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On the Existence of Convex Hypersurfaces
with Prescribed Mean Curvature

KAISING TSO

1. - Results

Let X be a smooth closed embedded hypersurface with mean
curvature function H with respect to its inner normal. We are concerned with
the following question.

Given a function F in under what conditions does the equation

have a solution for a closed embedded hypersurface X?
The following result has been obtained.

THEOREM A. Let A = ~ I
positive function satisfying

Suppose F is a

There exists a hypersurface X which is starshaped with respect to the origin,
lies in A and solves ( 1.1 ).

Furthermore, any two solutions are endpoints of homothetic dilations, all
of which are solutions.

See [BK], [TW] or [CNS] for a proof. Here the monotonicity condition (a)
is used not only in characterizing uniqueness but also in the proof of existence.

Pervenuto alla Redazione il 27 Gennaio 1987 ed in forma definitiva il 24 Gennaio 1989.
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It is known that ( 1.1 ) has a variational structure [Y, Problem 59]. Namely,

(X is the subset bounded by X) has ( 1.1 ) as its Euler-Lagrange equation. In
this paper we shall establish results on the existence of convex hypersurfaces
solving ( 1.1 ) via a study of the critical points of (1.2).

For simplicity we shall work within the smooth category. All functions and
hypersurfaces are assumed to be smooth.

THEOREM B. Let A = { x E 0  R1  ~ lxl  R2 } . Suppose F is a
positive function satisfying

There exists a convex hypersurface X which encloses the origin, lies in A and
solves ( 1.1 ). In fact, X minimizes I among all convex hypersurfaces enclosing
the origin and lying in A.

Theorem B is formulated so as to compare with Theorem A. The following
result is much more satisfying from the variational point of view.

THEOREM C. Let F be a concave function which becomes negative
outside BR = ~ x : ~ I x  R} for some R &#x3E; 0. Then

(a) Any absolute minimum of I among all convex hypersurfaces in 
is a solution of ( 1.1 );

(b) I has an absolute minimum if and only if there exists a convex

hypersurface Y with I(Y)  0.
For concave functions F, the boundedness of I from below among convex

hypersurfaces is equivalent to F being negative outside a bounded set. Since a
small perturbation of a convex hypersurface may no longer be convex, (a) of
Theorem C is a non-trivial assertion.

Let r be a subgroup of the orthogonal group 0 (n + 1). F is called r-
invariant if F(xg) = F(x) for all x E JR. n+1 and all g E r. A subset C is called
r-symmetric if Cg = C for all g E r.

THEOREM D. Let F be given as in Theorem C and let r be a subgroup of
0 ( n + 1) such that I x g : g E r ~ spans R for some nonzero vector x. Suppose
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further that F is r-invariant and there is a r-symmetric convex hypersurface
Y with I(Y)  0. There exists a r-symmetric convex hypersurface Z solving
(1.1) with I(Z) &#x3E; 0.

Therefore, for the F in Theorem D there are at least two solutions. In
case of radial F’s (i.e., r = Q (n + 1)), there are exactly two solutions. See the
discussion at the end of Section 4.

Both proofs of Theorems B and C rely on a study of the negative gradient
flow associated with I:

(v is the unit outer nonnal at X(., t)). In subsequent sections we shall show
that (1.3) preserves convexity, admits a unique solution for all time for suitable
initial data and contains a subsequence {X ( ., converging to a solution of
(1.1). To prove Theorem D we shall use a mountain pass lemma. However,
because the functional I is not continuously differentiable in the appropriate
space, we shall work directly on the flow (1.3).

Sufficient conditions for the existence of convex hypersurfaces with

prescribed mean curvature F have been given by Treibergs [T] when F is
of homogeneous degree -1. Roughly speaking, his conditions are a priori
inequalities between F and its derivatives (up to second order) which prevent
the sought-after hypersurface derivated too much from the round sphere. This
is close in spirit to the sufficient conditions of Pogorelov [P, Chapter 4] for the
still unsolved intermediate Christoffel- Minkowski problem. Our result is not of
this type. We use a parabolic equation to deform the convex hypersurfaces and
rely mainly on the concavity of F.

That this flow preserves convexity is inspired by the computations in

Hamilton [H] and Huisken [HU].
In subsequent sections, we shall establish Theorems C and D in a slightly

generalized form. Namely, we shall replace the area integrand f 1 in (1.2) by
x

f 7 where 1 is an elliptic parametric integrand depending only on the normals.
x

In the companion paper [TS] we treat the same problem for Gauss-
Kronecker curvature, instead of mean curvature, where the concavity of F is
not required.

2. - Preserving convexity

In this section we first prove a first variational formula for a parametric
integral (Proposition 1). Then we show that the associated negative gradient
flow preserves convexity (Proposition 2).
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Let X be a closed embedded hypersurface oriented with respect to its
unit inner normal - v . In a local coordinate x = x 1, ~ ~ ~ , zn) we shall use the
following notations: for i, j - 1, ~ ~ ~ , n,

9ij (metric tensor)

Ð (volume element)

r ~. (Christoffel symbols)

bi~ (second fundamental tensor)

H (mean curvature)

Rkii (Riemann-Christoffel curvature tensor)

’ 

J

(Riemann curvature tensor)

Here ~, ~ ~ is the Euclidean metric in I~ n+ 1. As usual, we lower or upper indices
due to contractions with the metric tensor or its inverse. Besides, the summation
convention is always in effect.

We shall also use Vitro denote the covariant differentiation with respect
to a~. (i = 1,..., n) . Thus, for instance,

for a vector field ~ on X. Recall the following fundamental formulas of a
hypersurface in R’+’:

(Weingarten equation),

(Gauss formula-Weingarten equation),
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(Gauss equation),

;Codazzi equation).

Let 1(y), y ~ ~’~+ 1 ~ ~ ~ ~, be a function of homogeneous degree 1. It
associates with a functional defined on the class of closed hypersurfaces in

R n+1 given by
/I

This functional is called a parametric integral and 1 is its parametric
integrand. For a general definition of a parametric integral we refer to [F].

DEFINITION. Let 7 be a parametric integrand and let X be a hypersurface
Denote aii the symmetr-ic given locally by

The 1-mean curvature of X is defined by

When 1(y) = is equal to 1. The associated J is the area

functional and H3r is simply H, the mean curvature of X.

PROPOSITION 1. The following first variational formula holds. For a normal
variation vector filed ~ _ cpv on X,

PROOF. Let X(s) be a smooth family of closed hypersurfaces satisfying
X(0) = X and Bx (0) = ç. We compute
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Notice we have used the first variation formula for area. Using = 0,

Therefore

The second term is equal to by (2.1). The third term vanishes

because ~ is in the normal direction. Using (2.2) and the Euler’s identity
-vj’9F = I (notice that 7 is evaluated at -v) the fourth term is equal to

Furthermore, by a direct computation we find that for i = 1, ~ ~ ~ , n

Henceforth, the fourth term is equal to

Combining these, we have

Here Div denotes the divergence of a vector field on X. (Recall for a vector
field a, Div a = 2-’-! + As X is closed, by divergence theorem we have
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The proof of Proposition 1 is completed. q.e.d.
For a parametric integrand 7 and a function F defined consider

the functional I = Ir given by:

for a closed (connected) hypersurface X, where X is the bounded component
of -R’+’BX. From Proposition 1

Therefore, its negative gradient flow is given by
- .,

We want to study under what conditions (2.8) preserves convexity. Following
[HU] we look at the evolution of the second fundamental tensor inherited from
(2.8): .

By (2.1 ) and (2.2)

Consequently,

To compute we look at
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First, by using (2.1 ) and (2.2) and the Euler’s identities

we derive

By Codazzi equation (2.4),

On the other hand, by (2.3), (2.4) and the Ricci identities, we have

Finally, we have

By putting (2.10)-(2.14) into (2.9) we see that bij satisfies an evolutive
equation of the form .

where u is the vector field given locally by
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and N is a (~)-tensor given locally by

Clearly N fulfills the following condition: = 0 whenever ~ is a tangent
vector satisfying = 0, i = 1, ... , n.

A parametric integrand 7 is called elliptic (semi-elliptic) if there exists a
positive (non-negative) number A such that

for all p = (711, ... , ,n+l) in I1~ n + 1. Here 77’ = p - (p, v ~ v . When v (x) is the
unit outer normal for a hypersurface X(x),?,’ is the projection of p onto the
tangent space of X at x. Notice that (2.16) implies 

Applying Hamilton’s maximum principle [H, Theorem 4.1] with some

straightforward modifications, we arrive at

PROPOSITION 2. Suppose in (2.8) Y" is semi-elliptic and F is concave. Let
bii(t) be the second fundamental tensor of X (., t). Then, if bii(O), 0 for
all t &#x3E; 0. In other words, if X(., 0) is convex, X(., t) remains convex for all
time t. 

°

3. - Absolute minima

In this section we prove Theorem C’ (a generalization of Theorem C in
Section 1) and Theorem B.

We shall follow the notations in Section 2. Let 7 be a parametric integrand
which satisfies
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for some a and A &#x3E; 0. We shall solve the evolutive equation

for t &#x3E; 0. Here x is a local parameter of X(., t) during some time interval,
and v ( x, t) are the respective F-mean curvature and unit outer normal

of X(., t) at the point X ( x, t) .
Along X( ~, t), I satisfies

and

THEOREM C’. Let 7 be a positive elliptic parametric integrand and let F
be a concave function in which is negative outside BR for some R &#x3E; 0.

Then

(a) Any absolute minimum of I among convex hypersurfaces is a solution of

(b) I has an absolute minimum if and only if there exists a convex hypersurface
Y with I (Y)  0.

The main body of the proof of this theorem is to establish the global
existence of (3.3) and to obtain a priori estimates of X(.,t) which depend on
initial data through I.

To begin with we establish local existence. This can be accomplished by
writing (3.3) into a single equation for the radial function of ~( ,).

Let p be a point enclosed in the interior of X ( ~, t) for

t C- Q = ( t 1, t2 ) . We use p as the origin and introduce radial function

p(x, t) &#x3E; 0, ~ E Sn, where x = x(x, t) is defined implicitly by X(x, t) = p (:~, t)x.
Extend p ( ~ , t ) as a function of homogeneous degree zero to I1~ n + 11 { 0 ~ . From
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(3.3) we have

Taking inner product with x,

Let = 1, ... , n) be an orthonormal basis of the tangent space of Sn
at x. From (3.7) aM

Using the formula

we have

I

Putting this into (3.8), we obtain

Because for each t E Q, x - t) is one-to-one and smooth, we can use
x as a global parameter of X(., t) . Thus in (3.10) p and ~p are evaluated at
( x, t) ; H ¡: and F at X (:~, t) = p (~, t) ~.

Let eij be the standard metric on Sn with respect to a local coordinate
{U, ~). Then (U, ’if;t), 1/;t ( x) = p~~(x), t)~(x), is a local coordinate for X (., t), t E
Q. Using the computations in Section 2 we deduce
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Putting (3.11) and (3.12) into (3.10) and (2.5) we see that (3.10) is
a quasilinear parabolic equation for p on S"B By applying implicit function
theorem in a standard way we obtain

LEMMA 1. Suppose 7 satisfies (3.2). There exists T &#x3E; 0 such that (3.10) has
a unique solution in [0, T] for any initial data p(., 0) &#x3E; 0. Here T depends only
on n, À -1, a positive lower bound on inf p(x, 0), llp(., 0) 
and for some cx E (0, 1).

To obtain a priori estimates we follow [CNS] by representing X( ~, t) locally
as a family of graphs.

Let X be a convex hypersurface bounded between spheres (0) and

~2 (0), 0  ri  r2, where p) = r}. For ~ E S n denote
P(%) the hyperplane passing through the origin with normal x. There exists a
neighbourhood G of the origin in over which X can be expressed locally

u ( x ) ) : ~ E G} with = (0, u ( 0 ) ) for a function u. By the inequality

(~(?) is the unit outer normal at p($)$) ~($) &#x3E; ri G can always be chosen as
a ball Br (0) in P ( ~ ) with r depending solely on r 1 and r2 .

Let X ( ~, t) be a solution of (3.3) which is convex for each t in

Q = (t1, t2 ) . Suppose for some p all are bounded between
and  r2. Choose p as the origin. Over any hyperplane

P(x) each X(.,t) can be expressed as a function near the origin at P(~).
As a typical case we take x to be the north pole. Using (D,, 0), where

Dr = IX E  r} and ~(x) = ~,~/1 - ~~~ as a local

coordinate, we convert (3.10) (with (3.11) and (3.12)) into a quasilinear parabolic
equation of the form

(3.14) 
au 
= (x ,u Au)uij + b(x (3.14) u, V’ u) Uii +b ( x 

(x, Dr x Q, i, j = 1, ~ ~ ~ , n, (subscripts denote partial differentiations) by the
relation u2 = p2 - xp. One verifies that there exist constants p and M such
that

1

and

in (x, t) E Dr x Q. Here p and M depend only on n, r i 1, r2 , ~ , and an upper
bound on sup I IV u (x, t) I : (x, t) E Dr x Q 1. The dependence on the gradient can
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be removed due to the convexity of X ( ~, t) . For, by putting (3.9) and (3.13)
together,

which clearly implies an estimate on in terms of and r2 .

At this point we appeal to Theorem 6.1.1. in [LSU, p. 517] to infer:
For u satisfying (3.14), there are constants , E (~, 1) and C &#x3E; 0 such that

(d(p, q) is the parabolic distance between p and q) for all r’, 0  r’  r. Here
and C depend only on (t3-t1)-1
and (r - r’)-1. 

Starting with (3.15) we can use Schauder-type estimates for linear

parabolic equations to obtain higher order estimation. Since a fixed number
of neighbourhoods of the covers we conclude:

LEMMA 2. Let X(., t) be a solution of (3.3) which is convex and is bounded
between (p) and Sr2 (p), r1  r2, for some p in 1R n+1 for t E [to, 1 &#x3E; 0.

For each (k, a), k &#x3E; 0, 0  a  1, there exists a constant C such that

where C depends only on n,k,Q,À-1,rl1,r2,£,£-1, 1111IC3(sn)nck.a(sn) and
’ °

Thus, it boils down to estimating rl1, r2 and £-1. In the following we
shall denote rin (C) and D(C) respectively the inradius (i.e., the radius of a

largest ball that can be fit inside) and the diameter of a subset C in 
Also we write dist (C, 0) for the distance from the origin to C.

LEMMA 3. Let 7 and F be given as in Theorem C’. Suppose X(., t) is
a solution of (3.3) in ,Sn x ~0, oo) where X(., 0) is convex and I(X(., 0) )  0.

There exist three positive numbers 61, 62, and d such that
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PROOF. By Proposition 2.2, X(., t) is convex for all t &#x3E; 0. From (3.5)

Clearly t) ) cannot be too small, otherwise the last term would tend to
zero. Therefore, (3.16) is valid for some S1 &#x3E; 0. On the other hand, if D(X( , t) )
becomes unbounded, because of convexity and (3.16), the volume of X(., t),
~X ( ~, t) ~, becomes unbounded too. However, from

(a is given in (3.1 )), we obtain a contradiction. (3.17) holds.
Finally, (3.18) follows by combining (3.17) and the assumption that F is

negative outside B R. q.e.d.

LEMMA 4. Let C be an open convex set in IR n+1 with centroid c. The
ball with radius centred at c is contained in C.

PROOF. Let and h2 ( ~ ) be the respective distance from c to the

support hyperplane of C in the direction x and -x. By [P, p. 90]

Therefore, assuming

LEMMA 5. Let 1 and F be given as in Theorem C’. Suppose X(., t) is

a solution of (3.3) which is convex for all t &#x3E; 0. let c(t) be the centroid of
X (., t). There exists t &#x3E; 0 such that XC, t) is bounded between S63 (c(to)) and
‘s26a ~~~t°~~° (63 = and 62 are given in Lemma 3), for t in (to, to + E)
for any to &#x3E; 0. 2 depends only on n.811, 62, d, = I (X (., 0)) -inf{I(X) : X
is a convex hypersurface 

PROOF. In the following proof C1, C2, and C are constants which depend
only on n, 6i 1, 62, and d. Using polar coordinate,
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Therefore,

Using (3.16)-(3.18) and (3.10), we have

By Cauchy inequality, for t &#x3E; to,

The last line follows from (3.5). As a result, if we first choose e satisfying
Cex = ! 83 anf then determine i from = ~3, we have

Now Lemma 5 follows from Lemma 4. q.e.d.

PROOF OF THEOREM C’.

(i) Let X be a convex hypersurface which minimizes I among all convex

hypersurfaces. Solve (3.3) by using X as the initial value. By Lemma 1
and Proposition 2.2, (3.3) has a solution X(., t), which is convex for each
small t &#x3E; 0. However, X is already an absolute minimum. It follows from
(3.5) that X(., t) = X(.) and it solves (3.6).

(ii) Let {Sk} be a sequence of concentric spheres with radius decreasing to
zero. Clearly lim I ( Sk ) = 0.

k-&#x3E;00

Therefore, no absolute minima exist if I is positive for any convex

hypersurfaces.
Conversely, for a convex X(., 0) with  0, we apply Lemma

1 to show that (3.3) has a unique solution for some t &#x3E; 0. From Proposition
2.2 each X(., t~ is convex. Hence we may use c (0) as the origin, introduce the
radial function of X(~, t), and use Lemmas 5 and 2, coupled with a standard
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argument, to conclude that a unique X(., t) exists in an interval 10, a) with
a &#x3E; ~. Replace c(0) by c(~) as the new origin and repeat the same argument.
(3.3) is uniquely solvable in [0,,8) with ,8 &#x3E; 2~. Keeping this way we eventually
establish the solvability of (3.3) for all t.

Since I is bounded below, the left hand side of (3.5) (taking T = oo) is
finite. We can find a sequence 

Applying Lemmas 5 and 2 to each interval [tj - and using (3.18), we
conclude that is a uniformly bounded sequence in for each

1~ &#x3E; 0, 0  a  1. Consequently it contains a subsequence which converges to a
smooth solution of (3.6).

Finally, to show that an absolute minimum exists, we solve (3.3) with
initial values a minimizing sequence of I. As just it has been shown, in this
way we obtain a new minimizing sequence all of which are solutions of (3.6).
Since they are uniformly bounded in for each 1,
we can extract a convergent subsequence which tends to an absolute minimum
of I. The proof of Theorem C’ is completed.

Now we turn to Theorem B. So we let 7 = 1 (on S’) in I and consider
the flow (1.3). We shall prove Theorem B under a slightly restrictive condition
(b)’ :

The general case be deduced by an approximation argument.

LEMMA 6. Let X(., t) be a solution of (1.3) with F satisfying (b)’. If
R1   .R2, R1  p (x, t)  R2 for all t &#x3E; 0. Here p (x, t) is the radial

function of X(., t) with respect to the origin.

PROOF. Suppose, for some t, X(., t) touches SRI (0) (or SR2(0) - the proof
is similar). Let (p, t* ) be a point of first contact. Without loss of generality we
take p = p ( ~, t*)x, x being the north pole. Then (3.10) holds in ( ~, t) E Dr x Q,
where r &#x3E; 0 and Q is an open interval containing t*. (Notice in (3.10) Hy
should be replaced by H). Similarly, the radial function of SRI (0), pO, satisfies

If we subtract (3.10) from (3.10)’ and use the fact that at
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we obtain

Contraction holds. Lemma 6 is established. q.e.d.

PROOF OF THEOREM B.

By Lemma 6 one can introduce the radial function with respect to the
origin for all time. Then the global solvability of (3.3) follows from the global
solvability of (3.10). Following similar lines as in the proof of Theorem C’ we
can finish the proof of Theorem B.

4. - Mini-maxima

In this section we prove Theorem D’, a sharpened form of Theorem D.

THEOREM D’. Let r be a subgroup of o (n + 1 ) such g E F)
for some vector x. Let 7 be a r-invariant parametric integrand

satisfying (3.1 ) and (3.2) and F be a F-invariant concave function 
which is negative outside BR for some R &#x3E; 0.

There exists positive constants p = ¡..t(1, F) and ro = ro (7, f, F) such that

for D(X) :5 ro. Therefore, if there exists a F-symmetric convex hypersurface Y
with I(Y)  D (Y) &#x3E; ro there exists a solution Z of (3.6) with I (Z) &#x3E; lir’

PROOF. First we observe that for any T-symmetric convex X there exists
(3 = (3 (F) &#x3E; 0 such that 

’

Let be the volume of the unit ball

If we choose p for a sufficient small ro &#x3E; 0.

Let C be the class of all continuous curves 1 from ~~, 1~ to the Frechet

pace of all r-symmetric convex hypersurfaces such that 1(0) = ~ 2 p  ro, Sp
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satisfying I(Sp)  J-lrö, and 1(1) = Y. Set c = inf maxI(1(s)). Clearly c &#x3E; /-Zrn0 
yEC .9 

- 0*

We claim there exists a solution Z of (3.6) with I(Z) = c.
For E &#x3E; 0, c - E &#x3E; 0, we pick 1 E C such that

Solve (3.3) with initial to obtain a family of solutions 

By (4.1 ) and Lemma 2, ceases to exist only when both the inradius
and diameter of tend to zero. But I ( ~y ( t, s ) ) tends to zero too. Let

t* (s) = inf{t : I (7 (t, s) )  c - E~, 0  t* (s)  oo. The map s -~ t* (s) cannot be
continuous, otherwise 7 * ( s ) = 7 ( t * ( s ) , s ) belongs to C and yet I ( 7 * ( s ) )  c - E,

a contradiction with the definition of c. Let so be a point of discontinuity of t* .
There are two possibilities: (a) t* (so) = oo or (b) t* (so)  oo and there exists

- so, and --~ t1 &#x3E; t* (so), (t1 could be infinity). In case (a), write
X(t) = X(t) exists for all time. Consequently, from

we can extract a sequence = X ( ~, tj), which by Lemma 2 converges
to a solution of (3.6). In case (b), we claim 1(t* (so), so) is in fact a solution

of (3.6). For, if does not vanish at t = t* (so), for t2 satisfying
t 1 &#x3E; t2 &#x3E; t* (so), we have s 0))  c - E. By continuity,  C - ’E

for large j. But this implies t*(Si)  t2. Contradiction holds.
Thus, we have proved in both cases, for each E satisfying c - E &#x3E; 0, there

exists X(,E) solving (3.6) with !7(X(e)) - cl  E. Letting e 1 0, by (4.1) and
Lemma 2, a subsequence of X ( E) converges smoothly to a solution Z of (3.6)
with I(Z) = c. q.e.d.

An Example

Let F(~c) = f (r), r x I, be a radial concave function which intersects the
curve r - r-1 at two points r1 and r2, r1  r2. We claim that S,, (0) is the local
maximum and (0) is the local minimum among all spheres Sr (0), 0  r  oo.

For 
r

and
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By concavity, ~" (S,.a ) &#x3E; 0 and I" (5,.1 )  0. Notice Sr2 is not necessary an
absolute minimum - if r2 is very close to becomes positive.
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