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Abstract. We prove that the combinatorial  types of  those cone systems which 
correspond to complete smooth toric varieties are more restricted than for complete 
toric varieties: the toric varieties corresponding to essentially all types of  cyclic 
polytopes possess singularities. This yields a negative answer to a problem stated 
by G. Ewald. Some consequences and problems concerning mathematical program- 
ming and the rational cohomology of  smooth toric varieties are discussed. 

1. Introduction and Basic Terminology 

Recently, there has been much interaction between the combinatorial theory of  
polytopes and the theory of  toric varieties [ 1 ], [3], [8], [9], [ 11]. A toric d-variety 
is a T-invariant subvariety of  a T-invariant completion of  the torus T = (k*) d (k 
can be C or any algebraically closed field). It can be conveniently described in 
terms of  a fan, i.e., a finite system of cones in R a spanned by integer lattice 
points. In this paper we do not explain the numerous correspondences between 
properties of fans and properties of  toric varieties. The interested reader should 
consult [2] and [9] for details, Here, we concentrate on those fans that correspond 
to complete smooth toric d-varieties. 

Let A be a simplicial ( d -  1)-complex with the following properties: 

(1) A is embedded in R d. 

* The research of P. Kleinschmidt was supported in part by the Institute for Mathematics and Its 
Applications, University of Minnesota, Minneapolis, Minnesota, USA. 
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(2) The underlying set of  A, denoted [AI, is homeomorphic to the unit-sphere 
S d-l. 

(3) The bounded component of R d whose boundary is IA] contains the origin 
in its interior and is star-shaped with respect to the origin. 

(4) The 0-cells (vertices) of  A are primitive lattice points in Z a. 
(5) Let x~ . . . . .  xa be the vertices of  a (d - 1)-cell of A, then 

l d e t ( x l , . . . ,  Xd)] = 1. 

Let E~ be the system of  those cones whose apex is the origin and whose bases 
are the cells of  A. We call ~a a complete regular fan. In the absence of  property 
(5) we call it a complete fan. 

It is well known that all complete smooth toric d-varieties can be described 
in terms o f  complete regular fans [2] (smoothness is equivalent to condition (5)). 
Let Xz denote the variety corresponding to the fan Y.. Two fans ~ and E' 
are combinatoriaily equivalent (or isomorphic) if the complexes A and A' which 
define 5: and E' are combinatorially equivalent, i.e., there is a bijective inclusion 
preserving map from A to A'. 

The varieties Xz and Xx, are isomorphic if and only if such a combinatorial 
equivalence for E and Y~' can be induced by a unimodular transformation of R d. 
So, the study of toric varieties can be viewed as the study of invariants of fans 
under unimodular transformations. 

At the Fourth Geometry Symposium in Siegen, Ewald [4] posed the following 
question: Let A be a simplicial ( d -  1)-dimensional spherical complex. Then, does 
there exist a spherical complex A' combinatorially equivalent to A such that A' 
determines a complete regular fan  ? 

This question was answet;ed positively in [8] for the case that the number of  
vertices o f  A does not exceed d + 2. In the present paper we give an infinite family 
o f  counterexamples to this question. The smallest complex in our family has 
d + 3 vertices and is therefore minimal with the desired property. 

Theorem. Let A be a complex which is isomorphic to the boundary-complex of  the 
cyclic 4-polytope with n >-7 vertices (see [5] for the definition of  cyclic polytopes). 
Then there does not exist a complex A' with the properties (1)-(5) which is com- 
binatorially equivalent to A. 

This theorem implies that no complete smooth toric 4-variety has an underlying 
cone-system stemming from a cyclic 4-polytope with more than six vertices. 
Hence, the existence of  certain smooth toric varieties may be ruled out on grounds 
o f  the combinatorial type of  a fan alone. In contrast to this it is well known [11] 
that every combinatorial type of a simplicial polytope gives rise to (many) 
complete fans which correspond to projective toric varieties. However, our result 
shows that under the regularity assumption this may not hold. 

The proof  of  the theorem proceeds in two steps. In Section 2 we establish the 
case n = 7, and in Section 3 a different technique of proof is used to settle the 
case n-> 8. Finally, in Section 4 we discuss some consequences and problems 
related to our result. 
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2. On the Cyclic 4-Polytope with Seven Vertices 

Let us assume that A is a complex which has properties (1)-(5) of  the last section 
and which is isomorphic to the boundary complex of the cyclic 4-polytope with 
seven vertices. Let 1, 2 , . . . ,  7 denote the vertices of  A. Then Table 1 lists the 14 
tetrahedra which are the maximal cells of A. 

Let i~ . . . .  ,/4 be the vertices of  one of the listed tetrahedra and let i~, i 2. i3 ,  i 5 

be the vertices of the unique tetrahedron in the list with which the former shares 
the vertices i~, i2, and i 3 . Then it follows from (5) that the following linear relation 
holds: 

3 

i4+i5+ ~ Ajij=0 (for some integers A:). (*) 
j = t  

As A has 28 triangles, each of  which is contained in precisely two of the tetrahedra, 
there are exactly 28 linear relations of type (*). (In [8] and [9] extensive use of 
these relations has been made for the classification of toric varieties.) Interpreting 
the coefficients of the points i~ . . . .  , i 7 in a relation of type (*) as vectors in R 7 
(we call those vectors linear dependencies), it follows that the linear span of the 
linear dependencies is only three-dimensional. 

So, there is a lot of redundancy in the 28 relations of  type (*). Using just this 
fact, it is easy to check that every relation (*) is equal to one of the 14 relations 
listed by their coefficients in Table 2. The symbols in the left column are the 
tetrahedra from which the coefficients of the relation in the respective row come. 
The numbers A~, A2 , . . . ,  A35 are undetermined coefficients. 

Using the fact that the rows AB, BD, and BM in Table 2 are linearly 
independent and hence span the space of all linear relations, we can deduce 
further relations between the various A, This could be done systematically using 
affine Grassmann-Piiicker relations. However, as we are satisfied when a contra- 
dictory relation is reached, we do not present all relations and details here. These 
can be easily checked. 

From the representation of  all relations as linear combinations of  AB, BD, 
and BM we obtain among many other relations the following: 

A1 " A10=0, (1) 

,X2" ~6 = 0, (2) 

As" As=0. (3) 

Table 1 

A = 1245 E = 1347 I = 2356 M =  2467 

B = 1246 F =  1356 J = 2357 N =  3467 

C = 1256 G =  1357 K = 2 3 6 7  

D =  1346 H =  1457 L = 2457 
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Table 2 

Vertices 

Tetrahedra 1 2 3 4 5 6 7 

A B  A 1 A2 0 1 1 t 0 
A L  1 1 0 A3 A4 0 1 
BD A 5 1 1 A 6 0 A 7 0 
B M  1 A8 0 A9 0 Alo 1 
C F  1 1 1 0 All A12 0 
DE 1 0 AI3 X14 0 | l 
D F  A~5 0 hi6 l [ At7 0 
FG Als 0 AL9 0 h2o I 1 
G H  A2t 0 1 1 1 0 A22 
GJ 1 1 A23 0 A24 0 A25 
JK 0 A26 A27 0 1 1 1 
JL 0 A:a 1 1 A29 0 A30 
K N  0 1 1 1 0 A3t A32 
L M  0 A33 0 A34 1 1 A3~ 

As in each relation at least one of the A~ is equal to zero, we may branch the 
determination of all A~ into eight cases where three of  the A~ from (1), (2), and 
(3) are set to zero. Each of  these cases yields a contradiction for some of the A~. 
For example,  if A1 = A2 = A5 = 0, it follows (from the additional relation A5 - A 1A6 = 
1) that 1 =0.  This proves the case n = 7 of  the theorem. 

3. On Cyclic 4-Polytopes with Eight or more Vertices 

In this section we complete the proof  of  the theorem by showing that no cyclic 
4-polytope with eight or  more vertices gives rise to a smooth toric variety. Let A 
be the boundary complex of  a cyclic 4-polytope with n --- 8 vertices, and assume 
that A is embedded with vertices xl ,  x 2 , . . . ,  x, in R 4 such that the properties 
(1)-(5) in Section 1 are satisfied. 

Every facet {i,j, k, l} of  A corresponds to a basis {xi, xj, Xk, X~} of  R 4, and the 
orientations of  all such ordered bases induce an orientation of  the simplicial 
complex A. The 3-sphere A being closed, connected, and orientable, there exists 
(up to inversion) a unique such intrinsic orientation signa. This implies the 
following stronger version of  property (5). 

(5') Let x~, xj, Xk, X~ be the vertices of  a tetrahedron of A, then [i,j, k, l] = 
signa(i, j, k, i). 

Here and throughout this section we use the abbreviation [i , j ,k ,  1]:= 
det(xi, xi, Xk, X~). 

Consider the simplicial 3-complex z~ on {1, 2 , . . . ,  8} which is defined by the 
following set of  15 tetrahedra: 

{{r, r + l ,  r+s,  r + s + l } [ 1  < -- r<-5,2<--s<-7-r}.  
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By Gale 's  evenness condition [5], A is a subcomplex of A, and it is easy to check 
that signa(r, r + 1, r + s, r + s + 1) = + 1 for all 1 -< r -< 5 and 2 < s -< 7 - r. Observe 
that A is a 3-ball, and therefore the unique orientation sign~ of A is induced from 
signa. 

Hence condition (5') implies 

(5") [ r , r + l , r + s , r + s + l ] = + l  for all 1-<r-<5 and 2 < - s < - 7 - r .  

We will show that there do not exist vectors xl ,  x 2 , . . . ,  xs ~ R 4 satisfying the 
15 determinant equations given in (5"). Note that the corresponding system of 
equations has a solution for n = 7, and hence the proof  of  the theorem had to 
split into two parts. 

Following the general philosophy of "computat ional  synthetic geometry" as 
outlined in [12], we give a compactly encoded nonrealizability proof  for the 
synthetic geometry problem (5"). The set {2, 3, 6, 7} being a tetrahedron of A, it 
can be assumed that (x2, x3, x6, x7) is a (positively oriented) orthonormal basis 
of  •4, and we can write 

L 

x2, • • •, x8) = ( b  c (x,, 

\ u  

where a, b, c , . . . ,  o, p are indeterminates. Let 

P~ := 1 - [1234] ,  P2:= 1-[1245] ,  P3 := 1 -  [1256], P4:= 1 -[1267] ,  

Ps: = 1 - [1278], P6: = 1 - [2345], P7 := 1 - [2356], Ps: = 1 - [2367], 

P9 :=1- [2378] ,  P~o:=1-[3456],  P ~ : = 1 - [ 3 4 6 7 ] ,  P~2:=1-[3478],  

P~3: = 1- [4567] ,  P~4: = 1- [4578] ,  P~5: = 1-[5678] .  

For example, we have Plo = 1 - el + hi. 

,0e  0 0  

0 1 f  j 0 0  

0 0  g k 1 0  ' 

0 0  h l 0 1  p /  

Let I denote the ideal in Q[a, b , . . . , p ]  generated by the polynomials 
Pt,  P 2 , . . . ,  P~5. It is clearly sufficient to show that I has no complex zeros. To 
prove this constructively, we shall give a f inal  polynomial [12, Chapter  4] for the 
realizability problem in question, that is, we shall construct polynomials 
Q ~ , . . . ,  Q15~O[a,  b , . . .  , p ]  such that ~ I ~  QiPi = 1. 

Consider the elements R~ and R2 of I which are defined as R1 := eP7 + P~o- PN,  
and 

R 2 ~--'- - n (c + k + icf) P1 + inP2 + (cn + kn + ign ) P3 + (0 + inhk + ncl + nkl) P4 

+ P5 - (m + 2in - ncd - nkd - ncdi f+ ifm + mfk)P6 

- (nk  + nc + mg + 2ing - n i c f -  ndg(c + k + icf)  

+ f m g (  i + k)  - cfe - enk ) P7 

+ (e - 1 + f ( i  + ie + ke))P9 + ( c f+  nk)Plo 

- ( l  + j - j m +  f ( k  + c +  i )+ n j d ( c +  k ) ) P ~  

+ (1 + f i  + f k  +j)Pl2 + (m - 1 - ncd - nkd)Pi3+ P14-  Pis. 
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It can be seen that R1 = ih, and that R2+ 1 is divisible by h. Let $2: = ( R 2 +  1 ) /h  
a [a ,  b , . . . ,  p]. 

The combinatorial symmetry tr = (18)(27)(36)(45) of ~ induces the symmetry 
~- = ( a p ) ( b o ) ( c n ) ( d m ) ( e l ) ( f k ) ( g j ) ( h i )  on the set { P ~ , . . . ,  P15} of generators of  L 
Applying the symmetry r to the above representation of R2 we get a representation 
of R3: = 7(R2) as a linear combination of the P~. Clearly, R3+ 1 is divisible by 
i = 1-(h), and we can set $3:= (R3+ 1 ) / i E Q [ a ,  b , . . . ,  p]. Finally, observe the 
identity 

S2S3R~ - R 2 - hS2R 3 = 1. 

This proves that 1 ~ I, and, moreover, with the above representations of R~, R2, 
and R3, we immediately obtain polynomials Qi satisfying the desired identity 
Y.15=t Q, Pi = 1. 

4. Consequences and Problems 

Let X~ be a complete toric d-variety given by a fan ~ or, equivalently, by a 
spherical complex A with n vertices. Let f~ be the number of/-dimensional cells 
of  A and, for 0-< i--- d, let h~ denote the following quantities: 

(f_~ := 1). 

It is well known [ 10] that these hi count the cocycles which generate the rational 
cohomology of Xx. More precisely, h~ = rk H2~(Xx ,  Q), 0 -  < i -  < d (note that the 
odd-dimensional cohomology vanishes). 

As [A I is a sphere, the upper-bound-theorem for spheres (UBTS for short) [10] 
says that 

h~<-- , or ( a s h 1 = n - d )  

• L 2 J  

The Dehn-Sommerville equations [5] are equivalent to h~ = ha_ i ,  0 ~ i "< d, so that 
the above bounds for the h~ imply bounds for the other h~ as well. All these 
bounds are simultaneously achieved if A is isomorphic to the boundary complex 
of  the cyclic d-polytope with n vertices. 

As mentioned before, it is well known that for every combinatorial type of a 
simplicial d-polytope there is a complete (even projective) toric d-variety whose 
fan is given by a complex which is isomorphic to the boundary complex of that 
polytope. So, the above bounds for the hi are also sharp upper bounds for the 
ranks of rational cohomology of complete toric d-varieties. So, UBTS has the 
following counterpart for toric varieties (call it UBTV for short): 
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Let X be a complete toric d-variety with rk H 2 ( X ,  Q)=: k fixed. Then the 
following holds: 

r k H 2 i ( X , Q ) < _ ( k + i - 1 ) ,  0 -< i -< [d ] ,  

and the bounds are achieved by fans which are given by the boundary complexes 
of cyclic d-polytopes with k + d  vertices. So the number k already determines 
sharp upper bounds for the number of higher-dimensional cohomology classes. 

It is a consequence of  our theorem in Section 1 that the statement about 
sharpness of the UBTV is not valid for smooth X with d = 4 and k = 3. For the 
combinatorial type of a corresponding sphere with h E -- 6 (for sharpness) would 
have to be one of the cyclic 4-polytope with seven vertices [5]. Our theorem, 
however, implies that this type does not give rise to a smooth toric variety. So 
we have (in contrast to the UBTV): 

Corollary 1. Let X be a complete smooth toric 4-variety with rk H2(X, Q) = 3. 
Then rk H4( X, Q) -< 5, This bound can be achieved. 

This corollary is an immediate consequence of our theorem and the UBTS. 
The statement about sharpness follows by blowing-up a suitable 4-variety from 
[8]. It is not surprising that smoothness implies fewer cocycles. However, we are 
not aware of any other result which directly implies Corollary 1. 

It would be of interest to prove a correct version of  the UBTV for the smooth 
case, i.e., to determine sharp upper bounds for rk H2i(X, Q) given rk H2(X, Q) 
for complete smooth toric d-varieties. It may be guessed that asymptotically these 
bounds are far smaller than those given in the UBTV. A result of this type would 
allow us to rule out smoothness of a variety by computing some of the hi. 

Such bounds would be of interest in mathematical programming. We can 
interpret the cones of a complete fan as the cones spanned by the normals of 
the hyperplanes which determine a basic feasible solution of a nondegenerate 
LP [7]. The regularity condition is fulfilled if the LP-matrix is totally unimodular 
(or if each maximal quadratic submatrix belonging to a feasible basis has deter- 
minant +1). So, such a version of a UBTV would yield sharp upper bounds for 
the number of  basic feasible solutions of such LPs. 

It is well known [5] that for d ~ 3 every cyclic d-polytope with v vertices has 
a vertex whose vertex figure (or link) is isomorphic to the boundary complex of 
a cyclic ( d - 1 ) - p o l y t o p e  with v - 1  vertices. It follows from this fact and the 
results of [9] that a smooth toric d-variety arising from a complete regular fan 
which is isomorphic to the boundary-complex of  a cyclic d-polytope with 
v vertices possesses a smooth toric (d -1 ) - subvar i e ty  which comes from a 
complete regular fan which is isomorphic to the boundary-complex of a cyclic 
( d -  1)-polytope with v - 1  vertices. This fact and our theorem directly imply: 

Corollary 2. Let A be a complex which is isomorphic to the boundary-complex of 
the cyclic d-polytope with n vertices, n >- d + 3 >- 7. Then there does not exist a complex 
A' with the properties (1)-(5) which is combinatorially equivalent to A. 
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This proves that for n-> d +3-> 7, no complete smooth toric d-variety has an 
underlying cone-system stemming from a cyclic d-polytope with n vertices. 

Applying the methods of Section 3 to the three noncyclic neighborly 3-spheres 
with eight vertices given in the list of Griinbaum and Sreedharan [6], we were 
able to extend Corollary 1 from seven to eight vertices. Note that among these 
three spheres only two are boundary complexes of 4-polytopes with eight vertices 
(P~5 and P~6 in [6]) while the third one is the nonpolytopal Briickner sphere 
(denoted d/t in [6]). More precisely, we have: 

Remark. Let X be a complete toric 4-variety with rkH2(X,Q)=4. Then 
rk H4(X, Q) -< 10, and this bound is attained by four combinatorial types of fans. 
If, in addition, X is assumed to be smooth, then we have rk H4(X, Q)-< 9. 

In view of  these results we conjecture that, for d -> 4, no neighborly d-polytope 
with d + 3 or more vertices gives rise to a complete smooth toric d-variety. 
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