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ON THE EXISTENCE OF CONFORMAL MEASURES

MANFRED DENKER AND MARIUSZ URBAÑSKI

Abstract. A general notion of conformai measure is introduced and some
basic properties are studied. Sufficient conditions for the existence of these
measures are obtained, using a general construction principle. The geometric
properties of conformai measures relate equilibrium states and HausdorfF mea-
sures. This is shown for invariant subsets of S   under expanding maps.

1. Introduction

Let (X, y ) be a measurable space and T be a measurable endomorphism
of X. In this note, measures m (later called conformai) are studied which
have the property that m o T is (locally) absolutely continuous with respect
to m, and the Radon-Nikodym derivative is a continuous function /. This
type of measures plays an important role in studying the equilibrium theory in
dynamics and the fractal nature of attractors and nonwandering sets. There are
quite a few contributions using these measures, but there has been no attempt
to study these measures in more generality.

The main problem is this: Given a continuous function / on the compact
metric space X, does there exist a measure m, so that m o T is (locally)
absolutely continuous with Radon-Nikodym derivative / ?

In case of a topologically mixing subshift of finite type (and hence when-
ever Markov partitions exist) this question has a satisfactory solution by the
Schauder-Tychonov theorem (see [1]). If (X, T) is a mixing repeller [16], the
existence of conformai measures is easily verified, and this observation avoids
constructing Markov partitions to prove, for example, the Bowen-Ruelle for-
mula (first observed by C. Seek). For rational maps on their Julia set X, and
if the function / denotes a suitable power of the modulus of the derivative
of T, the problem of constructing conformai measures has been investigated in
[18]. In the expanding case it leads to some interesting results about the relation
between Gibbs states and Hausdorff measures. In all other cases only little is
known. First results, after this paper was written, were obtained in [21] and
[22].

The term "conformai measures" is chosen from [ 12] (see also [13]), where this
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564 MANFRED DENKER AND MARIUSZ URBAÑSKI

type of measure is obtained on limit sets of finitely generated discrete subgroups
of conformai mappings acting on hyperbolic space. Again, using these measures,
it is possible to study the connection between Hausdorff dimension and the
exponent of convergence for Poincaré series.

The first result in §2 shows that conformai measures for the function f are
fixed points of the adjoint of the transfer operator (Perron-Frobenius operator)
defined by /. It follows from this fact that conformai measures were con-
structed for some one-dimensional transformations in [6], [7] and [23]. The
forthcoming papers [4], [21] and [22] show that there are far reaching applica-
tions of conformai measures to the theory of equilibrium states and to the study
of Hausdorff dimension and measures. §2 also gives some basic properties of
conformai measures needed in the sequel.

In §3, a general principle for constructing conformai measures is presented,
when T is a continuous, finite-to-one transformation such that there is only
a finite number of points, where T is not, locally, a homeomorphism. These
points will be called singular. The approach to construct these measures is
different from [12], though it has some similarities. It is also different from [6],
[7] or [23], where the transfer operator is extended to some larger space, so that
it acts on continuous functions and the Schauder-Tychonov theorem applies.
It will be shown that exp(c - /)-conformal measures in a weak sense always
exist for any continuous function / and some c £ R. These measures turn
out to be conformai, if they do not assign positive mass to orbits of singular
points. The constant c can be identified with the pressure P(T, f) in case
when P(T, f) > supx€X f(x). Theorem 3.13 gives sufficient conditions for
this.

One of the applications of the general construction principle and the existence
theorem for conformai measures can be found in §4. Let T: S —> S be a
C -expanding map of the circle. On certain closed, T-invanant subsets X
(see [20]) and for a Lipschitz continuous function / there exist, by Theorem
3.13 in §3, an e\p(P(T, f) - /)-conformal measure m^ and an absolutely
continuous equilibrium state Pj- for f. Then, using the properties of the
conformai measure mf, the relation between p. and Hausdorff measures H~h
(see [15] for a definition) on the topological support of pf is investigated, where

h(t) = f cxp(ax~yßh(-\ogt)sfÄ^t)       (t > 0).
(Here k denotes the Hausdorff dimension of pf, / the Lyapunov exponent,
a some asymptotic variance, and h a positive, nondecreasing function (see
§4 for precise definitions).) If h is a lower class function, p, is shown to
be absolutely continuous with respect to H-h , and if h is constant, then both
measures are orthogonal. In particular, p, is singular to the Hausdorff measure
corresponding to the function tK . This holds whenever o > 0. If it is zero,
both measures are shown to be equivalent.

This type of problem has been studied in different situations. Fractal prop-
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erties of paths of Brownian motion (and even of more general self-similar pro-
cesses) have been investigated by several authors (see [5] for further references).
Much more related to the present study are investigations of harmonic measures
on the boundary of an open topological disc on the Riemann sphere (see [9] or
[14] for more details). The latter paper [14] deals with harmonic measures and,
more generally, with the images of Gibbs states on conformai mixing repellers
and uses, in a dynamical context, the theory of upper and lower class functions
from probability and Pesin's theory from dynamics. Although there are some
similarities of the present work with that paper, the investigations here lead to
some new problems caused by the fact, that, in general, the equilibrium states
are no longer Gibbs measures. These difficulties are overcome using conformai
measures.

The following notations will be used throughout the paper. Let A1 be a
measurable or metric space. For a subset A c X, the closure of A is denoted
by A and the boundary of A by dA . For x £ X, r > 0 and n > 1 let

Bn(x, r) = {y £ X: dist(rV), TJ(y)) < r VO < j < n}.

If n = 1, Bx(x, r) = B(x, r) is the ball with radius r around x. Now let
(X, &) and (Y ,&~') be measurable spaces and let T: X -> Y be a measurable
map. T will be called a measurable isomorphism, if T is invertible and both
T and T~ are measurable. For a measurable function g on Y set Sng =
^o<k<n S ° T1. Occasionally, p(g) will be written for JY g dp, where p is
a measure on Y and g £ Lx(p). Finally, R+ = [0, oo) denotes the set of
nonnegative reals and N the set of nonnegative integers. The cardinality of a
set E will be denoted by \\E. Throughout most of the paper the conformai
measures will be probabilities.

2. CONFORMAL MEASURES

Consider a measurable endomorphism T: X —> X on a measurable space
(X, 9~) and a measurable nonnegative function / on X.

Definition 2.1. A measure m on (X, &~) is called /-conformai, if

(2.1) m(TA)= [ f(z)m(dz),
Ja

whenever A £ fF is a measurable set, for which TA is measurable and T: A —>
TA is invertible.

In the sequel, a set A as in the definition will be called special. Note that
(2.1) implies that m o T is absolutely continuous with respect to m on the
er-algebra &~r\A for every special set A such that T: A —> TA is a measurable
isomorphism. In this case, (2.1) is equivalent to the fact that the corresponding
Radon-Nikodym derivative dm o T/dm = fiA .

Examples. There are several examples of conformai measures appearing in the
literature.
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566 MANFRED DENKER AND MARIUSZ URBANSKI

(1) Let (X, T) denote a topologically mixing subshift of finite type and / a
Holder continuous function on X. Denote by Ltp(x) = Y^t(v)=x i3^) exP(/(y))
the Perron-Frobenius operator associated to /, which acts on the space of
continuous functions q> on X . By the Schauder-Tychonov theorem, there exists
a fixed point of the map Sf(p) = (Üp(\))~ L*p (see [1, p. 14]). This fixed
point is a conformai measure with respect to the function exp(P(T, /)-/).
(P-, ■) denotes the pressure function (see [3]).) It is not too difficult to see
this, and, if the pressure vanishes, it follows immediately from Proposition 2.2
below.

(2) For any piecewise differentiable map T on an interval, on S or on
R" , Lebesgue measures is conformai with respect to the modulus of the deriva-
tive of T. In [6] and [7] conformai measures were constructed for piecewise
differentiable maps on the unit interval and certain continuous functions, in
particular all Lipschitz continuous functions. These measures are shown to be
fixed points of the adjoint of the transfer operator and thus, by Proposition 2.2
below, conformai. For /^-transformations the corresponding result has been
obtained earlier [23].

(3) Lebesgue measure is conformai with respect to \T'\ for any rational map
T on the Riemann sphere, but not necessarily for this map restricted to its
Julia set. In the latter situation conformai measures were obtained in [18] with
respect to the function \T'\ for some ô £ (0, 2]. In the expanding case, ô is
known to be the Hausdorff dimension of the Julia set [18].

(4) Let T be a finitely generated discrete subgroup of conformai maps acting
on hyperbolic space. In this case, one can construct a measure, which is confor-
mal with respect to the functions j(g) for any map g £ Y acting on the limit
set of T (see [12] and also [13]), where j denotes the conformai distortion, ô
is known to be the exponent of convergence of the Poincaré series associated to
r.

Let m be an /-conformai measure and define Z*1' = / and

/-) = (/"-') o T)f    for n > 2.
It follows immediately from (2.1), that for every  n >  1,   m  is also p  -
conformai with respect to the transformation Tn and

(2.2) /   gdm= ¡(goT)fdm
JTA JA

for any measurable function g , which is nonnegative or integrable on TA .
Let T be a measurable endomorphism of (X, &), which is finite-to-one (i.e.

the numbers of preimages of points is uniformly bounded). For a measurable
function /: X —► R+ the Perron-Frobenius operator

(2.3) Lf(p(x) = L<p(x)=  J2 9iy)lf(y)
T(y)=x

is well defined for (real-valued) measurable functions q> and all x 6 X such
that f(y) > 0 for all preimages y of x. In this situation one has
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ON THE EXISTENCE OF CONFORMAL MEASURES 567

Proposition 2.2. Assume that there exists a finite partition of X into special
sets Xj (\ < i < s), such that T: A". -> TX- is a measurable isomorphism.
Let /: X —> R+ be a measurable function and m be a probability measure
on (X,7F). Then m is f-conformai if and only if L f acts on L (m) and
L*m = m.
Proof. Let M be /-conformai. By (2.1), for 1 < i < s, m(TA¡) = 0 where
A, = {x £ X,: /(x) = 0} . Whence Ly> is a.e. well defined. Moreover, if tp is
an integrable function, (2.2) implies

i    y°(T¡x)~X dm= j   tpdm       (\<i<s).
J T X ■ J J X-

Summing over i yields

/ Lf<pdm = \ tpdm.

Conversely, assume that L, acts on L (m) and that m isa fixed point of
L*. Let A be a special set. Then, by (2.3),

/ fdm = f fdCm = [ L(\Af)dm
JA JA JX

= f E W"(dx) = m(TA)-
X T(y)=x

Thus m is /-conformai.

Definition 2.3. Let X be a compact metric space and T: I->I be a contin-
uous map, which is finite-to-one. Denote by X0 the set of all points x e X,
such that for all sufficiently small e > 0 the set TB(x, e) is not open. A point
x e X is called critical (for T), if there does not exist an open neighborhood of
x, which is a special set, and it is called singular, if it is critical or if it belongs
to X0.

Denote by Crit(T) (resp. Sing(T) = XQ U Crit(A')) the set of critical (resp.
singular) points for G. If T has only a finite number of singular points, it
follows that for every nonsingular point x £ X there exists an open neighbour-
hood U of x, such that Tv is a homeomorphism onto the open set TU.
Moreover, if m is a Borel measure on the Borel rr-field 9~, then there exists a
finite measurable partition of X (modm) into special sets on which T acts as
a measurable isomorphism. In fact, this can be proved, for example, applying
Zorn's lemma to the system

{(Ax, ... , As): m(Aj n Aj) = 0 (i ^ j); TA is a measurable isomorphism},

where 5 is sufficiently large, and where the ordering is given by inclusion
modm.

For the remaining part of this section, let X be a compact metric space and
T: X —> X be a continuous map, which is finite-to-one, and which has at most
a finite number of singular points.
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568 MANFRED DENKER AND MARIUSZ URBANSKI

Lemma 2.4. Let m be a measure on (X, 9r) and let f £ Lx (m). Assume that
(2.1) holds for every special set C £ 7F with C n Sing(T) = 0 and m(dC) =
m(dTC) = 0. Then for any special set A £ & satisfying A n Sing(T) = 0,
(2.1) continues to hold.
Proof. Let e > 0. For each x £ A there exists an open set C(x) such that
Tc,xs is a homeomorphism, m(dC(x)) = m(dTC(x)) = 0, C(x) n Sing(T) =
0, and such that

/ f dm < e.
J(JC(x)\A

The existence of sets with these properties follows from well-known measure
theoretic arguments, since T is open at x e A. Choose a countable family
{Ck} from {C(x)} which covers A and define recursively Ax = C, and An =
Cn\Vk<n Ck ■

By definition and by the assumption in the lemma, each set Ak satisfies (2.1 )
and hence

(OO \ oo

\jT(AnAk)) <^2m(TAk)
fe=l '       k=l

OO        p /. OO        p

= J2      fdm=fdm + J2 fdm
k=ijAk Ja k=ijAk\A

< I fdm + e.

If e —> 0, it follows that m(TB) < JB fdm for any special set B not containing
any singular point.

Using this fact, the lower bound for m(TA) is obtained from the following
estimate, if e —> 0 :

(OO \ oo

\jT(AnAk)\ =J2m(T(AHAk))
k=i '      fe=i

oo

= J2[m(TAk)-m(T(Ak\A))]
fc=i

> V    /   fdm- /      fdm
k=i UAk JAk\A J

= / fdm- í fdm> [ fd
J[\,^.a,. J[\,.^.a,.\a Ja

This proves the lemma.

Theorem 2.5. Let T: X —> X be a continuous, finite-to-one map of the compact
metric space X having at most a finite number of singular points, and let fn be
measurable functions. For each « e N, let mn be an fn-conformal normalized
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ON THE EXISTENCE OF CONFORMAL MEASURES 569

Borel measure, such that

K := sup
«>i

/.
J n

<oo,  or   sup||/J|¿i(m)<oo,
L°°(mJ »>l

and such that (mn: n > 1) converges weakly to some measure m. Moreover,
suppose that m satisfies the following condition:

(2.4) m({x}) = 0 =»• m({T(x)}) = 0       (Vx £ Sing(r)).

Then m is f-conformai for some f£L (m).
Proof. It suffices to prove the theorem under the assumption

K := sup
n>l

/„

J n
< OO.

¿°°K
The other case is proved similarly, but in a simpler way.

Let {Xx, ... , Xs} be a finite measurable partition (modmn) into special
sets. (This can be obtained simultaneously for all n £ N by the remark pre-
ceding Lemma 2.4.) Define measures pn by p„(A) = ¡Afndmn (m > 1).
Then

M*) =  / fndmn=ÍZ[   fndmn
Jx i=x Jxi

= JLrnn(TX?)<s.
i=i

Therefore there is no loss of generality assuming that the measures pn converge
weakly to some measure p with p(X) < s .

Next, using (2.2),

\\fn\\l = tffnamn = ±jfno(Tlx¡)-xdmn
i=i JXi )=i JTXt

<KJ2[    fndmn<sK ( fndmn
,=, JtX¡ Jx

= sKJ2[ fndm^sKJ^m^TXj)
(=i Jxi ¡=i

< s K < oo.

For any set U £ ¡F satisfying p(dU) = m(dU) = 0 it follows that

(2.5) p(U) = lim pn(U) = lim / fndmn
n—»oo    " n—KxJu

< \jm ||/J|2K(C/))1/2 < (s2Km(U))XI\

Clearly, this suffices to show that p is absolutely continuous with respect to
m , and so, by the Radon-Nikodym theorem, there exist a function f £ L (m)
satisfying p(A) = ¡A f dm for A£^.
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Define / by setting /(x) = /(x) if x e A is nonsingular. This defines
/ a.e., if m assigns measure zero to Sing(T). If x e X is singular and
m({x}) > 0, then set

(2.6) f(x) = m({T(x)})/m({x}).

It is left to show that m is /-conformai. First note that for a set C £ ^
with C n Sing(T) = 0 and p(dC) = m(dTC) = 0, one has

(2.7) m(TC) = lim m(TC) = lim  / fdm„
n—»oo      " n—*oa jQ   " "

= lim pn(C) = p(C) = f fdm = [ fdm.n-*oo Jc Jc

By (2.4) and (2.6), it suffices to check the condition (2.1) for special sets A
not containing any singular point. By (2.7) the assumptions in Lemma 2.4 are
satisfied, whence the theorem.

Corollary 2.6. Assume that the measure m in Theorem 2.5 assigns measure
zero to Sing(T). If fn converges uniformly to some function f, then m is
f-conformal.
Proof. This follows from (2.5).

Corollary 2.7. If in Corollary 2.6, fn = snh for some continuous function h and
some sn £ R+ , and if s = \imn^oosn exists, then m is sh-conformal.

It is possible to obtain a similar theorem about weak convergence to some
conformai measure using a version of the proof of Proposition 3.11 below. We
state it without proof. (In fact, its proof is contained in the proof of Theorem
3.13.)

Theorem 2.8. Let T: X —» X be a continuous, finite-to-one map of the compact
metric space X having at most a finite number of singular points. Assume that
XQC\Cû\(T) = 0 and that T has no critical periodic point. Let fn, / be continu-
ous functions so that (fn: n > 1) converges uniformly to f. If infx€X f(x) > 1
and if the fn-conformal measures mn converge weakly to m, then m is f-
conformal.

3. Constructions of conformal measures

The main purpose of this section is to provide a general scheme for con-
structing conformal measures. Although the basic idea goes back to [12], the
construction turns out to be different, and is, in fact, more closely related to the
proof of the variational principle for the pressure in [11]. Besides this, several
sufficient conditions for the existence of conformal measures are presented.

Throughout this section let X be a compact metric space, equipped with its
Borel cr-field &, and let T: X —> X be a continuous map, such that the set
Sing( T) of singular points is finite. Moreover, let /: X —> R be a continuous
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ON THE EXISTENCE OF CONFORMAL MEASURES 571

function and fix (except otherwise stated) a sequence (En: n > 1) of finite
subsets of X satisfying

(3.1) T~XEncEn+x    V«eN.

The construction principle for conformal measures will make use of the fol-
lowing simple analytical fact. For a sequence (an: n > 1) of reals, the number
c = lim sup n^ooanln will be called the transition parameter of (an: n > 1). It
is uniquely determined by the fact that Z)„€n exp(an - ns) converges for s > c
and diverges for s < c. For 5 = c the sum may converge or diverge. By a
simple argument (see e.g. [12] for a similar consideration) one obtains

Lemma 3.1. There exists a sequence (bn: n> 1) of positive reals such that

J2bnexp(a n-ns)\
n=l l=0°>

S > C,

S < c,

and\imn^oobJbn+x = \.

Proof. If >~ZexP(a„ - nc) < oo , choose a sequence nk £ N (k > 1) satisfying

lim nknk\x = 0   and   sk := annk   - c - 0.

Setting

/   /   n. - n n - n,_.     \\
bn = exp   «   —*-e. _, +-!L-Lefe        for nk-\ <n<nk,V   \nk-nk_x k  '     nk-nk_x k)J k  l k

it is easy to check the claim.

Construction Principle. Given the function / and the finite sets En (n > 1),
the general construction is done as follows: Let an = log^g^ exp5n/(x),

where Snf = ^20<k<n f ° T . Denote by c the transition parameter of this
sequence. Choose a sequence (bn: n > 1) of positive reals as in Lemma 3.1 for
the sequence (an: n>\). For s > c define

oo

(3.2) Ms = J2 bn exP(fl« - ns)
n=\

and the normalized measure

i    °°
(3-3) ms = W E E K exp(5„/(x) - ns)ôx ,

5 n=\ xeE„

where Sx denotes the unit mass at the point x £ X.
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Let A £ 7?~ be a special set. Using (3.1) and (3.3) it follows that

mÁTA) = wT,    E    bncxp(SJ(x)-ns)
s n=l x€EnTA

M.
I OO

FE     E     bnexp(Snf(T(x))-ns)
s n=1 xeAr\T~[E„

(3.4) = XrE    E    bnexp[Sn+xf(x)-(n + l)s]exp(s-f(x))M.
s n=l xeAnE„.

1     °°WE     E     ¿,«p(V(7-w)-«).
J *>=ixeAn(En+l\T-'En)

Define

A» -
< OO

]j/E    E    ^exp[5n+,/(x)-(« + l)5]exp(5-/(x))
s n=l *€/ln£:

- / exp(c-f)dm
Ja

and observe that

A,<*) = ¿ ]T    £    exp[S„+,/W-(»+l)i]
tj=1 xeACiEn+¡

■exp(-f(x))[bnes-bn+xec]-bx   £   /

"v bn+x exp(s - /(jc))^xtE  E
J n=lx€AnE„

- e
yn+l

■ exp[Sn+xf(x) -(n+l)s] + —bx exp(c - s)$(A n £,)

^fE E
s n=l *€£„

— £

'n+1
K+\ exp(5 - /(x))

exp[5n+,/(x) -(n+l)s] + —bx exp(c - s)^,.

By Lemma 3.1, lùri^oo^i/è,, = 1 and limJlc A/^ = oo. Therefore

(3.5) limA^(j) = 0
sic

uniformly for all special sets A £ SF .

Definition 3.2. Any weak accumulation point, when s } c, of the measures
(m : s > c) defined in the construction principle will be called a limit measure
(associated to the function / and the sequence (En: n > 1)).
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ON THE EXISTENCE OF CONFORMAL MEASURES 573

In order to find conformai measures among the limit measures, it is necessary
to examine (3.4) in greater detail. For a subset D £ y consider the condition

,       oo

(3.6) ^j^E E bntxp[SJ(T(x))-ns\ = 0.
s "=lX£Dn(E„+t\T-lEn)

Lemmas 3.3-3.5 collect a few useful facts about the behaviour of a limit measure
at singular points and on special sets, which do not contain a singular point.

Lemma 3.3. Let m be a limit measure. Assume that every special set D £ y
with m(dD) = m(dTD) = 0, and D n Sing(7) = 0 satisfies condition (3.6).
Then for any special set A £ y with A n Sing(T) = 0,

m(TA) = / exp(c - /) dm.
Ja

Proof. Let D £ y be a special set such that D n Sing(T) = 0 and m(dD) =
m(dTD) = 0. It follows immediately from (3.4)-(3.6) that

(3.7) m(TD)= f exp(c-f)dm.
JD

Now, let A be as in the lemma, and let C c A be compact. A slight modifica-
tion of the proof of Lemma 2.4 shows that (3.7) continues to hold for C. Since
every Borel measuie is regular, and since T is continuous, (3.7) also holds for
A by approximation with compact sets contained in A .

Lemma 3.4. Assume that condition (3.6) is satisfied for D = X. Then for x £
Sing(r)\Crit(r)

m({T(x)})>exp(c-f(x))m({x}).
Proof. Let (Cn: n > 1) be a sequence of compact neighbourhoods of x 6
Sing(r)\Crit(r), decreasing to x, so that each Cn is special and satisfies
m(dCn) = 0. From (3.4), (3.5), and the assumption, one obtains

lim
s€J

ms(TCn)-j   e*p{c-f)dm! 0   V« > 1,

where J denotes the subsequence along which ms converges to m. Since TCn
is compact, this clearly implies

m(TCn) > lim sup ms(TCn)
seJ

= lim /   exp(c - /) dm^

= \   exp(c - /) dm.

Letting n -+ oo, the lemma follows.

Lemma 3.5. Assume that condition (3.6) holds for all sets D £ y satisfying
D n X0 = 0. Then for every limit measure m and every point x £ Crit(T)\X0,
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574 MANFRED DENKER AND MARIUSZ URBAÑSKI

one has m({x}) = O <=> m({T(x)}) = 0. More precisely,

m({T(x)}) < exp(c - f(x))m({x}) < q(x)m({T(x)})

where q = q(x) denotes the number of preimages of T restricted to a sufficiently
small neighbourhood of x.
Proof. Since x ^ X0, there exist open neighbourhoods U of x of arbitrarily
small diameter, containing no other singular point and satisfying m(dU) =
m(dTU) = 0. Observe that there exists a decomposition of U into special sets
Ux,...,Uq. Then, using (3.4)-(3.6),

lim ^ ms(TUj) = lim ^ /   exp(s - /) dms
S       1=1 J       ;=1     Ui

= lim / exp(s - /) dmç = / exp(c - /) dm,
seJJu Ju

where J denotes the subsequence determined by the convergence to m . Since
ms(TU) < 2^ms(TUj) < qms(TU) for every 5 > c, it follows that

m(TU) < I exp(c - f)dm < qm(TU),
Ju

and the lemma follows letting U I x.

Remark 3.6. It seems important to note the following consequence of the fore-
going three lemmas. If m is a limit measure and if (3.6) is satisfied for D = X,
then m satisfies (2.1) for all special sets not intersecting Sing(T), and

(3.8) m({r(x)})>exp(c-/(x))m({x})       (x e Sing(r)\Crit(r)),
m({T(x)}) <cxp(c - f(x))m({x})

<q(x)m({T(x)})       (x eCtit(T)\X0).

This implies that m is exp(c - /)-conformal, if m(TSing(T)) = 0 and the
measure on orbits of points in Crit( T) n X0 is zero.

Definition 3.7. A Borel probability measure m is called weakly exp(c - /)-
conformai, if

(3.9) m(TA)= [ exp(c-f)dm
JA

for all special sets A not intersecting Sing(T).

The preceding lemmas imply the following results.

Proposition 3.8. There exists a weakly exp(p - f)-conformal Borel probability
measure m for some p £ R. Moreover, m satisfies

m({T(x)})>exp(p-f(x))m({x})       (x £ Sing(r)\Crit(r)),
m({r(x)})<exp(/j-/(x))m({x})

< q(x)m({T(x)})       (x £ Crit(T)\XQ).
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Proof. Since T is continuous and X is compact, there exists some point z £
n^Lrj ̂ "^ ' Setting En = T~n{z}, and defining p by the transition parameter
associated to (En: n > 1) and /, the proposition follows immediately from
Lemmas 3.3, 3.4 and 3.5.

Theorem 3.9. Let T be an open map and let m be a limit measure (associated
to the function f and the sequence (En: n > 1)) assigning measure zero to any
critical periodic point. Moreover, assume that condition (3.6) is satisfied for
D = X. Then there exists an exp(c - f)-conformal measure m. Moreover, if
m(Cri\(T)) = 0, then m = m .

Remark. If T is a rational map on the Riemann sphere, there exists an
exp(p - /)-conformai measure on the Julia set of T for some p £ R. This
follows from the previous theorem and proposition, and the fact that no criti-
cal periodic point of a rational map can be contained in the Julia set.

Proof. By Lemmas 3.3, 3.4 and 3.5 the measure m has the properties stated in
(3.8). Since T is open, m is exp(c - /)-conformal, if m(Crit(T)) = 0. (See
Remark 3.6.)

Denote by Y the union of all forward and backward orbits of critical points.
If m(Y) < 1, it is easy to see that, restricting m to X\Y, gives an exp(c - /)-
conformai measure.

In the remaining case, it is not too difficult to define a conformai measure on
the orbit of a critical point. For simplicity in notation, let us assume that x0 is
a critical point and that its orbit 0(xQ) contains no other critical point. Again,
inducing if necessary, w.l.o.g. m(O(x0)) = 1. By Lemma 3.5 there exists a > 0
such that m({T(x0)}) = am({x0}). Define a new measure m by setting

fßm({x})   if Tn(x) =x0 for some n > 0,

ßa    exp(c - f(x0))m({x})   if not,

where

ß     = m({x: Tn(x) = xQ for some n > 0})

+ m({x £ O(x0): Tn(x) / x0 for all n > 0})a~ exp(c - f(x0)).

It is easy to see that m is exp(c - /)-conformal.

Example 3.10. The previous theorem is not true, if the map T is not open.
There is a very simple example for this. For every integer n > 1 let x„ =
cxp(2ni/n) and X = {xn: n > 1}. Define the transformation T: X —> X
setting

f x„ ,    for n > 2,
T(xn) = { "-'       ;{ xn   for n = 1.

Clearly, X is compact and T is continuous, surjective and even invertible for
all xn(n>2). For / being the constant function 0 there is no exp c-conformal
measure for any c e R. Assume that m is ec-conformal. Since m({x■}) > 0
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for some ; > 1, w({x,}) = m({Tj x(Xj)}) = exp((; - l)c)m({x;}) > 0.
Hence w({x,}) = m({T(xx)}) = ecm({xx}) implies that c = 0. But then
m({xn}) = w({x,}) for all « > 1 , which is impossible.

Proposition 3.8 implies that conformai measures exist whenever a limit mea-
sure is not concentrated on orbits of singular points. In particular this is true, if
the limit measure is atom-free. The following proposition ensures this property,
even in the case when X0 ^ 0.

Proposition 3.11. Let condition (3.6) be satisfied for D = X. In addition, sup-
pose that c > supx€X f(x), XQ n Crit(r) = 0, and that no periodic point is
critical. Then every limit measure m is an atom-free exp(c - f)-conformal
measure.
Proof. Suppose that m({x}) > 0 for some x £ X. Since XQ n Crit(T) =
0, Lemmas 3.3-3.5 imply that m({Tn(x)}) > 0 for all n > 0. Since no
periodic point is critical and since c > supxg;f f(x), these lemmas also show
that limn_^oo m({Tn(x)}) = oo, a contradiction. Thus any limit measure is
atom-free, and the proposition follows from Lemma 3.3.

Remark. Conditions of the form c > supxgjr f(x) appear frequently in the
literature. It is, for example, satisfied if

lim sup - log 1J.E  > sup /(x) - inf f(x).
n-^oo     n "       xeX X€X

In the remaining part of this section the transition parameter c will be de-
termined, when the sets En are separated (see [3]). Sufficient conditions will
be given to identify the transition parameter with the pressure P(T, f) of /.
The following notation will be used.

Let £ > 0 and let Fn(e) (n > 1) be a sequence of maximal (n, e)-separated
sets. Define

(3.10) P(e) = lim sup-1- log   V   exp(5„/(x)).
™    "        *€F„(e)

Note that P(e) is the transition parameter associated to / and the sequence
En = Fn(e) (n > 1) if T~ Fn(e) c Fn+X(e) (this cannot always be achieved).
Then the pressure of / is defined by P = P(T, /) = lim£_(0 P(e). Recall that
P(T, f) does not depend on the particular choice of the maximal separated sets,
that P(T, f) < oo, if the topological entropy is finite, and that P(T, /) = P(S)
for any expansive constant Ô > 0, if T is expansive.

The existence of exp(P - /)-conformal measures will be proved in the fol-
lowing theorems.

Theorem 3.12. There exists a weakly exp(P(T, f) - f)-conformal measure m
for any expansive map T. If, in addition, T is an open map then m is
exp(P(T, f) - f)-conformal.
Proof. Let ô > 0 be an expansive constant. Then, by expansiveness, every
two preimages of a point in X are at a distance at least 5 . Thus there exists a
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sequence (E : n > 1) of maximal (n, ô) -separated sets En satisfying T~ En c
En+\ (n > 1)» and hence, by the foregoing remarks, it suffices to show the
condition (3.6) for sets D as in Lemma 3.3.

Let Dey satisfy D n Sing( T) = 0. Note that there exists a constant y > 0
such that

(3.11) TB(x, ô) D B(T(x), y)   Vx £ D.
By expansiveness,

lim (supBn(T(x),ô))=0.
k^00 \xex )

Hence there exists some «0 > 1 such that for all n> n0 and x £ X

(3.12) diamBn(x,ô) <y.
In order to prove (3.6) it suffices to show

(3.13) Dn(En+x\T~XEn) = 0   Vn>n0.
Assume that x e D n (En+x\En) for some n > nQ. Since En is maximal
separated, there exists a point y £ En with T(x) £ Bn(y,5), equivalently
y £ Bn(T(x),ô). By (3.11) and (3.12) there is z £ B(x, Ô) with T(z) = y.
Consequently x, z e Bn+X(x, ô) n En+X, contradicting the separation property
of En+X . This proves (3.13) and the first part of the theorem. The additional
statement follows, e.g., from Remark 3.6.

Theorem 3.13. Let G be of finite topological entropy and such that A^nCrhrT)
= 0. Moreover, assume that G has no critical periodic point and that for all
sufficiently small e > 0 there exists a sequence (Fn(e): n > 1) of maximal
(n, e)-separated sets satisfying (3.1) and

(3.14) maxfo;suplimsupilogil(Fn+1(e)\r-'Fn(e))N)
\     e>o   «-»oo   n )

<P(T, f)-sup f(x).
xex

Then there exists an atom-free exp(P( T, f) - f)-conformal measure on (X, y ).
Proof. Let e > 0 sufficiently small so that P(e) > d := sup^^. f(x), and that
the Fn(e) satisfy the equation (3.14), where the right-hand side is replaced by
P(e)-d-n forsome ?7>0. The main step in the proof is to show the existence
of an exp(7°(e) - /)-conformal measure me.

Since P(e) is the transition parameter associated to / and the sequence
(Fn(e): n> 1), in view of Proposition 3.11 the existence of me is guaranteed,
once condition (3.6) is verified for D = X . By (3.14) and the definition of bn,
there is an n0 > 1 such that

bn< expían)    (Vn>n0)

and
i(Fn+l(e)\T~XFn(e)) < cxp[n(P(e) - d - n)]   (Vn > nQ).
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It follows for n> n0 and s > P(s) that
oo

J2 E bncxp[SJ(T(x)) - ns]
"oxÇF^MXT^F^e)

< Eexp
n=n0

oc

< Eexp

-±n + n(P(e)-s) + n(Snf(T(x))-d)

2* < 00.

Since lirn^,p, , 7^ = 00, (3.6) follows.
Finally, consider a weakly convergent subsequence mn (n > 1) of the family

(mE: e > 0), when e | 0. Denote this limit by m . Then for every special set
A satisfying m(dA) = m(dTA) = 0,

(3.15) m( TA) = [ exp(P - f) dm.
JA

By Lemma 2.4, (3.15) holds for any special set A not intersecting Sing(T).
Hence, it is left to show that m has no atoms.

Let x € Sing(T)\Crit(r) = X0. Choose decreasing closed neighbourhoods
Ck of x, which are special and satisfy m(dCk) = 0. Then

m(TCk) > lim sup mn(TCk)

= lim
n—»oo

/   exp(P-f)dmn
Jc,-I,cxp(P - f)dm,

and the statement of Lemma 3.4 holds in the present situation also. Similarly,
repeating the argument in the proof of Lemma 3.5 it follows that the statement
of that lemma also holds for a point x £ Crit(T)\X0 = Crit(T). By this and
(3.15), it follows as in the proof of Proposition 3.11 that m cannot have any
atom, and this finishes the proof in view of Corollary 2.7.

Remark 3.14. If T is expansive, the existence of one sequence (Fn(e): n > 1)
for some fixed expansive constant e > 0 suffices in Theorem 3.13. Also note
that in this case the above proof simplifies considerably.

4. Expanding maps on S

The aim of this section is to compare equilibrium states for continuous func-
tions / and certain Hausdorff measures. For this one would like to express the
equilibrium measure of balls Bn(x, ô) in terms of partial sums of some associ-
ated function (cf. (4.12)). Except for very special cases (subshifts of finite type,
for example) this is not possible. However, it can be done for exp(P(T, /)-/)-
conformai measures and the equilibrium state for / turns out to be absolutely
continuous with respect to this conformai measure.
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Throughout this section, T denotes an expanding map of the circle S of
class Cx+£ and X c Sx denotes an invariant (i.e., TX c X), closed subset.
To begin with, let us make some assumptions and conventions concerning the
notation. Denote by Tx the restriction of T to X and by 3Î the family of
all connected components of S \X. Define (see [20])

(4.1) x(X) = {(a,b)e<%: XnT(a,b)¿0}.
It is always assumed that x(X) is a fintie set. Changing, if necessary, the
Riemannian metric on S   it is also assumed that

(4.2) X:= inf |r'(x)| > 1.
xes1

Finally, S > 0 denotes an expansive constant, which is smaller than the diam-
eters of sets from x(X) and so small that on every arc in S of diameter less
than ô all inverse branches of T are defined.

Lemma 4.1. There exists a sequence (En: n > 1) of maximal (n, 5)-separated
sets En c X satisfying condition (3.1) and i(En+l\Tx En) < k for some k not
depending on ô or n.
Proof. The sets En will be defined recursively. Let Ex be any maximal (I, S)-
separated set. If En_x is chosen, extend Tx EnX to a maximal (n,ô)-
separated set E . This is possible, since ô is an expansive constant, hence
Tx En_x is already an (n, <5)-separated set.

The lemma will be proved by showing that there exists an injective map o
from the set En+X\TX En into the set G of endpoints of arcs from x(X).

Let z £ En+x\TxlEn . Since En is a maximal separated set, T(z) £ Bn(z', S)
for some z £ En. Denote by g: B(T(z), S) -* Sx the branch of T~ deter-
mined by the condition g(T(z)) = z . Then g(z') £ En+X , since |z-^(z')| < ô
(by the expanding property (4.2)), z £ ¿s„+, and z ^ g(z'). Consequently,
g(z') fi T~ En and hence there exists an interval (a, b) £ x(X) with g(z') £
(a, b). Therefore the arc Bn+X(g(z'), a) contains exactly one of the endpoints
a or b . This endpoint will be denoted by a(z).

It is left to show that a is injective. Assume that a(zx) = a(z2) := c, where
zx, z2 £ En+X\TX En. By the above construction of a there exist z~x,~z2 e
T~xEn such that z, e Bn+X(z,, ô) and c separates the arcs (z,., z,.) (/ = 1,2).
Moreover, c does not separate the arc (z,, z2) and hence either

z, £(z2, -z2)cBn+x(z2,Ô)   or   z2€(z,,z,)c.ß„+i(z,,<5).

In either case, z, e Bn+X(z2, ô), and so z, = z2, since En+X is maximal
separated.

Theorem 4.2. Let the continuous function f: X -+ R satisfy

P(T, f) > sup f(x).
xex
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Then there exists an atom-free exp(P(T, f) - f)-conformal measure mf on
(A\y).
Proof. The theorem follows from Theorem 3.13 (in fact Corollary 3.14) and
Lemma 4.1. Since there are no critical points, it suffices to show that there are
only finitely many points in X0, where XQ is defined after Definition 2.3.

The proof of Proposition 1 in [20] shows that the set G of endpoints of
intervals from x(X) can be decomposed into pairs (a,, b,), (1 < i < k) such
that X c\Jx<i<k[aj, b¡] and (Tx),[a b]nX has the Darboux property mod AT,
that is: every interval / c [a,, b¡] n X is mapped by Tx onto an interval
of X. Therefore, every singular point z is either isolated or has an open
neighbourhood of the form [z, a) resp. (a, z]. In the first case, there are two
intervals from the family 3? adjacent to z, and at least one of them contains
preimages of points in X. So, at least one of the intervals belongs to x(X),
and hence the number of these singular points is finite, since t(A') is. In the
second case, there is an interval from the family 3¿ adjacent to z, which must
contain a preimage of some point from X . Again, the number of these singular
points is finite.

Theorem 4.3. Let f: X —* R be a Lipschitz continuous function satisfying
P(T, /) - supxeXf(x) > 0, and let mf be an atom-free, exp(P(T, f) - /)-
conformai measure on (X, y ). Then there exists an ergodic, 7^-invariant
probability measure pf on (X, ¡F), which is absolutely continuous with respect
to mf. Moreover, pf is an equilibrium state for f, and there exists an in-
teger k > 1, such that for any function g of bounded variation the process
(g o T : n > 1) is a functional of an absolutely regular process with exponen-
tially fast decreasing mixing coefficients (in the sense of [8], see also [6] and
[V]).  '
Proof. By Proposition 2.2, mf is a fixed point of the Perron-Frobenius oper-
ator. Thus the results in [6] (see also [7]) can be applied directly to obtain the
theorem.

Remark 4.4. ( 1 ) After this paper was written, G. Keller and the authors made
the statement of Theorem 4.3 more precise, using Theorem 3.13. Theorem 1
in [4] shows that every equilibrium state is absolutely continuous with respect
to some exp(P(T, f) - /)-conformal measure. Hence the existence of Pj- in
the previous theorem follows already from expansiveness, and, moreover, every
equilibrium state has the property given in Theorem 4.3 for some conformai
measure. Therefore, the following results apply to all equilibrium states for /.

(2) The preceding theorem generalizes and strengthens the result in [7] in the
sense that it provides a larger class of functions, for which the existence of fixed
points of the Perron-Frobenius operator can be achieved. It is clear from the
present discussion, how the above arguments can be applied in other situations
of expansive maps, e.g. subshifts.

(3) The last statement in the preceding theorem has an important conse-
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knquence. It implies that the process (g o T   : n > 1) satisfies the central limit
theorem and the a.s. invariance principle if

(4.3) a2 = a2(g)= I (g-pf(g))2dpf
oo

+ 2 E^ ~ l*M))(8 ° Tx" - pf(g)) dpkn

n=l

is strictly positive. The latter theorem means that one can redefine the process
(goTxn: n > 1) on some probability space on which there is defined a standard
Brownian motion (B(t): t > 0) such that for some ß > 0

E l8 ° Tx - t*f(8)] - B{a2t) « tU2~ß   Vf ae-
0<7'<'

(4) Let h: [1, oo) -» R be a positive nondecreasing function,   h is said to
belong to the lower class if

(4.4) ^°°Mí)exp(-i/*(02>l<oo
i

and to the upper class if
2

(4.5) ^°°Mí)exp(-^(í)2)=oo.

From the third remark and well known results on Brownian motion it follows
that (for a function g as in (3))

n-\

(4.6)

pf(ix £ X: Y}s(TkxJ(x)) - pf(g)] > ah(n)y/H
^ *• 7=0

for infinitely many n e N

0 if A belongs to the lower class,
1 if h belongs to the upper class,

where a   is defined by (4.3) and strictly positive.
Let K be the topological support of pf. Since pf has no atoms, no isolated

point belongs to K. Hence Bx(x, x) := B(x, r)n X has a positive diameter
for x £ K, and so, for an open interval U intersecting K, consider integers
n(U) satisfying the following two conditions (4.7) and (4.8):

(4.7) Txn{U)(UnX)DBx(x,S)

for some x £ K and
(4.8) j*»(tf).   £/_> Tkn(U)v

is injective. Note that integers with these properties always exist.
Finally, let d(U) denote the diameter of the set UnX, where U is an open

interval.
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Lemma 4.5. There exists a constant a > 0 such that for every interval U c S

(4.9) mf(U)<(diamUf.
Proof. Since mf is positive on open sets of K, no matter how small ö is
chosen,

(4.10) A:= A(S)= inf m JB(x,o))>0.
xeK   ■'

By the distortion theorem (see, for example, Lemma 1 in [17]), there exists a
constant C, > 0 such that for x e K and U containing x

(4.11) C7X\(Tkn(U))'(x)\~X < d(U) < Cx\(Tkn{U))'(x)fX.

Since T is injective on U and since / is Lipschitz continuous, there exists
a constant C2 such that

\Skn{U)f(x)-Skn{u)f(y)\<C2

for all x £ K, all U containing x, and y £ U. Therefore, by conformality
and (4.10), there exists a constant C3 such that for x £ K and U containing
x

(4.12) C;Xcxp(Skn{U)(f-P(T,f))(x))
< mf(U) < C3exp(Skn{U)(f-P(T, f))(x)).

Since P(T, f) > supxeX f(x), there exists an a > 0 satisfying

inf(P(r,/)-/(x))>Qsuplog|r'(x)|.
x£X xex

From this, (4.11), and (4.12), one easily deduces the lemma. Note that the full
strength of the estimates (4.11) and (4.12) is not needed here, but they will be
used later.

Lemma 4.6. For all s > 0 and n e N, the expansive constant S can be chosen
so small that

pf({x £K: 3U with n(U) = n and x £ U}) > 1 - e.
Proof.- Denote by G the set of endpoints of intervals from t(A') and choose
1 < n~   < X  . For n > 1 define

Gn = {x£ K: dist(Tkj(x), G) > nn~J (V0 < j < n)}.

By Lemma 4.5,

mf(G„) > 1 - tGj2Vl"~J)a > 1 - T—^*0'
7=0 ^

By this estimate and since pf <s: mf , S may be chosen so small that pAGn) >

1 - e. For x £ Gn let U = gB(T "(x), S), where g denotes the branch of
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T~ " determined by g(T n(x)) = x . Then n may serve as some n(U) as in
(4.7) and (4.8), and x £ U. It follows that

Gn c {x £ K: 3U with n(U) = n and x € U},
and the lemma is proved.

Lemma 4.7. For every constant h the expansive constant à can be chosen so
small, such that for every function g of bounded variation

(( "-1
< x 6 X: ^[g(TxJ(x)) - Pj-(g)] > oh\fh~for infinitely many
*■ 7=0

n £ N satisfying n = n(U) for some U with x £ U > 1 = 1,

provided o   defined in (4.3) is larger than zero.
Proof. Let 0 < 2e < (27t)~ '  f£° exp(-u ¡2) du and choose S as in Lemma
4.6. Define

Z'n = {X£ K: 3U with n(U) = n and x £ U}.
By Lemma 4.6 and the central limit theorem (see Remark 4.4.3)), the set

( ,     «-i
Z„ = Z' n \ x £ X: =\==f2(s(TkJ(x)) -pf(g))> h)

o n j=o >
has measure > e for all sufficiently large n. The set Z = fl„eN U/>„ ^/ is
invariant under T and has positive measure, whence by ergodicity, pÂZ) = 1.
Now, x £ Z belongs to infinitely many Zn , consequently for such n

n-l
J2(g(TkJ(x))-pf(g))>h(T^/h-
7=0

and n(U) = n for some U containing x . This proves the lemma.

Some more notations are used in the sequel. Denote the Lyapunov character-
istic exponent by / = /, = fx log \(T )'\ dpj- and the Hausdorff dimensin of pf
by k = HD(pj-) = inf\HD(Y): Y c X, pf(Y)=\}. Note that k = hß (Tk)/x
(see [24], [19] or [20]).

Lemma 4.8. Let the assumptions of Theorem 4.3 be satisfied. Suppose that a ,
defined in (4.3) for the function g = Y,0<j<k(f - P(T, f) + tc log|r'|) o Tj, is
strictly positive. If h belongs to the lower class (i.e. satisfies (4.4)), then for pf
a.e. x £ X,

mf(U)
(4.13) lim sup-^-j--, = 0.

uix    d(U)Kexp(crx~x/2h(-\ogd(U))^-logd(U))
If h is constant, then

(4.14) lim sup mf(U)
uix    d(U)Kexp(ox   ' h(-\ogd(U))^J-\ogd(U))
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Moreover, if for p, a.e. x £ X, the set of all integers n, for which there exists
an interval U containing x and satisfying n(U) = n for some n(U) defined by
(4.7) and (4.8), has bounded gaps, then (4.14) continues to hold for all functions
h belonging to the upper class.

Remark. The sequence n(U) has p, a.e. bounded gaps, if, for example, the
system (X, Tx) admits a Markov partition.

Proof. Use formulas (4.11) and (4.12) to show that for x e K and U contain-
ing x,

(C,C3)-1exp(>SM[/)(/-JP(r,/) + Klog|r'|)(x)

--j=h{-logd(U))y/-logd(U)

<_mf(U)_
d(U)K exp(ox~X/2h(- \ogd(U))s/-\ogd(U))

<CxC3exp(skn(U)(f-P(T,f) + Kloë\T'\)(x)

-^h(-logd(U))yJ-logd(U)

By the ergodic theorem, the law of the iterated logarithm and (4.11),

|logd(U)) + n(U)X\ < 2V/a2(log|(rÂ:)'|)«([/)loglog«(i7).

If h belongs to the lower class, Remark 4.4(4) shows that

limsupexp^M^(/-P(r,/) + Klog|r'|)(x)-r7/i(/«(C/))^7J7)) < 1

for Pf a.e. x. Replacing h by hQ(t) = h(t/x) + an~ for some a < 0 proves
the lemma in case of lower class functions.

Finally, if h is constant or belongs to the upper class, apply Lemma 4.7 or
Remark 4.4(4) to obtain the other statements of the lemma in the same way.

The results about the relation between Hausdorff measures and equilibrium
states are contained in the following two theorems. For a function h: [1, oo) —>
R+ define for sufficiently small t > 0

h(t) = tKexp (-^=h(-iogt)y/-logtj.

Theorem 4.9. Let the assumptions of Theorem 4.3 be satisfied, and suppose a  >
0, where a   is defined by (4.3) for the function

S=   E (f-P(T,f) + Klog\T'\)oTJ.
0<j<k
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Then
(4.15) pf<^H~h   if h belongs to the lower class

(cf. [15].for a definition of H-h) and
(4.16) p, -L H-h   if h is constant.

Moreover, if for p, a.e. x, the sequence

{n £ N: 3Í7 such that x e U, n(U) = n}

has bounded gaps, then (4.16) holds for all functions h belonging to the upper
class.

Remark. Taking h = 0 it follows from (4.16) that the measure pr is orthogonal
to the k -dimensional Hausdorff measure on K.

Proof. (1) Proof of (4.15): Let h satisfy (4.4). By Lemma 4.8 (4.13), for a set
E with pAE) > 0, there exist a set E' c E satisfying pAE1) > pAE)j2 and
a 6 > 0 such that for every x £ É and all intervals U of diameter less than
d containing x, mf(U) < h(d(U)). Therefore Hh(E) > H~h(É) > mf(É).
Since Pf -c mf, mAÉ) > 0, whence H-h(E) > 0 and pf is absolutely con-
tinuous with respect to H-h .

(2) Proof of (4.16): The additional statement concerning the formula (4.16)
is shown exactly in the same way as it is proved for constant functions. It is
only necessary to apply the corresponding statements from Lemma 4.8. Hence
it suffices to show (4.16) for constant functions h .

For n > 1 and e > 0, by Lemma 4.8 (4.14), there exists a set En £ y n K
such that Pf(En) > 1 - e2~" and such that for x £ En and some suitable
interval Ux of diameter < l/n containing x, mj-(Ux) > 2nh(d(Ux)). From
the cover (Ux: x e En) of En choose a subcover (U¡: I > 1) of multiplicity
<2. Since d(U) < l/n,

(        1 \        1    °° 1 1

x ' 1=1

Setting Fe = n„>, En it follows that Hh(F£) = 0 and pf(Fe) > 1 - e . Finally
the set F = (jl>x Fx/¡ satisfies H~h(F) = 0 and Pj-(F) = 1, proving (4.16).

Theorem 4.10. Let the assumptions of Theorem 4.3 be satisfied, and suppose■y ■}
o  =0, where a   is defined by (4.3) for the function

8=   E (f-P(T,f) + Klog\T'\) oTJ.
0<j<k

Then HD(pA = HD(K) = k and p, is equivalent to the K-dimensional Haus-
dorff measure on K = supp(/i^).

Proof. Since a = 0 it is well known that g is homologous to a constant
function, and since fx g dpf = 0 this constant must be zero.   In particular,
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k k iP(TX, -k log \(T ) |) = 0. From this formula it follows that HD(pj-) = k (see
[10] and also [2], [14] or [19]).

The functions E0<;<*(/- PP, /)) ° TJ and E0<J<k(Klog\f\) ° Tj are
homologous by a Holder continuous function. Consequently, rewriting (4.12),
there exists a constant C > 0 such that for x e K and r > 0

C~X\(Tkn(x'r))\x)\~K < mf(Bx(x,r)) < C\(Tkn{x'r))'(x)fK,

where n(x, r) = n(B(x, r)). It is well known (and easy to show) that this for-
mula, together with (4.11), imply that m, and H,K are equivalent on K (even
with bounded Radon-Nikodym derivatives). But p. and m, are equivalent
on K , whence the theorem.
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