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On the existence of almost greedy bases in Banach spaces

by

S. J. Dilworth (Columbia, SC), N. J. Kalton (Columbia, MO),
and Denka Kutzarova (Sofia and Urbana, IL)

Abstract. We consider several greedy conditions for bases in Banach spaces that
arise naturally in the study of the Thresholding Greedy Algorithm (TGA). In particular,
we continue the study of almost greedy bases begun in [3]. We show that almost greedy
bases are essentially optimal for n-term approximation when the TGA is modified to
include a Chebyshev approximation. We prove that if a Banach space X has a basis and
contains a complemented subspace with a symmetric basis and finite cotype then X has
an almost greedy basis. We show that c0 is the only L∞ space to have a quasi-greedy
basis. The Banach spaces which contain almost greedy basic sequences are characterized.

1. Introduction. Let X be a real Banach space with a semi-normalized
basis (en). An algorithm for n-term approximation produces a sequence of
maps Fn : X → X such that, for each x ∈ X, Fn(x) is a linear combination
of at most n of the basis elements (ej). The most natural algorithm is the
linear algorithm (Sn)∞n=1 given by the partial sum operators.

Recently, Konyagin and Temlyakov [12] introduced the Thresholding
Greedy Algorithm (TGA) (Gn)∞n=1, where Gn(x) is obtained by taking the
largest n coefficients (precise definitions are given in Section 2). The TGA
provides a theoretical model for the thresholding procedure that is used in
image compression and other applications.

They defined the basis (en) to be greedy if the TGA is optimal in the
sense that Gn(x) is essentially the best n-term approximation to x using the
basis vectors, i.e. if there exists a constant C such that for all x ∈ X and
n ∈ N, we have

‖x−Gn(x)‖ ≤ C inf
{∥∥∥x−

∑

j∈A
αjej

∥∥∥ : |A| = n, αj ∈ R
}
.(1.1)
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They then showed (see Theorem 2.3 below) that greedy bases can be simply
characterized as unconditional bases with the additional property of being
democratic, i.e. for some ∆ > 0, we have

∥∥∥
∑

j∈A
ej

∥∥∥ ≤ ∆
∥∥∥
∑

j∈B
ej

∥∥∥ whenever |A| ≤ |B|.

They also defined a basis to be quasi-greedy if there exists a constant C such
that ‖Gm(x)‖ ≤ C‖x‖ for all x ∈ X and n ∈ N. Subsequently, Wojtaszczyk
[23] proved that these are precisely the bases for which the TGA merely
converges, i.e. limn→∞Gn(x) = x for x ∈ X.

The class of almost greedy bases was introduced in [3]. Let us denote the
biorthogonal sequence by (e∗n). Then (en) is almost greedy if there exists a
constant C such that for all x ∈ X and n ∈ N, we have

‖x−Gn(x)‖ ≤ C inf
{∥∥∥x−

∑

j∈A
e∗j (x)ej

∥∥∥ : |A| = n
}
.(1.2)

Comparison with (1.1) shows that this is formally a weaker condition: in
(1.1) the infimum is taken over all possible n-term approximations, while
in (1.2) only projections of x onto the basis vectors are considered. It was
proved in [3] (see Theorem 2.5 below) that (en) is almost greedy if and only
if (en) is quasi-greedy and democratic.

In this paper we continue the study of almost greedy bases and related
greedy conditions for bases. In Section 3 we consider a natural modification
of the TGA which improves the rate of convergence. Let GC

n (x) be an n-term
Chebyshev approximation to x using the basis vectors given by the TGA,
i.e., those with the largest n coefficients. We show that if (en) is almost
greedy, then GCn (x) is essentially the best n-term approximation in the sense
described above. For Banach spaces with finite cotype, we also show that
the latter property characterizes almost greedy bases.

In Section 4 we consider the thresholding operators:

Ga(x) =
∑

|e∗i (x)|≥a
e∗i (x)ei (a > 0, x ∈ X).

There are natural boundedness conditions to impose on these operators
and a corresponding class of thresholding-bounded bases which satisfy these
conditions. We show that this class coincides with the class of nearly uncon-
ditional bases introduced by Elton [5] and that it strictly contains the class
of quasi-greedy bases.

In Section 5 we prove existence results for almost greedy basic sequences.
In particular, we give necessary and sufficient conditions for a semi-norma-
lized weakly null sequence to have an almost greedy subsequence and we
characterize the Banach spaces which contain almost greedy basic sequences.
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The rest of the paper concerns the existence and nonexistence of quasi-
greedy and almost greedy bases (as opposed to basic sequences). The re-
sults contained in Sections 6–7 extend a theorem of Wojtaszczyk [23]. We
prove that if X has a basis and contains a complemented subspace with
a symmetric basis and finite cotype, then X has an almost greedy basis.
More generally, we show that if X has a basis and contains a complemented
“good” (loosely, “far from c0”) unconditional basic sequence, then X has a
quasi-greedy basis. The fact that there is no corresponding result for c0 is
explained by the last section of the paper.

Section 8 contains the nonexistence results. We prove that c0 is the only
L∞ space to have a quasi-greedy basis. Thus, C[0, 1] and (by similar rea-
soning) the disc algebra do not have quasi-greedy bases. Lastly, we deduce
from the Lindenstrauss–Zippin theorem [14] that c0 is the only infinite-
dimensional Banach space up to isomorphism to have a unique quasi-greedy
basis up to equivalence.

Standard Banach space notation and terminology are used throughout
(see [13]). For clarity, however, we record the notation that is used most
heavily. We write X ∼ Y if X and Y are linearly isomorphic Banach spaces.
We say that X and Y are λ-isomorphic if there exists an isomorphism T :
X → Y with ‖T‖ ‖T−1‖ ≤ λ. A subspace Z of X is said to be complemented
if Z is the range of a continuous linear projection on X.

Let (xn) be a sequence in X. We say that (xn) is semi-normalized (resp.
normalized) if there exists C > 0 such that 1/C ≤ ‖xn‖ ≤ C (resp. ‖xn‖ =
1) for all n ≥ 1. The closed linear span of (xn) is denoted by [xn]. We say
that a sequence (xn) of nonzero vectors is basic if there exists a positive
constant K such that

∥∥∥
m∑

i=1

aixi

∥∥∥ ≤ K
∥∥∥

n∑

i=1

aixi

∥∥∥

for all scalars (ai) and all 1 ≤ m ≤ n ∈ N; (xn) is monotone if we can take
K = 1; (xn) is λ-unconditional if

∥∥∥
∞∑

i=1

εiaixi

∥∥∥ ≤ λ
∥∥∥
∞∑

i=1

aixi

∥∥∥

for all scalars (ai) and all choices of signs εi = ±1. We say that (xn) is
λ-symmetric if

∥∥∥
∞∑

i=1

aσ(i)xi

∥∥∥ ≤ λ
∥∥∥
∞∑

i=1

aixi

∥∥∥

for all permutations σ of N. A basis for X is a sequence (en) of vectors such
that every x ∈ X has a unique expansion as a norm-convergent series
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x =
∞∑

i=1

e∗i (x)ei,

where (e∗i ) is the sequence of biorthogonal functionals in the dual space X∗

defined by e∗i (ej) = δi,j . The usual norms of the sequence spaces `p and
`∞ are denoted by ‖ · ‖p and ‖ · ‖∞. The sequence space c00 consists of all
sequences with only finitely many nonzero terms. For a sequence (Xn, ‖ ·‖n)
of Banach spaces, the direct sum (

∑∞
n=1⊕Xn)p is the space of all sequences

(xn) (xn ∈ Xn) equipped with the norm

‖(xn)‖ =
( ∞∑

n=1

‖xn‖pn
)1/p

.

More specialized notions from Banach space theory will be introduced as
needed.

Finally, it is worth emphasizing that we consider only real Banach spaces
in this paper.

2. Preliminaries. Let (en) be a semi-normalized basis of a Banach
space X, and let (e∗n) be the biorthogonal sequence in X∗. For x ∈ X, we
define the greedy ordering for x as the map % : N→ N such that %(N) ⊃ {j :
e∗j (x) 6= 0} and such that if j < k then

|e∗%(j)(x)| > |e∗%(k)(x)| or e∗%(j)(x)| = |e∗%(k)(x)| and %(j) < %(k).

The mth greedy approximation is given by

Gm(x) =
m∑

j=1

e∗%(j)(x)e%(j).

The basis (en) is called quasi-greedy if Gm(x) → x for all x ∈ X. This is
equivalent (see [23]) to the condition that for some constant K we have

sup
m
‖Gm(x)‖ ≤ K‖x‖ (x ∈ X).(2.3)

We define the quasi-greedy constant K to be the least such constant.
The following two lemmas are essentially due to Wojtaszczyk [23]. For

proofs we refer to [3] or to Section 4 below for slightly more general “local-
ized” versions of the same results. Note that (2.4) says that a quasi-greedy
basis is unconditional for constant coefficients.

Lemma 2.1. Suppose that (en) has quasi-greedy constant K and that A
is a finite subset of N. Then, for every choice of signs εj = ±1, we have

1
2K

∥∥∥
∑

j∈A
ej

∥∥∥ ≤
∥∥∥
∑

j∈A
εjej

∥∥∥ ≤ 2K
∥∥∥
∑

j∈A
ej

∥∥∥,(2.4)
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and hence for any real numbers (aj)j∈A,
∥∥∥
∑

j∈A
ajej

∥∥∥ ≤ 2K max
j∈A
|aj |
∥∥∥
∑

j∈A
ej

∥∥∥.(2.5)

Lemma 2.2. Suppose that (en) has quasi-greedy constant K and that
x ∈ X has greedy ordering %. Then

|e∗%(m)(x)|
∥∥∥

m∑

j=1

(sgn e∗%(j)(x))e%(j)
∥∥∥ ≤ 2K‖x‖.(2.6)

Hence if A ⊂ N is finite and (aj)j∈A are any real numbers,

min
j∈A
|aj |
∥∥∥
∑

j∈A
(sgn aj)ej

∥∥∥ ≤ (1 +K)‖
∑

j∈A
ajej‖.(2.7)

For a Schauder basis (en) we define

σm(x) := inf
{∥∥∥x−

∑

j∈A
αjej

∥∥∥ : |A| = m, αj ∈ R
}
.

A basis (en) is called greedy [12] if there exists a constant C such that for
any x ∈ X and m ∈ N we have

‖x−Gm(x)‖ ≤ Cσm(x).(2.8)

A basis (en) is called democratic [12] if there is a constant ∆ such that∥∥∥
∑

k∈A
ek

∥∥∥ ≤ ∆
∥∥∥
∑

k∈B
ek

∥∥∥ if |A| ≤ |B|.(2.9)

Note that a democratic basis is automatically semi-normalized.
The following characterization of greedy bases was proved in [12].

Theorem 2.3. A basis (en) is greedy if and only if it is unconditional
and democratic.

For a semi-normalized basis (en) we define the fundamental function ϕ(n)
by

ϕ(n) = sup
|A|≤n

∥∥∥
∑

k∈A
ek

∥∥∥.

Note that ϕ is subadditive (i.e. ϕ(m+n) ≤ ϕ(m) +ϕ(n)) and increasing. It
may also be seen that ϕ(n)/n is decreasing since for any set A with |A| = n,
we have ∑

k∈A
ek =

1
n− 1

∑

k∈A

∑

j 6=k
ej .

It follows that for any finite A ⊂ N and any real scalars (aj)j∈A we have
∥∥∥
∑

j∈A
ajej

∥∥∥ ≤ 2ϕ(|A|) max
j∈A
|aj |.(2.10)
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It is clear that if (ek) is democratic with constant ∆ in (2.9) then

∆−1ϕ(|A|) ≤
∥∥∥
∑

k∈A
ek

∥∥∥ ≤ ϕ(|A|) (|A| <∞).(2.11)

Combining (2.4), (2.6), and (2.9) yields the following estimate (cf. [6]).

Lemma 2.4. Let (en) be a democratic quasi-greedy basis with quasi-
greedy constant K and democratic constant ∆. Then for x ∈ X with greedy
ordering %, we have

|e∗%(m)(x)| ≤ 4K2∆

ϕ(m)
‖x‖.(2.12)

A slightly weaker form of greediness was introduced in [3]. For a basis
(en), let

σ̃m(x) := inf
{∥∥∥x−

∑

k∈A
e∗k(x)ek

∥∥∥ : |A| ≤ m
}
.

Note that

σm(x) ≤ σ̃m(x) ≤ ‖x− Sm(x)‖ → 0 as m→∞.
We say that a basis (en) is almost greedy if there exists a constant C such
that for all x ∈ X we have

‖x−Gm(x)‖ ≤ Cσ̃m(x).(2.13)

The following characterization of almost greedy bases was proved in [3].

Theorem 2.5. Suppose that (en) is a basis of a Banach space. The fol-
lowing are equivalent :

(1) (en) is almost greedy.
(2) (en) is quasi-greedy and democratic.
(3) For some (respectively , every) λ > 1 there exists a constant Cλ such

that
‖x−G[λm]x‖ ≤ Cλσm(x).

Most of the democratic bases which we consider in this paper actually
satisfy a stronger property. Following [12], we say that a basis (en) is su-
perdemocratic if there exists a constant C such that for all finite A,B ⊆ N,
and for all choices of signs (εi)i∈A and (ηi)i∈B, we have

1
C

∥∥∥
∑

i∈B
ηiei

∥∥∥ ≤
∥∥∥
∑

i∈A
εiei

∥∥∥ ≤ C
∥∥∥
∑

i∈B
ηiei

∥∥∥.

It is easy to see that a basis is superdemocratic if and only if it is democratic
and unconditional for constant coefficients. By (2.4), every almost greedy
basis is superdemocratic. An example of a basis that is superdemocratic but
not quasi-greedy is given below (Example 4.8).
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3. Semi-greedy bases. In this section we consider an obvious enhance-
ment of the TGA which improves the rate of convergence. Suppose that x ∈
X and let % be the greedy ordering for x. LetGC

n (x) ∈ span{e%(i) : 1 ≤ i ≤ n}
be a Chebyshev approximation to x. Thus,

‖x−GC
n (x)‖ = min

{∥∥∥x−
n∑

i=1

aie%(i)

∥∥∥ : (ai)ni=1 ∈ Rn
}
.

It is natural to make the following definition. Let (en) be a semi-norma-
lized basis for X. We say that (en) is semi-greedy if there exists a constant
C such that for all n ≥ 1 and for all x ∈ X we have

‖x−GC
n (x)‖ ≤ Cσn(x).

We prove that an almost greedy basis is always semi-greedy and that
the converse holds for Banach spaces with finite cotype. The proof of the
former result uses the fact that the norm in a space with a quasi-greedy
basis behaves well under “truncation of coefficients”.

Fix M > 0. Define the “truncation function” fM : R→ [−M,M ] thus:

fM (x) =





M for x > M ,

x for x ∈ [−M,M ],

−M for x < −M .

Proposition 3.1. Suppose that (en) is quasi-greedy with quasi-greedy
constant K. Then, for every M > 0 and for all real scalars (ai), we have

∥∥∥
∞∑

i=1

fM (ai)ei
∥∥∥ ≤ (1 + 3K)

∥∥∥
∞∑

i=1

aiei

∥∥∥.

Proof. Let x =
∑∞

i=1 aiei and let % be the greedy ordering for x. If
M > max |ai| there is nothing to prove. So suppose that there exists N such
that

|a%(N+1)| < M ≤ |a%(N)|.
Then

∥∥∥
N∑

i=1

fM (a%(i))e%(i)
∥∥∥ = M

∥∥∥
N∑

i=1

(sgn a%(i))e%(i)
∥∥∥

≤ |a%(N)|
∥∥∥

N∑

i=1

(sgn a%(i))e%(i)
∥∥∥ ≤ 2K‖x‖

by Lemma 2.2. Moreover,
∥∥∥

∞∑

i=N+1

fM (a%(i))e%(i)
∥∥∥ =

∥∥∥
∞∑

i=N+1

a%(i)e%(i)

∥∥∥ = ‖x−GN (x)‖ ≤ (1 +K)‖x‖.
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Combining, we get

∥∥∥
∞∑

i=1

fM (ai)ei
∥∥∥ ≤

∥∥∥
N∑

i=1

fM (a%(i))e%(i)
∥∥∥+

∥∥∥
∞∑

i=N+1

fM (a%(i))e%(i)
∥∥∥

≤ (1 + 3K)‖x‖.
Theorem 3.2. Every almost greedy basis is semi-greedy.

Proof. By Theorem 2.5, (en) is quasi-greedy and democratic. Let K be
the quasi-greedy and ∆ the democratic constant of (en). Fix n ≥ 1 and x =∑∞

i=1 aiei in X. Let % be the greedy ordering for x. Let A = {%(1), . . . , %(n)}
and let z :=

∑
i∈B biei be a good n-term approximation to x, with |B| = n

and
‖x− z‖ ≤ 2σn(x).

If A = B there is nothing to prove. So we may assume that A \ B is non-
empty. Let k = |A \B|, so 1 ≤ k ≤ n, and let M = |a%(n)|. Then by (2.12),

Mφ(k) ≤ 4K2∆‖x− z‖,(3.14)

since |e∗i (x− z)| ≥M for all i ∈ A \B. Let

x− z :=
∞∑

i=1

yiei.

By Proposition 3.1, we have
∥∥∥
∞∑

i=1

fM (yi)ei
∥∥∥ ≤ (1 + 3K)‖x− z‖.(3.15)

Note that

w :=
∑

i∈A
fM (yi)ei +

∑

i∈N\A
aiei =

∞∑

i=1

fM (yi)ei +
∑

i∈B\A
(ai − fM (yi))ei.

Thus,

‖w‖ ≤
∥∥∥
∞∑

i=1

fM (yi)ei
∥∥∥+

∥∥∥
∑

i∈B\A
(ai − fM (yi))ei

∥∥∥

≤ (1 + 3K)‖x− z‖+ 4Mφ(k) (by (3.15) and (2.10)

since |ai − fM (yi)| ≤ 2M for i ∈ B \ A)

≤ 2(1 + 3K)σn(x) + 16K2∆‖x− z‖ (by (3.14))

≤ (2(1 + 3K) + 32K2∆)σn(x).

Since w = x−∑i∈A(ai− fM (yi))ei, we conclude that (en) is semi-greedy.
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Next we discuss the converse of Theorem 3.2. It is convenient to introduce
the following notation. For finite sets A,B ⊂ N, we write A < B if max{n :
n ∈ A} < min{n : n ∈ B}.

Proposition 3.3. Every semi-normalized semi-greedy basis (en) is su-
perdemocratic.

Proof. Suppose that |A| = |B| = n and let (εi) be any choice of signs.
Choose ε > 0 and D ⊂ N, with A ∪B < D and |D| = n. Consider

x =
∑

i∈A
εiei + (1 + ε)

∑

i∈D
ei.

Since (en) is semi-greedy, we have
∥∥∥
∑

i∈A
εiei +

∑

i∈D
ciei

∥∥∥ ≤ Cσn(x)

for some real scalars (ci). Hence

σn(x) ≤
∥∥∥
∑

i∈A
εiei

∥∥∥ ≤ K
∥∥∥
∑

i∈A
εiei +

∑

i∈D
ciei

∥∥∥ ≤ CKσn(x),

where K is the basis constant of (en). Now consider

y = (1 + ε)
∑

i∈A
εiei +

∑

i∈D
ei.

A similar argument gives

σn(y) ≤
∥∥∥
∑

i∈D
ei

∥∥∥ ≤ C(1 +K)σn(y).

Since ‖y − x‖ → 0 as ε→ 0, we obtain
1
CK

∥∥∥
∑

i∈A
εiei

∥∥∥ ≤
∥∥∥
∑

i∈D
ei

∥∥∥ ≤ C(K + 1)
∥∥∥
∑

i∈A
εiei

∥∥∥.

The above inequalities also hold with A replaced by B. Hence (en) is su-
perdemocratic.

Remark 3.4. Let (en) be a semi-greedy basis. The proof of Proposi-
tion 3.3 actually shows that (en) has a fundamental function (ϕ(n)) and
that there exists a constant C such that

φ(|A|) min |ai| ≤ C
∥∥∥
∑

i∈A
aiei

∥∥∥

for all finite A ⊂ N and all scalars ai, i ∈ A.

A democratic basis (en) is said to have the lower regularity property
(LRP) if its fundamental function satisfies Cϕ(mn) ≥ mαϕ(n) for all m,n ∈
N, where C and 0 < α ≤ 1 are constants.
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Let us recall that a Banach space X has cotype q, where 2 ≤ q < ∞, if
there exists a constant C such that

( n∑

j=1

‖xj‖q
)1/q

≤ C
(

Ave
εj=±1

∥∥∥
n∑

j=1

εjxj

∥∥∥
q)1/q

(3.16)

for all x1, . . . , xn ∈ X and n ∈ N. The least such constant C is called the
cotype q constant Cq(X). We say that X has finite cotype if X has cotype q
for some q <∞.

Proposition 3.5. Let (en) be a superdemocratic basis for a Banach
space X which has finite cotype. Then (en) has the LRP.

Proof. Suppose that X has cotype q. Since (en) is superdemocratic there
exists a constant C such that for all m,n ∈ N,

Cϕ(mn) ≥ Ave
εj=±1

∥∥∥
m−1∑

i=0

εj

(i+1)n∑

j=in+1

ei

∥∥∥ ≥ (1/CCq)m1/qϕ(n).(3.17)

The last theorem of this section is a partial converse to Theorem 3.2.

Theorem 3.6. Suppose that (en) is a semi-greedy basis for a Banach
space X which has finite cotype. Then (en) is almost greedy.

Proof. We shall not keep track of the constants, so C will denote a
constant whose value changes from line to line.

Suppose that x =
∑

i∈F aiei, ‖x‖ = 1, and |F | = n. By Proposition 3.3,
it suffices to prove that (en) is quasi-greedy, i.e. that ‖Gk(x)‖ ≤ C for
1 ≤ k ≤ n. Let % be the greedy ordering for x. Since (ei) is democratic, we
have (cf. (2.10))

‖x−Gk(x)‖ ≤ 2|a%(k)|ϕ(n− k).

By Remark 3.4,

‖Gk(x)‖ ≥ 1
C
|a%(k)|ϕ(k).

Hence
‖x−Gk(x)‖
‖Gk(x)‖ ≤ C ϕ(n− k)

ϕ(k)
.

The right-hand side tends to zero as k/n → 1 since (en) has the LRP. It
follows that there exists α < 1 such that ‖Gk(x)‖ ≤ C for all k ≥ αn. By
iteration m times, where αm ≤ 1/2, we get

‖Gk(x)‖ ≤ C for all k ≥ n/2.(3.18)

Fix 1 ≤ k ≤ n. Let A := {%(1), . . . , %(k)} and let B := {%(k+1), . . . , %(2k)}.
Choose D > F with |D| = k, and let ε > 0. Consider

y :=
∑

i∈F\A
aiei + (|a%(k)|+ ε)

(∑

i∈D
ei

)
.



Almost greedy bases 77

Then

σk(y) ≤
∥∥∥x+ (|a%(k)|+ ε)

(∑

i∈D
ei

)∥∥∥ ≤ 1 + (|a%(k)|+ ε)ϕ(k).(3.19)

Since (ei) is semi-greedy there exist scalars ci (i ∈ D) such that∥∥∥
∑

i∈F\A
aiei +

∑

i∈D
ciei

∥∥∥ ≤ Cσk(y).(3.20)

Since F < D, (ei) is a Schauder basis, and ε > 0 is arbitrary, (3.19) and
(3.20) yield ∥∥∥

∑

i∈F\A
aiei

∥∥∥ ≤ C(1 + |a%(k)|ϕ(k)).

Hence

‖Gk(x)‖ =
∥∥∥
∑

i∈A
aiei

∥∥∥ ≤ C(1 + |a%(k)|ϕ(k)).(3.21)

Let z := x −∑i∈A aiei. Then σk(z) ≤ ‖x‖ ≤ 1. Since (ei) is semi-greedy
there exist scalars (ci) (i ∈ B) with ‖z −∑i∈B ciei‖ ≤ C. Hence

∥∥∥
∑

i∈A
aiei +

∑

i∈B
ciei

∥∥∥ =
∥∥∥x−

(
z −

∑

i∈B
ciei

)∥∥∥ ≤ C.(3.22)

Let E := {i ∈ B : |ci| ≥ |a%(k)|}. Then
∑

i∈A
aiei +

∑

i∈E
ciei = Gm

(∑

i∈A
aiei +

∑

i∈B
ciei

)

for some k ≤ m ≤ 2k. So (3.18) and (3.22) yield∥∥∥
∑

i∈A
aiei +

∑

i∈E
ciei

∥∥∥ ≤ C.(3.23)

On the other hand, Remark 3.4 yields

|a%(k)|ϕ(k) ≤ C
∥∥∥
∑

i∈A
aiei +

∑

i∈E
ciei

∥∥∥.(3.24)

Finally, combining (3.21), (3.23), and (3.24), we get ‖Gk(x)‖ ≤ C.

4. Thresholding-bounded bases. Let (en) be a semi-normalized basis
for X. For a ≥ 0, the thresholding operator Ga is defined as follows:

Ga(x) =
∑

|e∗n(x)|≥a
e∗n(x)en.

We shall also use the notation Gax for Ga(x). Suppose that there exist a0 > 0
and K such that ‖Ga0(x)‖ ≤ K‖x‖ for all x ∈ X. This implies, by scaling,
that ‖Ga(x)‖ ≤ K‖x‖ for all a > 0 and for all x ∈ X, i.e. that (en) is a
quasi-greedy basis with quasi-greedy constant K.
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To obtain a new class of bases, we consider (following Elton [5, 16])
boundedness of Ga on the set Q of vectors whose coefficient sequences belong
to the unit ball of `∞:

Q :=
{ ∞∑

n=1

anen ∈ X : |an| ≤ 1
}
.

Let 0 < a ≤ 1 and suppose that there exists a constant C <∞ such that

‖Ga(x)‖ ≤ C‖x‖(4.25)

for all x ∈ Q. Let θ(a) be the least constant C such that (4.25) holds. If
there is no such constant C, set θ(a) =∞.

Proposition 4.1. Let (en) be a semi-normalized basis for a Banach
space X.

(i) If (en) is a normalized basis, then

max |e∗n(x)| ≤ θ(1)‖x‖ (x ∈ X).

(ii) If 0 < a ≤ b ≤ 1, then θ(b) ≤ θ(a).
(iii) If θ(a) < ∞ for some a < 1, then there exist positive constants C1

and b such that θ(t) < C1t
−b for all t ≤ 1.

Proof. (i) By scaling, we may assume that max |e∗n(x)| = 1. The result is
then clear (from the definition of θ(1)) when max |e∗n(x)| is attained uniquely.
By perturbing the basis coefficients of x slightly we can assume that this is
the case.

(ii) This follows from the identity

Gb(x) = (b/a)Ga((a/b)x) (x ∈ Q).

(iii) Note that, for k ≥ 1, we have

Gak+1(x) = Gak(x) + akGa(a−k(x− Gak(x))).

Hence by the triangle inequality

θ(ak+1) ≤ θ(ak) + θ(a)(1 + θ(ak)) ≤ 3θ(a)θ(ak).

It follows that θ(t) < C1t
−b for some positive constants C1 and b.

We say that (en) is thresholding-bounded if θ(a) < ∞ for all a > 0
(equivalently, for some a < 1).

The next two propositions are “localized” versions of Lemmas 2.1 and 2.2.
They will be used in Section 8 below.

Proposition 4.2. Suppose that (en) is a thresholding-bounded basis
for X. Let σ be a finite subset of N. Then∥∥∥

∑

n∈σ
anen

∥∥∥ ≤ 2θ(1) max |an|
∥∥∥
∑

n∈σ
en

∥∥∥

for all real scalars (an).
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Proof. We have
∥∥∥
∑

n∈σ
anen

∥∥∥ ≤ max |an|max
±

∥∥∥
∑

n∈σ
±en

∥∥∥ (by convexity)

≤ 2 max |an|max
τ⊆σ

∥∥∥
∑

n∈τ
en

∥∥∥ ≤ 2θ(1) max |an|
∥∥∥
∑

n∈σ
en

∥∥∥.

Proposition 4.3. Suppose that (en) is a thresholding-bounded basis
for X. Then, for every m ≥ 1 and x ∈ Q with greedy ordering %, we have

|e∗%(m)(x)|
∥∥∥

m∑

k=1

(sgn e∗%(k)(x))e%(k)

∥∥∥ ≤ 2θ(|e∗%(m)(x)|)‖x‖.

Proof. Let aj = e∗j (x), εj = sgn aj , and put 1/|a0| = 0. Then

|a%(m)|
∥∥∥

m∑

j=1

ε%(j)e%(j)

∥∥∥ = |a%(m)|
∥∥∥∥

m∑

j=1

(
1
|a%(j)|

− 1
|a%(j−1)|

) m∑

k=j

a%(k)e%(k)

∥∥∥∥

≤ max
1≤j≤m

∥∥∥
m∑

k=j

a%(k)e%(k)

∥∥∥ ≤ 2θ(|a%(m)|)‖x‖.

A similar argument gives the following.

Proposition 4.4. Suppose that (en) is a thresholding-bounded basis
for X. Then, for every finite σ ⊂ N and for all real scalars (an) with sup |an|
≤ 1, we have

min
n∈σ
|an|

∥∥∥
∑

n∈σ
(sgn an)en

∥∥∥ ≤ (1 + θ(min
n∈σ
|an|))

∥∥∥
∑

n∈σ
anen

∥∥∥.

Note that every quasi-greedy basis is thresholding-bounded and that a
thresholding-bounded basis is quasi-greedy with constant K if and only if
supa>0 θ(a) = K.

Let us recall a notion introduced by Elton (see [5, 16]). A semi-normalized
basis (en) in a Banach space X is called nearly unconditional if, for every 0 <
a ≤ 1, there exists a constant φ(a) such that for every x =

∑∞
n=1 e

∗
n(x)en ∈

Q, and for every A ⊆ {n ∈ N : |e∗n(x)| ≥ a}, we have
∥∥∥
∑

n∈A
anen

∥∥∥ ≤ φ(a)‖x‖.

Note that (en) is unconditional if and only if supa>0 φ(a) <∞. Clearly, we
have the implication:

nearly unconditional⇒ thresholding-bounded.

Surprisingly, the converse implication also holds.
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Proposition 4.5. Every thresholding-bounded basis is nearly uncondi-
tional. Moreover ,

φ(a) ≤ 4θ(1)θ(a)
a

(0 < a ≤ 1).

Proof. Fix 0 < a ≤ 1 and x ∈ Q. Set σ(a) := {i ∈ N : |e∗i (x)| ≥ a}, and
suppose that A ⊆ σ(a). Then∥∥∥

∑

i∈A
e∗i (x)ei

∥∥∥ ≤ max
±

∥∥∥
∑

i∈σ(a)

±ei
∥∥∥ ≤ 2θ(1)

∥∥∥
∑

i∈σ(a)

(sgn e∗i (x))ei
∥∥∥

(by the same argument used to prove Proposition 4.2)

≤ 4θ(1)
θ(a)
a
‖x‖

by Proposition 4.3. The estimate for φ(a) follows.

We conclude this section with an example of a thresholding-bounded
basis that is not quasi-greedy. The construction uses the following simple
sufficient condition for thresholding-boundedness. Recall first the definition
(see also (6.38) below) of the weak-`1 quasi-norm:

‖(an)‖1,∞ = supna∗n,

where (a∗n) is the nonincreasing rearrangement of (|an|).
Lemma 4.6. Let (en) be a normalized basis of a Banach space X such

that ∥∥∥
∞∑

i=1

aiei

∥∥∥ ≥ c‖(ai)‖1,∞

for all real scalars (ai), where c is a constant. Then (en) is thresholding-
bounded and θ(a) ≤ (ca)−1 for 0 < a ≤ 1.

Proof. Suppose that x ∈ Q. Then

‖Ga(x)‖ ≤ |{i : |e∗i (x)| ≥ a}| ≤ 1
a
‖(e∗i (x))‖1,∞ ≤

1
ca
‖x‖.

Hence θ(a) ≤ (ca)−1.

We recall the definition of the dyadic Hardy space H1. Let (hn)∞n=1 be
the dyadic Haar system on [0, 1] normalized in L1. The norm in H1 is given
as follows:

∥∥∥
∞∑

n=1

anhn

∥∥∥ =
1�

0

( ∞∑

n=1

a2
nh

2
n

)1/2
dx.

Clearly, (hn) is a normalized 1-unconditional basis for H1.

Lemma 4.7. There exists a constant C such that for every N ≥ 1 there
exist integers n1, . . . , n2N and a normalized 1-unconditional basis (ei)Pi=1
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(where P := P (N) =
∑2N

i=1 ni) of a finite-dimensional normed space (RP ,
‖ · ‖N ), satisfying the following :

(a) For all real scalars (ai)Pi=1, we have

∥∥∥
P∑

i=1

aiei

∥∥∥
N
≥ 1
C
‖(ai)‖1,∞.

(b) For all real scalars (bi)2N
i=1, we have

1
C

( 2N∑

i=1

b2i

)1/2
≤
∥∥∥

2N∑

i=1

bifi

∥∥∥
N
≤ C

( 2N∑

i=1

b2i

)1/2
,

where
fi =

1
ni

(en1+...+ni−1+1 + . . .+ en1+...+ni).

(c) n1 < n3 < . . . < n2N−1 < n2 < n4 < . . . < n2N .

Proof. We take the vectors (ej) for

n1 + . . .+ ni−1 + 1 < j ≤ n1 + . . .+ ni

to be all the Haar functions on a certain level of the L1-normalized Haar
system on [0, 1]. It is known that consecutive levels of the dyadic Hardy
space H1 satisfy (a) and (b). To ensure that (c) is satisfied, we simply
rearrange the levels. Since the Haar system is a 1-unconditional basis of H1,
every rearrangement of the levels is a 1-unconditional basis satisfying (a)
and (b).

Example 4.8. There exists a reflexive Banach space X with a thresh-
olding-bounded basis that is not quasi-greedy. To see this, recall from [8]
the following expression for the norm ‖ · ‖J of the James space J :

∥∥∥
∑

aiei

∥∥∥
J

= sup
( k∑

j=1

( mj∑

i=mj−1+1

ai

)2)1/2
,

where the supremum is taken over all k ≥ 1 and all 0 = m0 < m1 < . . .
< mk. Fix N ≥ 1 and let (fi)2N

i=1 be defined as in Lemma 4.7. Note that

‖f1 + f3 + . . .+ f2N−1‖J = N,(4.26)

and that

‖f1 − f2 + f3 − f4 + . . .+ f2N−1 − f2N‖J ≤ 2
√
N.(4.27)

Define the norm |x|N := max(‖x‖N , ‖x‖J). Consider

x = f1 − f2 + f3 − f4 + . . .+ f2N−1 − f2N and a = 1/n2N−1.

Then x ∈ Q; by (4.27) and condition (b) of Lemma 4.7, we have

|x|N ≤ 2C
√
N.
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By (4.26) and condition (c) of Lemma 4.7, we have

|Ga(x)|N = |f1 + f3 + . . .+ f2N−1|N = N.

Hence θ(a) ≥ (2C)−1
√
N . Thus, for each N we have constructed a finite-

dimensional normed space (FN , | · |N ) with a monotone basis (ei) such that
∣∣∣
∑

aiei

∣∣∣
N
≥ 1
C
‖(ai)‖1,∞(4.28)

and

sup
a>0

θ(a) ≥ 1
2C

√
N.(4.29)

Let X = (
∑∞

N=1⊕FN )2 and let (en) be the natural basis obtained by con-
catenating the bases of the FN ’s. For x = (xN ) ∈ Q, using Lemma 4.6 and
(4.28) we get

‖Ga(x)‖ =
( ∞∑

N=1

|Ga(xN )|2N
)1/2

≤ C

a

( ∞∑

N=1

|xN |2N
)1/2

=
C

a
‖x‖.

Hence (en) is a thresholding-bounded basis for X. However, by (4.29),
θ(a)→∞ as a→ 0. Thus, (en) is not quasi-greedy.

5. Subsequences of weakly null sequences. The motivation for the
results of this section is the following theorem of Elton [5] (paraphrased
slightly to suit our purposes).

Theorem 5.1. Let (en) be a semi-normalized weakly null sequence in a
Banach space X. Then (en) has a thresholding-bounded basic subsequence
satisfying

φ(a) ≤ C log(1 + 1/a)

for some absolute constant C.

Remark 5.2. The estimate for φ(a), while not hitherto explicitly stated
anywhere, follows from the proof of Elton’s theorem presented in [16]. In its
usual formulation, Elton’s theorem asserts the existence of a subsequence
that is nearly unconditional. However, by Proposition 4.5, this is equivalent
to the above.

For Banach spaces which are “far from c0” (in a sense made precise
below) we can improve this result significantly by showing the existence of
a quasi-greedy subsequence.

To that end let us recall the notion of spreading model (see e.g. [1]). Let
(ei) be a semi-normalized basic sequence in a Banach space X and let (si)
be a basis for a Banach space (Y, | · |). Then (si) is said to be a spreading
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model for (ei) if, for all k ≥ 1 and for all real scalars a1, . . . , ak, we have

∣∣∣
k∑

i=1

aisi

∣∣∣ = lim
n1<...<nk
n1→∞

∥∥∥
k∑

i=1

aixni

∥∥∥.

It is known that every normalized basic sequence has a subsequence with
a spreading model, and that if the basic sequence is weakly null, then the
spreading model is monotone and 2-unconditional.

Proposition 5.3. Let (ei) be a semi-normalized basic sequence in a Ba-
nach space X which has spreading model (si). Suppose that

g(n) :=
∣∣∣
n∑

i=1

si

∣∣∣→∞ as n→∞.

Then (en) has a democratic subsequence. Moreover , if (en) is weakly null
then we may take the democratic constant of the subsequence to be ∆ ≤ 1+ε
for any given ε > 0.

Proof. Since (si) is (by definition) democratic, by using the condition
g(n)→∞ it is easy to construct the desired democratic subsequence of (ei).
To avoid repetition, we refer to Theorem 5.4 below for a similar, but more
complicated, argument. To get ∆ ≤ 1 + ε in the weakly null case, we use
the fact that (si) is monotone when (ei) is weakly null.

To obtain the main result of this section we need the following result,
which is stated without proof in the Introduction of [15] (see also [1] for
the proof). Given ε > 0, every semi-normalized weakly null sequence has a
subsequence (en) which is (2 + ε)-Schreier-unconditional, i.e. such that

‖PAx‖ ≤ (2 + ε)‖x‖
for every x ∈ [en] and for every finite A ⊂ N satisfying |A| ≤ minA. (Here
PAx := xχA denotes the projection onto A.)

Theorem 5.4. Let (en) be a semi-normalized weakly null basic sequence
in a Banach space X with spreading model (sn). Suppose that

g(n) :=
∣∣∣
n∑

i=1

si

∣∣∣→∞ as n→∞.

Then, given ε > 0, (en) has a quasi-greedy subsequence with quasi-greedy
constant K ≤ 3 + ε.

Proof. By passing to a subsequence and rescaling, we may assume that
(en) is a normalized basic sequence, with basis constant at most 1 + ε/4.
Choose an increasing sequence (nk) such that g(nk) > 24k/ε. Using Schreier-
unconditionality, and by passing to further subsequences, we may assume
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that (en) satisfies the following: for every k ≥ 1 and for every A ⊂ N with
|A| ≤ nk and minA ≥ k, we have

1
2

∥∥∥
|A|∑

i=1

aisi

∥∥∥ ≤
∥∥∥
∑

i∈A
aiei

∥∥∥ ≤ 2
∥∥∥
|A|∑

i=1

aisi

∥∥∥(5.30)

and

‖PAx‖ ≤ (2 + ε/4)‖x‖.(5.31)

Suppose that x =
∑∞

i=1 xiei and ‖x‖ = 1. Suppose that a > ε/k, where
k ≥ 2. Define

D := {i ≥ k : |xi| ≥ a} and E := {i < k : |xi| ≥ a}.
Suppose, to derive a contradiction, that |D| ≥ nk. Choose A ⊆ D with
|A| = nk. Then by (5.31),

‖PAx‖ ≤ (2 + ε/4)‖x‖ = 2 + ε/4.

On the other hand,

‖PAx‖ =
∥∥∥
∑

i∈A
e∗i (x)ei

∥∥∥ ≥ 1
2

∣∣∣
|A|∑

i=1

e∗i (x)si
∣∣∣ (by (5.30))

≥ 1
4

min{|e∗i (x)| : i ∈ A}g(|A|) (by 2-unconditionality of (si))

≥ 1
4
ag(|A|) > εg(nk)

8k
> 3,

which is the desired contradiction. Hence |D| < nk; in particular,

‖PDx‖ ≤ (2 + ε/4)‖x‖ = 2 + ε/4.

First suppose a > ε/2, i.e. k = 2. Then, since the basis constant of (ei) is at
most 1 + ε/4,

‖Gax‖ ≤ |a1|+ ‖PDx‖ ≤ (1 + ε/4) + (2 + ε/4) < 3 + ε.(5.32)

Now suppose that a ≤ ε/2. Choose k ≥ 2 such that

1/k < 2a/ε ≤ 1/(k − 1).

By the triangle inequality,

‖PEx‖ ≤
∥∥∥
k−1∑

i=1

e∗i (x)ei
∥∥∥+ (k − 1)a ≤ (1 + ε/4)‖x‖+ ε/2 = 1 + 3ε/4.

Combining, we get

‖Gax‖ ≤ ‖PDx‖+ ‖PEx‖ ≤ (2 + ε/4) + (1 + 3ε/4) = 3 + ε.(5.33)

By homogeneity, (5.32) and (5.33) prove that θ(a) ≤ 3 + ε for all a ∈ (0, 1],
i.e. that (en) is quasi-greedy with quasi-greedy constant K ≤ 3 + ε.
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Theorem 5.5. Let (en) be a semi-normalized democratic weakly null ba-
sic sequence in a Banach space. Then (en) has an almost greedy subsequence.

Proof. Let (ϕ(n)) be the fundamental function. We may suppose that
(ei) has spreading model (si). Suppose that (si) is not equivalent to the
unit vector basis of c0. Then, since (si) is unconditional, |∑n

i=1 si| → ∞ as
n → ∞. Theorem 5.4 now shows that (ei) has a quasi-greedy, and hence
almost greedy, subsequence.

On the other hand, suppose that (si) is equivalent to the unit vector
basis of c0. Then (ϕ(n)) is bounded above by K ′, say. Thus, by (2.10),

∥∥∥
n∑

i=1

aiei

∥∥∥ ≤ 2ϕ(n) max |ai| ≤ 2K ′max |ai|.

Thus, (en) is equivalent to the unit vector basis of c0, which is greedy.

Corollary 5.6. Suppose that X is a Banach space which does not have
c0 as a spreading model (e.g., if X has finite cotype; see (3.16) above).
Then every semi-normalized weakly null sequence in X has an almost greedy
subsequence.

Corollary 5.7. Let X be a Banach space. Then the following are equiv-
alent :

(i) X contains a weakly null sequence with spreading model not equiv-
alent to the unit vector basis of c0 or X contains an isomorphic copy of c0
or `1.

(ii) X contains an almost greedy basic sequence.
(iii) X contains a semi-greedy basic sequence.
(iv) X contains a superdemocratic basic sequence.

Proof. (i)⇒(ii) is immediate from Theorem 5.5, (ii)⇒(iii) is Theorem 3.2,
and (iii)⇒(iv) is Proposition 3.3. Suppose that (iv) holds. Let (xn) be a
superdemocratic basic sequence. If X does not contain `1, then by Rosen-
thal’s `1 theorem [19], we may assume by passing to a subsequence, set-
ting yn := x2n − x2n−1, that (yn)∞n=1 is a weakly null basic sequence with
spreading model (sn). Clearly, (yn) is also superdemocratic, and therefore
democratic. If X does not contain c0, then from the proof of Theorem 5.5
we see that (sn) is not equivalent to the unit vector basis of c0. Thus, (i)
holds.

Remark 5.8. The “original” Tsirelson space [21] does not contain a
subspace isomorphic to c0 or to `1 and yet all of its spreading models (si)
are equivalent to the unit vector basis of c0. Thus, this space does not contain
any democratic basic sequence.
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6. Existence of democratic bases. Let X be a Banach space with
a basis (bn). By passing to an equivalent norm we may assume that (bn) is
normalized and bimonotone. Let S be a 1-symmetric and 1-unconditional
symmetric sequence space with Schauder basis (ei) (here ei denotes the se-
quence (δij)∞j=1). Let (e∗i ) be the sequence of biorthogonal functionals in S∗.
Define

f(n) := ‖e1 + . . .+ en‖S
and

g(n) := n/f(n) = ‖e∗1 + . . .+ e∗n‖S∗ .
We shall assume that (ei) is not equivalent to the unit vector basis of c0.
Thus,

f(n) ↑ ∞ as n→∞.
For n ≥ 1, let σn = [2n−1, 2n − 1], so that |σn| = 2n−1. Let

vn :=
1

f(2n−1)

∑

k∈σn
ek and v∗n :=

1
g(2n−1)

∑

k∈σn
e∗k.

Let P be the norm-one projection on S defined by

Pξ :=
∞∑

n=1

〈ξ, v∗n〉vn,

and let Q = I − P . Define a norm on c00 by

‖ξ‖Y := ‖Qξ‖S +
∥∥∥
∞∑

n=1

〈ξ, v∗n〉bn
∥∥∥
X
,

and then complete to obtain a sequence space Y .

Proposition 6.1. Suppose that (bn) is a bimonotone basis for X. Then
(en) is a Schauder basis for Y such that

1
8

sup
n
ηnf(n) ≤ ‖ξ‖Y ≤ 6

∞∑

n=1

f(n)
n

ηn(6.34)

for all real scalars ξ = (ξn) in c00, where (ηi) is the nonincreasing rearrange-
ment of (|ξi|).

Proof. It is easy to check that the spaces (Fn) = [ek : k ∈ σn] form a
Schauder decomposition for Y and that each is 3-isomorphic to [ek : k ∈ σn]
considered as a subspace of S. Hence {ek : k ∈ σn} forms a basis of each Fn
with uniformly bounded basis constant. Thus (en) is a basis of Y. For the
upper estimate, note that

∥∥∥
∞∑

n=1

〈ξ, v∗n〉bn
∥∥∥
X
≤
∞∑

n=1

1
g(2n−1)

∑

k∈σn
|ξk| ≤ 2

∞∑

n=1

f(n)
n

ηn.
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Also

‖Qξ‖S ≤ 2‖ξ‖S ≤ 2
∞∑

n=1

(ηn − ηn+1)f(n) (by partial summation)

= 2η1f(1) + 2
∞∑

n=2

ηn(f(n)− f(n− 1)) ≤ 4
∞∑

n=1

f(n)
n

ηn

since f(n)− f(n− 1) ≤ f(n− 1)/(n− 1) ≤ 2f(n)/n. Combining, we get

‖ξ‖Y = ‖Qξ‖S +
∥∥∥
∞∑

n=1

〈ξ, v∗n〉bn
∥∥∥
X
≤ 6

∞∑

n=1

f(n)
n

ηn.

For the lower estimate, suppose that ‖ξ‖Y = 1. For a > 0, define

A := {k : |ξk| > a} and B :=
{
n : |〈ξ, v∗n〉| <

1
2
f(2n−1)a

}
.

We assume that |A| = N ≥ 1. Then

1 = ‖ξ‖Y ≥ ‖Qξ‖S ≥
a

2
f
(∑

n∈B
|A ∩ σn|

)
.(6.35)

Let D := N \B. Then

1 = ‖ξ‖Y ≥
∥∥∥
∞∑

n=1

〈ξ, v∗n〉bn
∥∥∥
X
≥ 1

2
max
n∈D

f(2n−1)a,(6.36)

by the bimonotonicity of (bn). Now (6.35), (6.36), and the fact that A is
nonempty imply that a ≤ 2. Hence there exists a largest positive integer
m such that f(2m−1)a ≤ 2. Moreover, (6.36) implies that D ⊂ {1, . . . ,m}.
Hence ∑

n∈D
|A ∩ σn| ≤ 2m.

From this and (6.35) we deduce that
a

2
f(N − 2m) ≤ a

2
f
(∑

n∈B
|A ∩ σn|

)
≤ 1.

Hence N ≤ 2m+1 from the choice of m. Thus,

af(|{k : |ξk| > a}|) ≤ af(2m+1) ≤ 4af(2m−1) ≤ 8.

By homogeneity, we get

‖ξ‖Y ≥
1
8

sup
a>0

af(|{k : |ξk| > a}|) =
1
8

sup
n
ηnf(n)

for all ξ.

Theorem 6.2. Suppose that X is a Banach space with a basis which
contains a complemented subspace isomorphic to S. Then X has a basis
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(en) satisfying

1
C

sup
n
ηnf(n) ≤

∥∥∥
∞∑

n=1

ξnen

∥∥∥
Y
≤ C

∞∑

n=1

f(n)
n

ηn(6.37)

for some constant C.

Proof. We may suppose that X has a bimonotone basis (bn). The space
Y constructed above is isomorphic to X ⊕ Q(S). By assumption, we have
X ∼ Z ⊕ S for some Banach space Z. Thus,

Y ∼ X ⊕Q(S) ∼ Z ⊕ S ⊕Q(S).

By [13, p. 117], S ∼ S ⊕ P (S). Hence

Y ∼ Z ⊕ S ⊕ P (S)⊕Q(S) ∼ Z ⊕ S ⊕ S ∼ Z ⊕ S ∼ X.
By Proposition 6.1, Y has a basis (en) with the required property, and hence
so does X.

To state our next corollary, let us recall the definition of the quasi-norms
‖·‖p,1 and ‖·‖p,∞ of the Lorentz sequence spaces `p,1 and `p,∞ (1 ≤ p <∞);
here (a∗n) denotes the nonincreasing rearrangement of the sequence (|an|):

‖(an)‖p,1 =
∞∑

n=1

a∗nn
1/p−1 and ‖(an)‖p,∞ = supn1/pa∗n.(6.38)

Corollary 6.3. Let 1 ≤ p <∞. Suppose that X is a Banach space with
a basis which contains a complemented subspace isomorphic to `p. Then X
has a superdemocratic basis (en) satisfying

1
C
‖(ai)‖p,∞ ≤

∥∥∥
∞∑

i=1

aiei

∥∥∥ ≤ C‖(ai)‖p,1

for some constant C. In particular ,∥∥∥
∑

n∈A
±en

∥∥∥ ∼ |A|1/p

for all choices of signs and for all finite A ⊂ N.

Proof. Apply Theorem 6.2 with S = `p, so that f(n) = n1/p.

Remark 6.4. Corollary 6.3 implies a theorem of Wojtaszczyk [22, The-
orem 4.5] on the existence of a normalized basis of X that is q-Besselian for
all q > p. (Recall that a basis is q-Besselian if it satisfies a lower estimate
‖∑∞i=1 aiei‖ ≥ c‖(ai)‖q.)

Corollary 6.5. Suppose that S has finite cotype. Let X be a Banach
space with a basis which contains a complemented subspace isomorphic to S.
Then X has a superdemocratic basis with fundamental function equivalent
to (f(n)).
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Proof. Consider the basis (ei) of X satisfying (6.37). Suppose that S has
cotype q with constant Cq. Then by Proposition 3.5,

f(mn) ≥ (1/Cq)m1/qf(n).

Hence, for all A ⊂ N with |A| = n, we have

f(n)
C
≤
∥∥∥
∑

i∈A
±ei
∥∥∥ ≤ C

n∑

k=1

f(k)
k
≤ CCq

f(n)
n1/q

n∑

k=1

k1/q−1 ≤ C ′f(n).

So (ei) is superdemocratic with fundamental function equivalent to (f(n)).

7. Existence of quasi-greedy bases. We continue to use the notation
introduced in Section 6. We start with the case S = `1, which requires special
treatment.

Theorem 7.1. Suppose that (bn) is a basis for X and that S = `1. Then
(en) is a quasi-greedy basis for Y .

Proof. We may assume as above that (bn) is a normalized bimonotone
basis. It is convenient to introduce the following notation. Fix a > 0. Then,
for x ∈ R, define xa as follows:

xa :=
{
x for |x| ≥ a,

0 for |x| ≤ a.

For ξ = (ξn) ∈ c00, let ξa = (ξan) (= Gaξ). Note that

‖ξ‖Y = ‖Qξ‖1 +
∥∥∥
∞∑

n=1

( ∑

k∈σn
ξk

)
bn

∥∥∥
X
,(7.39)

‖Gaξ‖Y = ‖Qξa‖1 +
∥∥∥
∞∑

n=1

( ∑

k∈σn
ξak

)
bn

∥∥∥
X
.(7.40)

Suppose that ‖ξ‖Y = 1. Since (bn) is bimonotone, we have
∣∣∣
∑

k∈σn
ξk

∣∣∣ ≤ 1 (n ≥ 1).

Moreover, (7.39) clearly implies that Gaξ = 0 if a > 1. So we shall assume
that a ≤ 1. Let N be the smallest positive integer for which a > 2/|σN |.
Note that N ≥ 2, since a ≤ 1. For n ≥ N , we have

1
|σn|

∣∣∣
∑

k∈σn
ξk

∣∣∣ < a

2
.

Let En denote the projection onto σn, i.e. Enξ = ξχσn . Then
∣∣∣
∑

k∈σn
ξak

∣∣∣ ≤ 2
∑

k∈σn

∣∣∣∣ξk −
1
|σn|

∑

k∈σn
ξk

∣∣∣∣ = 2‖EnQξ‖1 (n ≥ N).
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Hence, by the triangle inequality,
∥∥∥
∞∑

n=N

( ∑

k∈σn
ξak

)
bk

∥∥∥
X
≤ 2

∞∑

n=N

‖EnQξ‖1 ≤ 2‖ξ‖Y .(7.41)

Also

(7.42)
∥∥∥
N−1∑

n=1

( ∑

k∈σn
ξak

)
bn

∥∥∥
X

≤
∥∥∥
N−1∑

n=1

( ∑

k∈σn
ξk

)
bn

∥∥∥
X

+
∥∥∥
N−1∑

n=1

( ∑

k∈σn
(ξak − ξk)

)
bn

∥∥∥
X

≤ ‖ξ‖Y +
(N−1∑

n=1

|σn|
)
a (since |ξak − ξk| ≤ a)

≤ ‖ξ‖Y + 2|σN−1|
2

|σN−1|
= ‖ξ‖Y + 4.

Combining (7.41) and (7.42), we get

∥∥∥
∞∑

n=1

( ∑

k∈σn
ξak

)
bn

∥∥∥
X
≤ 3‖ξ‖Y + 4.

Similarly, for all n ≥ N , we have ‖EnGaξ‖1 ≤ 2‖EnQξ‖1, whence

∥∥∥
( ∞∑

n=N

En

)
QGaξ

∥∥∥
1
≤ ‖Q‖

∞∑

n=N

‖EnGaξ‖1(7.43)

≤ 4
∞∑

n=N

‖EnQξ‖1 ≤ 4‖ξ‖Y .

Also
∥∥∥
(N−1∑

n=1

En

)
QGaξ

∥∥∥
1
≤
∥∥∥
(N−1∑

n=1

En)Q(ξ − Gaξ)
∥∥∥

1
+
∥∥∥
(N−1∑

n=1

En

)
Qξ
∥∥∥

1
(7.44)

≤ 2a
(N−1∑

n=1

|σn|
)

+ ‖ξ‖Y

≤ 4a|σN−1|+ ‖ξ‖Y ≤ 8 + ‖ξ‖Y .
Combining (7.43) and (7.44), we get

‖QGaξ‖1 ≤ 5‖ξ‖Y + 8.

Finally,
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‖Gaξ‖Y = ‖QGaξ‖1 +
∥∥∥
∞∑

n=1

( ∑

k∈σn
ξak

)
bn

∥∥∥
X
≤ 8‖ξ‖Y + 12 = 20‖ξ‖Y .

Hence (en) is quasi-greedy with quasi-greedy constant K ≤ 20.

Now we consider the case S 6= `1. Here we can prove a more general
result by dropping the assumption that S is symmetric. Let us say that (en)
is a good unconditional basis if it satisfies three conditions:

(1) There is a function f(n) ↑ ∞ as n→∞ such that ‖∑j∈A ej‖ ≥ f(|A|)
for all finite A ⊂ N.

(2) There is a normalized block basic sequence (un) with biorthogonal
sequence (u∗n) such that

lim
n→∞

‖un‖∞ = lim
n→∞

‖u∗n‖∞ = 0.

(3) The projection

Pξ =
∑
〈ξ, u∗n〉un

is bounded on S.

Note that if S has a symmetric basis and if S is neither c0 nor `1, then
the basis is good. Both c0 and `1 fail to satisfy condition (2). In particular,
the argument of Theorem 7.2 does not work for S = `1.

Theorem 7.2. If S has a good unconditional basis and X has a basis
then S ⊕X has a quasi-greedy basis.

Proof. We may assume that X has a bimonotone normalized basis (bn).
We suppose S is given as a 1-unconditional sequence space (no longer sym-
metric) and that ∥∥∥

∑

j∈A
ej

∥∥∥ ≥ f(|A|),

where f(n) ↑ ∞. We suppose further the existence of a normalized block
basic sequence (un) with dual functionals (u∗n) (also blocked on the same
blocks) so that

δn := max(‖un‖∞, ‖u∗n‖∞)→ 0

as n→∞. We also assume that the projection Pξ =
∑〈ξ, u∗n〉un is bounded

with ‖P‖ = Λ. By passing to a subsequence we may suppose that there is
an increasing sequence (Mn)∞n=0, with M0 = 0, such that

(i) un, u∗n are supported on σn = (Mn−1,Mn].
(ii) f(Mn) > Mn−1.

(iii) δnMn−1 < 1.
(iv) δn ≤ 1

2δn−1 for n ≥ 2.
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Let Q = I −P . As before we introduce Y as the completion of the norm on
c00 defined by

‖ξ‖Y = ‖Qξ‖S +
∥∥∥
∞∑

n=1

〈ξ, u∗n〉bn
∥∥∥
X
.

Let Enξ = ξχσn . Since ‖E1 + . . .+En‖Y = 1, it follows as before that (en) is
a basis for Y . Let C be the basis constant of (en). Note that if ξ is supported
on some σn, then

‖ξ‖Y = ‖ξ − 〈ξ, u∗n〉un‖S + |〈ξ, u∗n〉| ≤ ‖ξ‖S + 2‖Pξ‖S
so that

‖ξ‖S ≤ ‖ξ‖Y ≤ (1 + 2Λ)‖ξ‖S.(7.45)

Note that Y ∼ X ⊕ Q(S) and hence Y ⊕ P (S) ∼ X ⊕ S. Since (un) is an
unconditional basis for P (S), we need only show that (en) is a quasi-greedy
basis for Y .

Fix ξ with ‖ξ‖Y = (2CΛ)−1. Note that

sup |e∗i (ξ)| ≤ 1,

and hence Gaξ = 0 for a > 1. So we may assume that 0 < a ≤ 1. Let r ≥ 0
be chosen so that aMr < 1 but aMr+1 > 1. Then, by (7.45),

‖(E1 + . . .+ Er)(ξ − Gaξ)‖Y ≤ (1 + 2Λ)
r∑

i=1

‖Ei(ξ − Gaξ)‖S

≤ (1 + 2Λ)aMr < 1 + 2Λ.

Thus,

‖(E1 + . . .+ Er)(Gaξ)‖Y ≤ 1 + 2Λ+ ‖ξ‖Y .(7.46)

Note that
af(Mr+2) > aMr+1 > 1 by (ii),

and that
δr+2 < 1/Mr+1 < a by (iii).

Suppose that j ≥ r + 3. Then, by (7.45),

|〈ξ, u∗j〉| ≤ Λ‖Ejξ‖S ≤ Λ‖Ejξ‖Y ≤ 2CΛ‖ξ‖Y = 1.

Hence

‖EjPξ‖∞ ≤ ‖uj‖∞ ≤ δj ≤
1
2
δr+2 <

a

2
.

It follows that |EjQξ| ≥ 1
2 |EjGaξ| (coordinatewise). Hence

∥∥∥
( ∑

j≥r+3

Ej

)
(Gaξ)

∥∥∥
S
≤ 2‖Qξ‖S ≤ 2‖ξ‖Y .
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So ∥∥∥Q
( ∑

j≥r+3

Ej

)
(Gaξ)

∥∥∥
S
≤ ‖Q‖

∥∥∥
( ∑

j≥r+3

Ej

)
(Gaξ)

∥∥∥
S

(7.47)

≤ 2(Λ+ 1)‖ξ‖Y .
Let

Lj := |{k ∈ σj : |ξk| ≥ a}|.
Then, by (7.45) and the 1-unconditionality of S,

af(Lj) ≤ ‖Ejξ‖S ≤ ‖ξ‖Y ≤ 1.

Hence
af(Lj) ≤ 1 < aMr+1 ≤ af(Mr+2),

which implies that Lj < Mr+2. Thus,

|〈Gaξ, u∗j 〉| ≤ Lj‖u∗j‖∞ < Mr+2δj .

Thus, if j ≥ r + 3, we have, by (iii) and (iv),

|〈Gaξ, u∗j〉| ≤Mr+2δr+32r+3−j < 2r+3−j.

Together with the triangle inequality, this gives
∥∥∥
∞∑

j=r+3

〈Gaξ, u∗j 〉bj
∥∥∥
X
≤ 2.(7.48)

Combining (7.47) and (7.48), we get
∥∥∥
( ∑

j≥r+3

Ej

)
(Gaξ)

∥∥∥
Y
≤ 2(1 + Λ)‖ξ‖Y + 2.(7.49)

We are left to estimate ‖Ej(Gaξ)‖Y for j = r+ 1, r+ 2. But then, by (7.45),

‖Ej(Gaξ)‖Y ≤ (1 + 2Λ)‖Ej(Gaξ)‖S ≤ (1 + 2Λ)‖Ejξ‖S(7.50)

≤ (1 + 2Λ)‖ξ‖Y .
Combining (7.46), (7.49), and (7.50) gives

‖Gaξ‖Y ≤ 3 + 2Λ+ (5 + 6Λ)‖ξ‖Y = (6CΛ+ 4CΛ2 + 5 + 6Λ)‖ξ‖Y .
Hence (en) is quasi-greedy with quasi-greedy constant K ≤ 6CΛ+ 4CΛ2 +
5 + 6Λ.

Corollary 7.3. Suppose that X has a basis and contains a comple-
mented subspace S with a symmetric basis, where S is not isomorphic to c0.
Then X has a quasi-greedy basis.

Proof. The case S = `1 is covered by Theorem 7.1. If S 6= `1 then the
basis of S is good. Hence X⊕S has a quasi-greedy basis. But X ∼ X⊕S.



94 S. J. Dilworth et al.

Theorem 7.4. Suppose that X has a basis and contains a complemented
subspace with a symmetric basis and finite cotype. Then X has an almost
greedy basis.

Proof. Combining Corollary 6.5 and Theorem 7.2 (or Theorem 7.1 for
the case S = `1) yields a basis that is simultaneously democratic and quasi-
greedy.

Remark 7.5. Noncommutative Lp spaces do not have an unconditional
basis. However, under reasonable assumptions, it is proved in [9] that for
1 < p < ∞ they have a basis (see also [10] for more examples associated
with groups). Since noncommutative Lp spaces contain complemented copies
of `p, we can apply Theorem 7.4 to obtain the existence of almost greedy
bases in these spaces.

Remark 7.6. Since every closed infinite-dimensional subspace of `p con-
tains a complemented copy of `p, it follows from Theorem 7.4 that every
subspace of `p with a Schauder basis has an almost greedy basis. On the
other hand, it is known that there exist subspaces of `p (p 6= 2) with a
Schauder basis but without any unconditional basis. See [11] for quantita-
tive finite-dimensional results in this direction.

Remark 7.7. It is clear that if (bn) and (b′n) are inequivalent bases forX,
then the corresponding almost greedy bases (en) and (e′n) produced by the
construction will be inequivalent. It is known that every Banach space with
a basis has infinitely many inequivalent normalized conditional bases [17].
Hence, if X contains a complemented copy of `p for some 1 ≤ p < ∞,
then X has infinitely many inequivalent almost greedy bases. This yields
another proof of the existence of (infinitely many inequivalent) conditional
quasi-greedy bases in `1 or `2 (cf. [4, 23]).

8. Quasi-greedy bases in L∞ spaces. This section makes heavy use
of a theorem of Grothendieck and related results. So we begin by recalling
these important facts.

Let T : X → Y be a continuous linear operator between Banach spaces
X and Y . Then T is called absolutely summing if there exists a constant C
such that for all sequences (xn) in X, we have

∞∑

n=1

‖T (xn)‖ ≤ C sup
{ ∞∑

n=1

|x∗(xn)| : x∗ ∈ X∗, ‖x∗‖ ≤ 1
}
.(8.51)

(Note that the right-hand side of (8.51) equals C supεn=±1 ‖
∑∞

n=1 εnxn‖.)
The least such constant C is denoted by π1(T ). A Banach space X is called
a GT space [18] if every bounded linear operator from X to any Hilbert
space H is absolutely summing. Grothendieck [7] proved that L1(µ) spaces
are GT spaces.
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Recall that X is an L∞ space if there exist λ ≥ 1 and a directed net
(Fα) of finite-dimensional subspaces of X, where each Fα is λ-isomorphic to
an `n∞ space, such that X =

⋃
α Fα. This class includes every complemented

subspace of a C(K) space. If X is an L∞ space then X∗ is a GT space (see
[18]). Bourgain [2] proved that the dual of the disc algebra is a GT space.

Let (en) be a basis for X. We say that (en) satisfies condition Mp (1 ≤
p ≤ ∞) if there exists a constant Cp such that

‖(x∗(en))‖p ≤ Cp‖x∗‖ (x∗ ∈ X∗).
Note that Mp holds if and only if (en) is q-Hilbertian, i.e., (en) satisfies the
upper q-estimate (1/p+ 1/q = 1)

‖x‖ ≤ 1
Cp
‖(e∗n(x))‖q (x ∈ X).

The basis (en) is called Hilbertian if it satisfies M2. We note that C[0, 1] has
a Hilbertian basis [22].

Proposition 8.1. Suppose that (en) is a semi-normalized thresholding-
bounded Hilbertian basis for a Banach space X. If X∗ is a GT space, then
(en) is equivalent to the unit vector basis of c0.

Proof. We show that there exists a constant C such that
∞∑

n=1

|an| ≤ C
∥∥∥
∞∑

n=1

ane
∗
n

∥∥∥,

which is equivalent to the result. We may assume without loss of generality
that the Hilbertian constant C2 equals one. Since X∗ is a GT space, ev-
ery bounded linear operator T from X∗ to `2 is absolutely summing with
π1(T ) ≤ B‖T‖ for some absolute constant B. Since (en) is Hilbertian, the
map X∗ → `2 given by x∗ 7→ (x∗(en)) is bounded, with operator norm at
most C2 = 1, and hence absolutely summing. Thus,

∞∑

n=1

|x∗(en)| ≤ B sup
εn=±1

∥∥∥
∞∑

n=1

εnx
∗(en)e∗n

∥∥∥ (x∗ ∈ X∗).

Fix x∗ =
∑∞

n=1 ane
∗
n ∈ [e∗n]. Choose signs (εn) such that

∥∥∥
∞∑

n=1

anεne
∗
n

∥∥∥ ≥ 1
B

∞∑

n=1

|an|.

Choose x ∈ X, with ‖x‖ = 1, such that
∞∑

n=1

εnane
∗
n(x) >

1
2B

∑

n∈A
|an|.
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Let σ = {n ∈ N : |e∗n(x)| > (4B)−1}. Clearly,

∑

n∈σ
εnane

∗
n(x) >

1
4B

∞∑

n=1

|an|.(8.52)

Set a = (4Bθ(1))−1. Then
∥∥∥
∑

n∈σ
εne
∗
n(x)en

∥∥∥ ≤ 2θ(1)2
∥∥∥
∑

n∈σ
(sgn e∗n(x))en

∥∥∥

(by Proposition 4.2 since max |e∗n(x)| ≤ θ(1))

= 2θ(1)2(4B)
(

1
4B

∥∥∥
∑

n∈σ
(sgn e∗n(x))en

∥∥∥
)

≤ 8θ(1)2B(1 + θ(a))
∥∥∥
∑

n∈σ
e∗n(x)en

∥∥∥

(by Proposition 4.4 since (4B)−1 ≤ |e∗n(x)| ≤ θ(1) for n ∈ σ)

≤ 8θ(1)2B(1 + θ(a))θ(a)‖x‖
(since

∑
n∈σ e

∗
n(x)en = θ(1)Ga(θ(1)−1x))

= 8θ(1)2B(1 + θ(a))θ(a).

From (8.52), we get
∞∑

n=1

|an| < 4B
∑

n∈σ
εnane

∗
n(x) ≤ 4B

∥∥∥
∞∑

n=1

ane
∗
n

∥∥∥
∥∥∥
∑

n∈σ
εne
∗
n(x)en

∥∥∥

≤ C
∥∥∥
∞∑

n=1

ane
∗
n

∥∥∥,

where C = 32θ(1)2B2(1 + θ(a))θ(a).

Lemma 8.2. Suppose that (en) is a normalized thresholding-bounded
basis for X. Let σ ⊂ N with |σ| = N ≥ 2. Then, for every choice of signs
(εn)n∈σ, we have

∥∥∥
∑

n∈σ
εne
∗
n(x)en

∥∥∥ ≤ C(log2N)θ(1/N)‖x‖ (x ∈ X),

where C = 2 + 8θ(1)2(1 + θ(1/2)).

Proof. Suppose that ‖x‖ = 1/θ(1), so that x ∈ Q by (i) of Proposi-
tion 4.1. For k ≥ 0, let

τk = {n ∈ N : 2−k ≤ |e∗n(x)| < 21−k}.
Then, for k > [log2N ] and n ∈ τk, we have |e∗n(x)| ≤ 2/N . Hence
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∥∥∥
∑

k>[log2 N ]

( ∑

n∈σ∩τk
εne
∗
n(x)en

)∥∥∥ < 2
N
|σ| = 2θ(1)‖x‖.(8.53)

For k ≤ [log2N ], we have
∥∥∥
∑

n∈σ∩τk
εne
∗
n(x)en

∥∥∥

≤ 2θ(1)
∥∥∥
∑

n∈σ∩τk
21−k(sgn e∗n(x))en

∥∥∥ (by Proposition 4.2)

≤ 2θ(1)2
∥∥∥
∑

n∈τk
21−k(sgn e∗n(x))en

∥∥∥ = 4θ(1)2
∥∥∥
∑

n∈τk
2−k(sgn e∗n(x))en

∥∥∥

≤ 4θ(1)2(1 + θ(1/2))
∥∥∥
∑

n∈τk
e∗n(x)en

∥∥∥ (by Proposition 4.4)

= 4θ(1)2(1 + θ(1/2))‖G2−kx− G21−kx‖
≤ 8θ(1)2(1 + θ(1/2))θ(2−k)‖x‖.

Hence
[log2 N ]∑

k=1

∥∥∥
∑

n∈τk∩σ
εne
∗
n(x)en

∥∥∥ ≤ 8θ(1)2(1+θ(1/2))(log2N)θ(1/N)‖x‖.(8.54)

Combining (8.53) and (8.54), we get
∥∥∥
∑

n∈σ
εne
∗
n(x)en

∥∥∥ ≤ C(log2N)θ(1/N)‖x‖,

where C = 2 + 8θ(1)2(1 + θ(1/2)).

Remark 8.3. By duality, we also have∥∥∥
∑

n∈σ
εnx

∗(en)e∗n
∥∥∥ ≤ C(log2N)θ(1/N)‖x‖ (x∗ ∈ X∗).

Lemma 8.4. Suppose that (en) is a normalized thresholding-bounded ba-
sis for a Banach space X which satisfies θ(a) ≤ Ca−ε (0 < a ≤ 1), where
C > 0 and ε ∈ (0, 1/2). Suppose that X∗ is a GT space and that Mp holds
for some p > 2. Then Mr holds whenever

1
r
<

1
p

+
1
2
− ε.

Proof. Let 1/s = 1/p+ 1/2. Suppose that σ ⊂ N with |σ| = N , and that
(ηn)n∈σ is any fixed choice of signs. Choose x∗ ∈ X∗, with ‖x∗‖ = 1, such
that

x∗
(∑

n∈σ
ηnen

)
=
∥∥∥
∑

n∈σ
ηnen

∥∥∥.
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Next consider T : X∗ → `2(σ) defined as follows:

Ty∗ = (y∗(en)|x∗(en)|s−1)n∈σ (y∗ ∈ X∗).
Then, applying Hölder’s inequality and using condition Mp, we get

‖Ty∗‖ =
(∑

n∈σ
|x∗(en)|2s−2|y∗(en)|2

)1/2

≤
(∑

n∈σ
|x∗(en)|s

)1/2−1/p(∑

n∈σ
|y∗(en)|p

)1/p

≤ Cp
(∑

n∈σ
|x∗(en)|s

)1/2−1/p
‖y∗‖.

Hence ‖T‖ ≤ Cp(
∑

n∈σ |x∗(en)|s)1/2−1/p. Since X∗ is a GT space, we have
∑

n∈σ
|x∗(en)|s =

∑

n∈σ
|x∗(en)| ‖Te∗n‖

≤ B‖T‖ sup
εn=±1

∥∥∥
∑

n∈σ
εnx

∗(en)e∗n
∥∥∥

≤ BCp
(∑

n∈σ
|x∗(en)|s

)1/2−1/p
sup
εn=±1

∥∥∥
∑

n∈σ
εnx

∗(en)e∗n
∥∥∥.

Thus,
(∑

n∈σ
|x∗(en)|s

)1/s
≤ BCp sup

εn=±1

∥∥∥
∑

n∈σ
εnx

∗(en)e∗n
∥∥∥.

Since |σ| = N , Remark 8.3 gives

sup
εn=±1

∥∥∥
∑

n∈σ
εnx
∗(en)e∗n

∥∥∥ ≤ C ′(log2N)θ(1/N)‖x∗‖ = C ′(log2N)θ(1/N),

where C ′ is independent of N . Hence
(∑

n∈σ
|x∗(en)|s

)1/s
≤ BC ′Cp(log2N)θ(1/N).

Thus,
∥∥∥
∑

n∈σ
ηnen

∥∥∥ =
∑

n∈σ
ηnx

∗(en) ≤
(∑

n∈σ
|x∗(en)|s

)1/s
N1−1/s

≤ BC ′Cp(log2N)θ(1/N)N1−1/s.

Now suppose that y∗ ∈ X∗ with ‖y∗‖ = 1. For a > 0, let

σ(a) = {n : |y∗(en)| ≥ a} and N(a) = |σ(a)|.
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Then, for some choice of signs (ηn), we have

aN(a) ≤ y∗
( ∑

n∈σ(a)

ηnen

)
≤
∥∥∥
∑

n∈σ(a)

ηnen

∥∥∥

≤ BC ′Cp(log2N(a))θ(1/N(a))N(a)1−1/s

≤ BCC ′Cp(log2N(a))N(a)1−1/s+ε,

using the hypothesis that θ(a) ≤ Ca−ε. Thus, for some constant C ′′, we
have N(a) ≤ C ′′a−t provided t satisfies

1
r
<

1
t
<

1
s
− ε.

This implies, by a standard calculation, that (en) satisfies Mr.

Theorem 8.5. Let (en) be a semi-normalized thresholding-bounded basis
for X satisfying θ(a) ≤ Ca−ε, where 0 < ε < 1/2. If X∗ is a GT space, then
(en) is equivalent to the unit vector basis of c0.

Proof. For simplicity, we assume that the basis is normalized (the semi-
normalized case is similar). Note that (en) satisfies M∞. By applying Lem-
ma 8.4 a total of [(1 − 2ε)−1] + 1 times, starting with p = ∞, we finally
deduce that (en) satisfies M2. Now apply Proposition 8.1.

Corollary 8.6. c0 is the unique infinite-dimensional L∞ space, up to
isomorphism, with a quasi-greedy basis. Moreover , c0 has a unique quasi-
greedy basis up to equivalence.

Remark 8.7. Szarek [20] proved that every Schauder basis of an infinite-
dimensional L∞ space contains a subsequence equivalent to the unit vector
basis of c0. Thus, c0 is the only infinite-dimensional L∞ space, up to iso-
morphism, with a superdemocratic or a semi-greedy (by Proposition 3.3)
basis.

Corollary 8.8. The disc algebra (regarded as a real Banach space) does
not have a quasi-greedy basis.

Corollary 8.9. Let X be an infinite-dimensional Banach space. Then
X has a unique normalized (or unique semi-normalized) quasi-greedy basis
up to equivalence if and only if X is isomorphic to c0.

Proof. The fact that c0 has a unique quasi-greedy basis is the second
assertion of Corollary 8.6. Suppose that X is a Banach space with a unique
(up to equivalence) normalized (respectively, semi-normalized) quasi-greedy
basis (en). Let (εn) be any choice of signs. Then (εnen) is also quasi-greedy
and normalized (respectively, semi-normalized). So, by uniqueness, (εnen) is
equivalent to (en), and so (en) is unconditional. In particular,X has a unique
unconditional basis up to equivalence. It follows from the Lindenstrauss–
Zippin theorem [14] that X is isomorphic to c0, `1 or `2. But `1 (cf. [4])
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and `2 (cf. [23]) have conditional quasi-greedy bases. Thus X is isomorphic
to c0.

Acknowledgements. The authors thank Ted Odell for helpful discus-
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