# ON THE EXISTENCE OF CHARACTERS OF DEFECT ZERO 

Yukio TSUSHIMA

(Received, December 12, 1973)

## 1. Introduction

Let $G$ be a finite group of order $g$. Let $p$ be a prime and let $g=p^{a} g^{\prime}$ with $\left(p, g^{\prime}\right)=1$. An irreducible (complex) character of $G$ is called $p$-defect zero if its degree is divisible by $p^{a}$. The following problem is still open (see Feit [6]).

What are some necessary and sufficient conditions for the existence of characters of $p$-defect zero?

In [15] we, have tried somewhat ring theoritical approaches to the problem (see also Iizuka and Watanabe [11]). Now, since a character of $p$-defect zero constitutes a $p$-block for itself, having the identity group as its defect group, we have the following consequences from the theory of defect groups of blocks. Namely if $G$ posseses a character of $p$-defect zero, then

1. (Brauer [2]) $G$ contains an element of $p$-defect zero, i.e. one which is commutative with no non-trivial $p$-element of $G$.
2. (Brauer [2]) $G$ contains no non-trivial normal p-subgroup.
3. (Green [8]) There exist two Sylow p-subgroups $S, T$ of $G$ such that $S \cap T=\{1\}$. (This implies the second assertion above)

Furthermore the Theorem of Clifford shows that if $G$ possesses a character of $p$-defect zero, then
4. (Clifford-Schur) Every proper normal subgroup possesses a character of p-defect zero.

Of course, the above four conditions are not sufficient in general for the existence of a character of $p$-defect zero (e.g. $G=A_{7}$, the alternating group on seven letters, $p=2$ or $p=3$ ).

However, in [12] Ito showed that if $G$ is solvable and has an element of $p$-defect zero which is contained in $O_{p^{\prime}}(G)$, the maximal normal $p^{\prime}$-subgroup of $G$, then $G$ possesses a character of $p$-defect zero. Also in [13] he showed that under certain circumstances the second condition implies the existence of a
character of $p$-defect zero.
In this paper, we shall generalize the Ito's result in [12] quoted above to arbitary finite groups (see Theorem 1 below) and show in some cases the converse of the result may hold. In Appendix we shall give a solvable group which will enjoy all of the four conditions above, though fail to possess a character of $p$-defect zero (when $p=2$ ).

## 2. Notations and preliminaries

$p$ denotes a fixed prime number and $G$ a finite group of order $g=p^{a} g^{\prime}$ with $\left(p, g^{\prime}\right)=1$. We denote by $\nu_{p}$ the exponential valuation of the rational number field determined by $p$ with $\nu_{p}(p)=1$. For a subset $T$ of $G$, we denote by $|T|$ and by $\langle T\rangle$ the cardinality of $T$ and the subgroup of $G$ generated by $T$ respectively. If $S, T$ are subgroups of $G,[S, T]$ denotes the commutator subgroup of $S$ and $T$. If $R$ is a (commutative) ring, $R G$ denotes the group ring of $G$ over $R$ and $Z(R G)$ the center of $R G$. By a character of $G$, we mean unless otherwise specified, an absolutely irreducible complex character of $G$.

For convenience of later references, we put down here the following well known facts due to Clifford (and Schur) (see Curtis-Reiner [5] §51 and 53.)

Let $N$ be a normal subgroup of $G$ and let $\chi$ be an irreducible character of G.
$[\mathrm{C}-1] \quad \chi_{N}=e\left(\varphi_{1}+\varphi_{2}+\cdots+\varphi_{r}\right)$, where the $\left\{\varphi_{i}\right\}$ are mutually $G$-conjugate distinct irreducible characters of $N$ and $e$ is a positive integer. $r$ is equal to $[G: I]$, where $I$ is the inertia group of $\varphi_{1}$, namely $I=\left\{\sigma \in G \mid \varphi_{1}\left(\sigma^{-1} \tau \sigma\right)=\varphi_{1}(\tau)\right.$ for all $\boldsymbol{T} \in N\}$.
[C-2] Let $\phi$ be the homogenous component of $\chi$ containing $\varphi_{1}$. Then $\phi$ is an irreducible character of $I$. And furthermore.
(1) $\phi_{N}=e \varphi_{1}$ (by definition of $\phi$ )
(2) Let $\Phi$ be a representation of $I$ affording the character $\phi$. Then $\Phi$ is a tensor product of two projective representations $X, Y$ of $I$ (over the field of complex numbers); $\Phi=X \otimes Y$, where the degree of $X$ is equal to that of $\varphi_{1}$ and $Y$ may be viewed as a projective representation of $\bar{I}=I / N$ whose degree is equal to $e$.
(3) e divides [I:N] (since the degree of an irreducible projective representation divides the order of the group)
$[\mathrm{C}-3]$ Since $\chi(1)=\operatorname{er} \varphi_{1}(1)$ and e divides $[I: N]$, we have the inequalities

$$
\begin{aligned}
\nu_{p}(\chi(1)) & =\nu_{p}(e)+\nu_{p}(r)+\nu_{p}\left(\varphi_{1}(1)\right) \\
& \leqq \nu_{p}([I: N])+\nu_{p}([G: I])+\nu_{p}\left(\varphi_{1}(1)\right) \\
& \leqq \nu_{p}([G: N])+\nu_{p}(|N|)=\nu_{p}(|G|) \text { (Hence the iqualities hold if } \chi
\end{aligned}
$$

is of $p$-defect zero).

## 3. A generalization of Ito's result

Let $K$ be an algebraic number field containing the $g$-th roots of unity. In $K$, let $p$ be a prime divisor of $p$ with $\mathfrak{o}$ the ring of $\mathfrak{p}$-integers and let $k=\mathfrak{o} / \mathfrak{p}$ the residue class field. We denote by $\alpha^{*}$ the image of an element $\alpha$ of $\mathfrak{o}$ under the map $\mathfrak{v} \rightarrow k$. The following Theorem was proved by Ito [12], in case $G$ is solvable.

Theorem 1. Let $N$ be a normal subgroup of $G$ whose order is prime to $p$. Suppose there exist $v$ classes of conjugate elements of $G$ of $p$-defect zero such that they are contained in $N$. Then $G$ possesses at least $v$ characters of $p$-defect zero which are linearly independent mod $\mathfrak{p}$ on those classes.

Proof. Suppose $G$ possesses $t$ characters $\chi_{1}, \chi_{2}, \cdots, \chi_{t}$ of $p$-defect zero, $t \geqq 0$. Let $\delta_{i}$ be the block idempotent of the $p$-block of $k G$ (of $p$-defect zero) to which $\chi_{i}$ belongs and let $\psi_{i}$ the linear character of the center $Z(k G)$ of the group ring $k G$ defined by $\chi_{i}$, that is $\psi_{i}(C)=\left(\frac{|C| \chi_{i}(\sigma)}{\chi_{i}(1)}\right)^{*}$, for a conjugate class $C$ of $G$, $C \ni \sigma$. As is well known,

$$
\psi_{i}\left(\delta_{j}\right)= \begin{cases}1 & i=j  \tag{*}\\ 0 & i \neq j\end{cases}
$$

Let $C_{1}, C_{2}, \cdots, C_{u}$ be the set of conjugate classes of $G$ of $p$-defect zero and let the first $v$ of them contained in $N$. We denote by $c_{i}$ the sum in $k G$ of all elements of $C_{i}$. Let $U=\oplus \sum_{i=1}^{u} k c_{i}$ and $T=\oplus \sum_{i=1}^{t} k \delta_{i}$, the subspace of $Z(k G)$ spanned by $\left\{c_{1}, c_{2}, \cdots, c_{u}\right\}$ and $\left\{\delta_{1}, \delta_{2}, \cdots, \delta_{t}\right\}$ respectively. Then as is well known, both are ideals of $Z(k G), T$ is contained in $U$ and $U=T \oplus J(U)$, where $J(U)$ is the ideal of $Z(k G)$ consisting of all nilpotent elements of $U$ (Brauer [2], see also Iizuka and Watanabe [11]). Let $\rho$ be the projection of $U$ onto $T$. Thus $\rho(u)=0(u \in U)$, if and only if $u \in J(U)$, or $u$ is nilpotent. Let $V=\oplus \sum_{i=1}^{v} k c_{i} \subset U$. Then $\rho$ is one to one on $V$, since $V$, being contained in the center of the semisimple algebra $k N$ by our assumptions, contains no nilpotent element other than zero. Since the $\left\{\psi_{1}, \psi_{2}, \cdots \psi_{t}\right\}$ form a $k$-basis of the dual space of $T$ by $(*)$ and the dimension of the space $\rho(V)$ is $v$, we may choose $v$ functions from $\left\{\psi_{1}, \psi_{2}, \cdots, \psi_{t}\right\}$ such that their restrictions on $\rho(V)$ form a $k$ basis of the dual space of it. Assume they are $\psi_{1}, \psi_{2}, \cdots, \psi_{v}$, after a suitable change of indexes if necessary. Since $\psi_{i}(J(U))=0$ (for every linear character $\psi_{i}$ of $Z(k G)$ ), the above $\left\{\psi_{1}, \psi_{2}, \cdots, \psi_{v}\right\}$ are actually are $k$-basis of the dual space of $V$ when restricted on $V$. Therefore it follows that $\operatorname{det}\left(\psi_{i}\left(C_{j}\right)\right) \neq 0$ $(1 \leqq i, j \leqq v)$, or $\operatorname{det}\left(\frac{h_{j} \chi_{i}\left(\sigma_{j}\right)}{\chi_{i}}\right)=\left(\prod_{i=1}^{v} \frac{h_{i}}{x_{i}}\right) \operatorname{det}\left(\chi_{i}\left(\sigma_{j}\right)\right) \equiv 0 \bmod \mathfrak{p}$, where $x_{i}=$
$\chi_{i}(1), h_{j}=\left|C_{j}\right|$ and $\sigma_{j} \in C_{j} . \quad$ Moreover, we know $\prod_{i=1}^{v} \frac{h_{i}}{x_{i}} \in \mathfrak{v}$ since $\nu_{p}\left(h_{i}\right)=a=$ $\nu_{p}\left(x_{i}\right)$ by our assumptions. Thus we may conclude that $\operatorname{det}\left(\chi_{i}\left(\sigma_{j}\right)\right) \equiv 0 \bmod \mathfrak{p}$ $(1 \leqq i, j \leqq v)$, which implies $\left\{\chi_{1}, \chi_{2}, \cdots, \chi_{v}\right\}$ are linearly independent on $\left\{C_{1}, C_{2}, \cdots, C_{v}\right\} \bmod \mathfrak{p}$. This completes the proof of Theorem 1.

As a direct consequence of the above Theorem, we have
Corollary 2. If $O_{p^{\prime}}(G)$ contains an element of $p$-defect zero, then $G$ possesses a character of p-defect zero.

For a while, we shall show that under certain conditions the converse of Corollary 2 is true. First we note,

Lemma 3. If $G$ possesses a character of $p$-defect zero, then so does any normal subgroup of $G$.

Proof. Clear from [C-3] of $\S 2$.
We have
Proposition 4. Suppose $G$ is $p$-solvable and possesses a character of $p$-defect zero. Then $O_{p^{\prime}}(G)$ contains an element of $p$-defect zero (in $G$ ) if $G$ satisfies one of the following conditions.
(1) A Sylow p-subgroup of $G$ is abelian
(2) A Sylow p-complement of $G$ is abelian
(3) $G$ is metabelian

Proof. Clearly we may assume (by virtue of Lemma 3), that $G$ contains no proper normal subgroup of index prime to $p$. Furthermore, since $G$ possesses a character of $p$-defect zero, $G$ contains no non-trivial normal $p$-subgroup. Then, since $G$ is $p$-solvable, Lemma 1.2.3. of Hall-Higman [9] shows that $G=S_{p} O_{p^{\prime}}(G)$ in any one of the above cases, where $S_{p}$ denotes a Sylow $p$ subgroup of $G$. Hence our assertion is clear.

In case $p=2$, we have the following,
Proposition 5. Suppose a Sylow 2-subgroup of $G$ is a generalized quaternion. Then if $G$ possesses a character of $p$-defect zero, $O_{2}{ }^{\prime}(G)$ contains an element of 2-defect zero.

Proof. Let $N=O_{2}{ }^{\prime}(G)$. First of all, we note that $G / N$ contains a central (hence unique) element of order 2 by Brauer-Suzuki [4] and by Brauer [3]. Hence every subgroup of $G / N$ whose order is divisible by 2 contains a nontrivial normal 2-subgroup. In what follows, we use the same notations and terminologies as in [C-1]-[C-3] of §2, letting $N=O_{2}{ }^{\prime}(G)$ and $\chi$ a character of 2-defect zero. To prove the proposition, it is sufficient to show that $e$ is odd. Indeed, since $|N|$ is prime to 2 , i.e. prime to the characteristic of the field
$k=\mathfrak{o} / \mathfrak{p}$, where of course $\mathfrak{p}$ is a prime divisor of 2 in $K$, there exists a $\sigma \in N$ such that $\varphi_{1}(\sigma)+\varphi_{2}(\sigma)+\cdots \varphi_{r}(\sigma) \neq 0 \bmod \mathfrak{p}$. Then it follows $\chi(\sigma) \equiv 0 \bmod \mathfrak{p}$, provided $e$ is odd, which asserts that $\sigma$ is of 2-defect zero.

Now, let $\hat{I}$ be a representation group of $\bar{I}$ having the kernel $M$ isomorphic to the second cohomology group $\mathrm{H}^{2}(\bar{I}, C)$, where $C$ is the field of complex numbers.

$$
1 \rightarrow M \rightarrow \hat{I} \rightarrow \bar{I} \rightarrow 1 \text { (exact) }
$$

We note that $|M|$ is not divisible by 2 . In fact, since a Sylow 2 -subgroup of $\bar{I}$ is a generalized quaternion or cyclic, the 2-part of $|M|$ vanishes (see Huppert [10] §25) In particular we have $\nu_{2}(|\bar{I}|)=\nu_{2}(|\hat{I}|)$. The projective representation $Y$ of $\hat{I}$ can be lifted to a (linear) representation $\hat{Y}$ of $\hat{I}$. Then $\hat{Y}$ is a representation of $\hat{I}$ of 2-defect zero, since $\nu_{2}(\operatorname{deg} \hat{Y})=\nu_{2}(\operatorname{deg} Y)=\nu_{2}(|\bar{I}|)=\nu_{2}(|\hat{I}|)$ by [C-3]. Suppose $|\bar{I}|$ is divisible by 2 . Then it contains a non-trivial normal 2-subgroup as is remarked at the beginning. Since $M$ is a central subgroup of $\hat{I}$ of order prime to 2 it follows from the exact sequence written above that $\hat{I}$ contains a non-trivial normal 2 -subgroup. This is a contradiction, since $\hat{I}$ possesses a character of 2-defect zero. Therefore $|\bar{I}|$ is odd. Since $e$ divides $|\bar{I}|, e$ is also odd, completing the proof.

In case $G$ is solvable, $O_{p^{\prime}}(G)$ is always larger than $\{1\}$ unless $G$ contains a non-trivial normal $p$-subgroup. Hence it seems to be natural to ask whether the converse of Corollary 2 is true for a solvable group $G$. The answer is "no", as is shown in Ito [12].

## 4. Appendix

The purpose of this section is to give a solvable group which will enjoy all of the four conditions described in the introduction, though possess no character of $p$-defect zero (when $p=2$ ).

Example. Let $F=G F(3)$. Let $V$ be the 2-dimensional column vector space over the field $F ; V=\left\{\left.\binom{a}{b} \right\rvert\, a, b \in F\right\}$. Let $G$ be the semidirect product of $G L(V)=G L(2,3)$ and $V$, i.e. the 2-dimensional affine group over $F$. Hence $G$ consists of all pairs $(\sigma, \alpha)$, where $\sigma \in G L(2,3)$ and $\alpha \in V$, with the multiplication given by

$$
(\sigma, \alpha)\left(\sigma^{\prime}, \alpha^{\prime}\right)=\left(\sigma \sigma^{\prime}, \sigma \alpha^{\prime}+\alpha\right)
$$

We have easily $(\tau, \beta)(\sigma, \alpha)(\tau, \beta)^{-1}=\left(\tau \sigma \tau^{-1},\left(1-\tau \sigma \tau^{-1}\right) \beta+\tau \alpha\right)$
We identify $\sigma \in G L(2,3)$ with $(\sigma, 0)$ and $\alpha \in V$ with $(1, \alpha)$ as usual. Then $\tau \alpha \tau^{-1}=\tau \alpha . \quad G$ is a solvable group of order $2^{4} 3^{3}$. We write simply $G L$ for $G L(2,3)$ and $S L$ for $S L(2,3)$. If $K$ is a subgroup of $G L$, we denote by $\hat{K}$ the semidirect product of $K$ and $V$.

First we note
(1) Every proper normal subgroup of GL is contained in SL. On the other hand, every non-trivial normal subgroup of $G$ contains $V$. In particular, it follows every proper normal subgroup of $G$ is contained in $\widehat{S L}$.

Proof. The first assertion is well known and elementary. To show the second, let $N$ be any normal subgroup of $G$. Then $[N, V]$ is a $G L$-submodule of the irreducible $G L$-module $V$, so that $[N, V]=V$ or $\{0\}$, implying $N \supset V$ or $N=\{1\}$. (cf. Proposition 2.3 [1]).
(2) Every element of $V$ other than the identity is of 2-defect zero in $\widehat{S L}$. In particular $\widehat{S L}$ possesses a character of 2-defect zero.

Proof. Let $\alpha=(1, \alpha) \in V$. If $\alpha$ is of positive defect in $\widehat{S L}$, then there exists an involution $(\tau, \beta) \in \widehat{S L}$ such that $(\tau, \beta)(1, \alpha)(\tau, \beta)^{-1}=(1, \tau \alpha)=(1, \alpha)$. Then $\tau$ is an involution of $S L$ and $\tau \alpha=\alpha$. However $S L$ contains only one involution, namely $\tau=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right), \tau \alpha=\alpha$ implies $\alpha=0$.

From the aboves and Lemma 3, we have
(3) Every proper normal subgroup of $G$ possesses a character of 2-defect zero.

By a simple caluculation, we find
(4) $G$ contains an element of 2-defect zero, e.g. $(\tau, \beta)$, where $\tau=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\beta=\binom{0}{1} \in V$.
(5) Let $S$ be a Sylow 2-subgroup of GL. Then $S=(S, 0)$ is a Sylow 2subgroup of $G$. Let $(\tau, \beta) \in G$. where $\tau \notin S$ and $\beta \neq 0$. Then $S \cap S^{(\tau, \beta)}=\{1\}$.

Proof. Let $Q$ be a Sylow 2-subgroup of $S L$. Then $S \cap S^{\tau}=Q$ if $\tau \nsubseteq S$, since $G L \triangleright Q$ and $S$ is a self-normalizing subgroup of $G L$. Let $(\sigma, 0) \in S$, where $\sigma \neq 1$. Then we have $(\tau, \beta)(\sigma, 0)\left(\tau, \beta^{-1}\right)=\left(\tau \sigma \tau^{-1},\left(1-\tau \sigma \tau^{-1}\right) \beta\right) \in S=(S, 0)$ if and only if $\tau \sigma \tau^{-1} \in S$ and $\left(1-\tau \sigma \tau^{-1}\right) \beta=0$. If $\tau \sigma \tau^{-1} \in S$, then $\tau \sigma \tau^{-1} \in S \cap S^{\tau}=$ $Q \subset S L$. Hence ( $1-\tau \sigma \tau^{-1}$ ) $\beta \neq 0$ as is remarked in (2). Thus we have shown that $G$ satisfies all of the four conditions described in the introduction. Hence it remains only to show that $G$ possesses no character of 2-defect zero.

Suppose the contrary and let $\chi$ be any character of 2 -defect zero. Then the degree of $\chi$ must be 16 , since $\left(2^{4} 3\right)^{2}>|G|=2^{4} 3^{3}$. Then by Corollary (2E) of Fong [7], $\chi$ is induced by a linear character of a Sylow 2-complement of $G$. Let $\sigma=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $H=\widehat{\langle\sigma\rangle}=\langle\sigma\rangle \cdot V$. Then $H$ is a Sylow- 2-complement of $G$
and by a simple calcuulation, we have $[H, H]=[\langle\sigma\rangle, V]=\left\{\left.\binom{a}{0} \right\rvert\, a \in F\right\}$ and so $H /[H, H]=\langle\sigma\rangle \times V /[\langle\sigma\rangle, V]$. Hence any linear character of $H$ is of the form $\psi=\varphi \times(1, \eta)$, where $\varphi$ and $\eta$ are linear characters of $\langle\sigma\rangle$ and $V$ respectively with $(1, \eta)\binom{a}{b}=\eta(b)$ for $\binom{a}{b} \in V$. Let $\tau=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$ and $x=(\tau, 0) \notin H$. Let $y=\left(1,\binom{a}{b}\right) \in x^{-1} H x \cap H$. Then $x y x^{-1}=\left(1,\binom{-a}{b}\right.$, so that $\psi(y)=\eta(b)=\psi\left(x y x^{-1}\right)$ for any $y \in x^{-1} H x \cap H$. Hence $\psi^{G}$ is not irreducible for any linear character $\psi$ of $H$ by the criterion given by Shoda [13] originally (see Curtis-Reiner [5] pp. 329) Thus $G$ posssses no character of 2-defect zero.

## Osaka City University

## References

[1] H. Bass: K-theory and stable algebra: Publ. I.H.E.S. No. 22 (1964).
[2] R. Brauer: Zur Darstellungstheorie der Gruppen endlicher Ordunung I, Math. Z. 63 (1956), 406-444.
[3] -: Some applications of the theory of blocks of characters of finite groups II, J. Algebra 1 (1964), 307-334.
[4] -_ and M. Suzuki: On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759.
[5] C.W. Curtis and I. Reiner: Representations of Finite Groups and Associative Algebras, Wiley-Interscience, New York 1962.
[6] W. Feit: Representations of Finite Groups, Yale Univ. mimeographed, 1969.
[7] P. Fong: Solvable groups and modular representation theory, Trans. Amer. Math. Soc. 103 (1962), 484-494.
[8] J.A. Green: Blocks of modular representations, Math. Z. 79 (1962), 100-115.
[9] P. Hall and G. Higman: On the p-length of $p$-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42.
[10] B. Huppert: Endliche Gruppen I, Springer Verlag, Berlin-New York, 1967.
[11] K. Iizuka and A. Watanabe: On the number of blocks of irreducible characters of a finite group with a given defect group, Kumamoto J. Sci. (Math.) 9 (1973), 55-61.
[12] N. Ito: On the characters of soluble groups, Nagoya Math. J. 3 (1951), 31-48.
[13] -: Note on the characters of solvable groups, Nagoya J. Math. 39 (1970), 23-28.
[14] K. Shoda: ひ̈ber die monomialen Darstellungen einer endliche Gruppen, Proc. Phy.-Math. Soc. (3) 15 (1933), 249-257.
[15] Y. Tsushima: On the block of defect zero, Nagoya Math. J. 44 (1971), 57-61.

