Lipschitz continuous function
on Ω with 1 < p− ≤ p+ < N2 and p∗(x) = Np(x)

N−2p(x) , let s, s1, r and r1 be continuous functions on Ω such that
1 < max(r(x), r1(x)) < p(x) < N2 < min(s(x), s1(x)) for all x ∈ Ω, let γ : Ω → (0, 1) be a continuous function,
let

g ∈ L
p∗(x)

p∗(x)+γ(x)−1 (Ω),
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and let h and h1 be two positive functions such that h ∈ Ls(x)(Ω) and h1 ∈ Ls1(x)(Ω). Put

f(x, t) = {
h(x)|t|β(x)−1, |t| ≤ 1,
h1(x)|t|α(x)−1, |t| > 1,

with r(x) < β(x) and α(x) < r1(x) for all x ∈ Ω. Then conditions (I1), (I2) and (I3) are satisfied, so for any λ ≥ 0
problem (P−λ) has a weak solution.

Moreover, ifwe suppose that f(x, t) = Ch(x)|t|r(x)−2t for all x ∈ Ω, then assumptions (f5) and (f6) hold, and
consequently, for any λ ≥ 0, problem (P+λ) has at least one nontrivial weak solution inW2,p(x)(Ω)∩W1,p(x)

0 (Ω).
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