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ON THE EXISTENCE OF EASY INITIAL STATES

FOR UNDISCOUNTED STOCHASTIC GAMES

S.H. TIJS and 0.J. VRIELE
Catholic University of Nijmegen

The Netherlands

This paper deals with undiscounted infinite stage two-person zero-sum
stochastic games with finite state and action spaces. It was recently
shown that such games possess a value. But in general there are no
optimal strategies. We prove that for each player there exists a non-
empty set of easy initial states, i.e. starting states for which the
player possesses an optimal stationary strategy. This result 1s proved
with the aid of facts derived by Bewley and Kohlberg for the limit

discount equation for stochastic games.

AMS 1980 subject classification. Primary 90D15, Secondary 93C30.
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1. INTRODUCTION

In this paper we restrict our attention to stochastic games with
finite state and action spaces. The theory of such stochastic games
started in 1953 with the fundamental paper of Shapley [6]. He proved,
that such a game possesses a value and that there exists for each player
a stationary strategy, which is optimal for each initial state, under
the condition that the payoffs are discounted. The theory of undiscoun-
ted stochastic games started with a paper of Gillette [3] in 1957. For
a long time, it was an open question, whether such undiscounted games
possess a value. This question was answered in the affirmative, recently
by Monash [5] and Mertens and Neyman [4].

In a nice paper [2] in 1968, Blackwell and Ferguson studied an example
of an undiscounted stgchastic game (the big match), and showed that no
optimal strategy exists for one of the players. Even if one wants to
play c-optimal (e >0), in general one has to use complicated history
dependent strategies. So the question arose, whether there are perhaps
certain initial states for which playing optimal or e-optimal can be
accomplished with a simple stationary strategy. With this question

we deal in this paper. Let us call a state an easy inttral state for
player i¢ {1,2}, if there exists a stationary strategy, such that this
strategy is optimal for the player, if a play of the game starts 1in
that state. Then Shapley's result can be reformulated as follows: for
a discounted stochastic game each initial state is easy for each player
and there is a stationary strategy for each player, which is optimal
for each initial state. The example of Blackwell and Ferguson learns
us that for undiscounted games the situation is not so sinple.

The main result of this paper is that we show that for each stochastic

game, for each player there exists a non-empty subset of easy initial



states and a stationary strategy for the player, which is optimal for
each play starting in that subset of states. These subsets are related
to the main part of the unique solution of the limit discount equation
of the stochastic game.

The organization of this paper is as follows. In section 2 we give
the necessary facts about stochastic games, about the Timit discount
equation for such games and we formulate our main result 1n theorem 2.1.
In section 3 this theorem is proved with the aid of some lemmas. We

conclude that section with some examples.

2. THE MAIN THEOREM

In the following, T = <S’{Ais: Ted1:2F: § £51; Fip>"18 a Tixed
zero-sum two-person stochastic game with finite state space
S = {1,2,...,2}, with for each player ie {1,2} 1n each state s e S
available a finite action space Ais’ and with reward function r and
transition probability map p. Hence, r(s,al,az) is the direct reward
and p(t\s,al,az) is the probability that the system is in the next
stage in state t, given that the system 1s now in state s and given
that player i, i=1,2, chooses action aie:AiS.

We are interested in the undiscounted infinite stage case i.e. we
assume that there are an infinite number of stages n=0,1,2,... where
the players choose actions and we assume that a payoff stream
(ﬂo,ﬂl,nz,...) for player 1, is evaluated by the expression

m (2:1)
Orl

I ™ =

o o 1
1im 1nt NET
N-r<o P
where m is the (expected) payoff to player 1, made by player 2 at

stage n.



In the following we denote by F the ordered field of real Puiseux

series, consisting of power series of the form

N
Loa.8 (2:2)
k= -co

where N is an arbitrary integer, L is an arbitrary positive integer, ay
\

is a real number for each k, and where the series 1 aktk/L converges
ko= —eco

for all sufficiently large real numbers t. Addition and multiplication
in F are defined in an obvious way and the order is defined as follows.

N
oKL 5 0 iff a, 20 and for all k<N:
k= -co (23]

a >0 1f ak+1 = ak+2 =

I
oV
I
-

The z-fold Cartesian product of F with itself 1s denoted by FZ. The
ordered subfield of F of expressions of the form (2.2), where 1in each
expression L is equal to a fixed positive integer M, is denoted by FM.
For our study the limit discount equation for the stochastic game
I, introduced by Bewley and Kohlberg [1], plays an important role. It

is the equation in F%, given by

X = val <r+—(1+e-l)-1Px> (2.4)

which is an abbreviation of a system of z equations in F, for each
state one, namely

Ry * val {r(s,.,.)+(1+e“1 -1

) 5 Bl sy 5.0 ) %5 Tor eatch 8eS. (2.5)

teS c
where the right hand term of (2.5) is the value of the (mixed extension
of the) matrix game Ms(x), with pure action spaces Als and AZS for the

row and column player, respectively, and with

1y~-1

r(s,al,a2)+(1+e- ) P p(tfs,aj,ay)x, e F (2.5)

tesS t



the payoff made to player 1 by player 2, if player 1 chooses pure
action a, and player 2 action a,.

Bewley and Kohlberg [1] proved that the system of equations (2.5) pos-
sesses a unique solution V = (V(l),V(Z),...,V(z))szz. Furthermore,
they proved that there exists a positive integer M (dependent on T)
such that V(s)ezFM and for each seS, V(s) is of the form

V = 0
(s) ki_m“k(s)

(2.7}

Since the entries in the matrix MS(V) are then also elements of the
ordered field FM’ it follows from a well-known result of H. Weyl [7],
that player 1 possesses an optimal mixed action 3(5), which chooses

for each af:AIS with probability E(s,a)g;FM this action. Hence, p(s,a)

is of the form

= ls.alaan (2.8)

olssa) = s
0 u

u

W o~ 8

where for each seS and each ue N

e ¥

L pglssa) =1, I o Vs =0 (2.9)

a£A15

and where for each s e S, ae:Als and ue N

DO(S,a) > 0 (2.10)

(2:.11)

I
2
Sl
— e
U
-
v
o
|
=

Let SO = (po(l),...,pO(S),...,pO(Z)) be the stationary strategy for
player 1 in the stochastic game T, which takes action ae-Als with pro-
bability Eo(s,a)ezﬂk, if the game is in state s.

Note that pn(s,a) = 1im 0y(s,a) for all seS and ach;q, where o.(a,s)

to
is the expression which we obtain Dy replacing 6 by the real number t



in (2.8). In [1] it was proved that for large real members t, the

stationary strateqgy Et is optimal for player 1 in the discounted
-1,-1
)

the Timit of optimal stationary strategies for player 1 in g-discoun-

stochastic game with discount factor (1l+t > So :O can be seen as

ted games for g+ 1.
We will show in section 3 that this stationary strategy HO is an op-
timal stationary strategy for all plays of I, starting in a non-empty
subset S”. Here S™ is defined as follows. Let
; b, 0°/" 1= max ( : v, (5)6"") (2.12)
k=1 seS k=1

(the maximum w.r.t. the order in F). Then

M M
g% sertgeSs g e soarvplee ™y (2.13)
k=1 k=1
1 k/M
If we call in the expressions (2.7), the pmart = vk(s)e , corres-

k=1
ponding to the positive powers of 6, the main part of V(s), then we

can say that S™ consists precisely of those states in S with maximal
main part. Theorem 2.1 below says that S* consists of easy initial
states for player 1.

An important fact, recently proved by Mertens and Neyman [4],
will also be used in the following, namely that the undiscounted
stochastic game I with evaluation rule as in (2.1) possesses a value
and that this value equals the leading coefficient VM(S) in (2.7 )s 1f
the initial state 1s s.

We formulate now our main result. The proof will be given in section
3

THEOREM 2.1. Notations as above.

The states in S are easy initial states for player 1 in the stochas-

tic game T. Py is an optimal stationary strategy for player 1 in T,

if the initial state is an element of ™.



Of course, a similar theorem can be formulated for player 2. Easy

initial states for plaver 2 are elements of S**, where S* consists of

those states s, for which the main part of V(s) is minimal.

3. SOME LEMMAS AND THE PROOF OF THEOREM 2.1.

Let us take an arbitrary, but from now on, fixed stationary stra-
tegy o = (o6(1),0(2),...,0(2)) for player 2 in the stochastic game T.

Then for all se S, af:AZS

o3 L o(s,a) =1 (3.1)
acAZ
S

Since, for each seS, o(s) is a mixed action for player 2 in the matrix

g(s,a) e R

game MS(V), and o(s) is an optimal mixed action for player 1 in that

game with value V(s), we have for each s eS:

V(s) +R(s) + (1+6" ™1 5 P(s,t) V(t) = 0 (3.2)
teS
in which
Ris) = £ R (ays (3.3)

u=0 -

is the expected direct reward in state s, and

Plis,t) = ; P (s,.t)a"u/M . (3.4)

u=0
is the expected probability that the system jumps to teS, 1f 1n state
s, player 1 uses the mixed action o(s) and player 2 uses o(s). For the

coefficients in (3.3) and (3.4) we have for all ue {0,1,2,...]}

R_(s)= % ) r(s,al,az) E_u(s,al)o(s,az) (3:.5)

S

P_i(sst) = I 2 p(tls,apsa5)o_ (s,a7)0(s,ap) (3.6)



For further use, we note that, in view of (2.9), (2.10), (2.11) and

(3.1), for all ue N:

L Po(s,t) =i lios - A P_u(s,t) = 0 (3.7)
teS teS

Po(s,t) > 0 (3.8)
P_u(s,t) > 0 Af P_u+1(s,t) =P_u+2(s,t) =...=P0(5,t) =0 (3.9)

The left hand side of inequality (3.2) is a Puiseux series of the

form

M k/M
) ck(s)e ' (310
k==

for which, for each k < M we have:
cM(s) > 0 and ck(s) >0, cM(s)==cM_1(s)==_..=:ck+1(s)==0 (3.11)

In the following we are especially interested in the expressions for

the coefficients corresponding to non-negative powers. For them we

obtain, in view of (3.2), (3.3), (3.4) and (2.7), for ke {M,M-1,...,2,1}:

M-k
ck(s) = —vk(s)4-tzs uio P_u(s,t)vk+u(t) (3.12)
[
co(s) = -vo(s)+R0(s)+ S ; P_u(s,t)vu(t)— ) PO(s,t)vM(t) (3.13)

teS u=0 ted

The following subsets of S will play a role. For ke {1,2,...,M} let
Sk:= (s &S Ck(s)=ck+1(s)=...=CM(s)=0} (-3.14)
T, i={se3: vk(s)==bk(s), vk+1(s)==bk+1(s),...,vM(s)==bM(s)} (3.15)

(Here ck(s), vk(s) and bk(s) are the coefficients, occurring in (3.10),

(2.7) and (2.12)).

Define also TM+1 = S SM+1 = S. We note that
§ = Ty (3.16)
Sk_lc:Sk, Tk_lc:Tk for ke {2,...,M,M+1)} (3..17)



From (3.11) we obtain

ck_l(s);aU for k21 and s« Sk’ ck_l(s)fﬁo for k=2 and SE,Sk\Sk_l (3.18)
and' from: (2.12), for Ke {MELMy..ae)s

Vi,_1(s) sb,_q for seT,, vk_l(s)-ibk_l for se T AT, 4 (3.19)

For s < Ty, we have, by (3,11), (3.12), (3.15), (3.19) and (3.7):

O:;cM(s) = -UM(S)-+ ) PO(s,t) VM(t)
teS
< by(-1+ = Po(s,t)) =0 (3,20)
i teS

This implies, using (3.19) and (3.7):

cy(s) = 0 for all s Ty, (3.21)

Po(s,t) = 0 for all se Ty, ted\T,

i’

LEMMA 3.1. For each ke {(M,M-1,...,2,1}, (Zk) and (Yk) hold, where (Zk)

is the property

Tk © 3 (3.23)
and (Yk) the property:
p_ (5,t) =0 for all seTy, teS\T, u ue (0,1, k] (3.24)

™

PROOF. In view of (3.21) and (3.22), (ZM) and (YM) hold. So the proof
of the lemma will be finished if, for each ke« {M,M-1,...,2}, we can show
that (Zk) and (Yk) imply (Zk—l) and (Yk_l). Hence, suppose that (Zk)

and (Yk) hold for a ke {M,M-1,...,2}. If we prove that for each SEiTk_l:

I

C,_1(s) =0 (3.25)
Poa(sst) = 0 1 teTAT, (3.26)

P_u(s,t) = 0 9f tﬁlTk+u\Tk+u-l and U € {1 ,25:0:sM=k+L} (3.27)
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then we can combine (Zk) and (3.25),using (3.17) and conclude that
(zk—l) holds; and we can combine (Yk), (3.2€) and (3.27) to conclude
that (Yk_l) holds. So the only things to prove are (3.25)-(3.27). Take

S ¢ Tk—l' Observe, that s{:Tk_lt:ch:Sk implies with (3.13), that
ck_l(s) > 0 (3:.26)

By (Yk) and (3.17) we have for ue {1,2.,,,.M-k+l}, v <u, tEka+u\Tk—1+u:
P_v(s,t) = 0 (:3:29)
This implies, in view of (3.9)

P (sst) 290 For allbe Ty o Ny o (3.30)

Furthermore, Dy (Yk) and. {(3.17)

P lsak) =~ 0 3F & 4 Tpg, (3.31)
So (3.7) and (3,31) imply for ue £li250 s sai=iGEL)
) P_u(s,t) = - I P_u(s,t) (3.32)
teTiau M k-14u teTy 14y
By (3.12)
M-k+1
ck_l(s)==-vk_1(s)-+ 2 E P_u(s,t)vk_1+u(t) (3.33)
teS u=0
I[f we put
do(s) = -vk_l(s) + t?s Po(s,t)vk_l(t)
du(s) = tFS P_u(s,t)vk_1+u(t) for ue {1,2,...,M-k+1}  (3.34)
Then, by (3.28) and (3.33):
M-k+1
0 < ck_l(s) = uio du(s) (3.35)

In view of SEsz_lc:Tk, (3.15), (Y. ), (3.19), and (3..7)
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do(s) —bk_1-+t§T Po(s,t)vk_l(t)

k (3.36)
< bk_l(—l~k ) PO(S,t)) =0
tETk
and in view of (3.19)
do(s) = 0 iff (3.26) holds (3.37)

For ue{1,2,...,M-k+1} we have by (Yk), (3.15),. (3.32), (3.19) and (3.30)

du(S) = tET P_U(S:t) Vk+u_1(t) =

k+u
= ET P_i(sst)v, . q(t) + I P_,(sst)b .4
= I P_u(s,t)(vk+u_1(t)—bk+u_1) < 0 (3.38)
te Ty iu M keu-1
and
du(s) = 0 Aff (3.27) holds. (3.39)
Now (3.35), (3.36) and (3.33) imply (3.25) and
du(s) = 0 for each ue {0,1,...,M-k+1} (3.40)

It follows from (3.40), (3.37) and (3.39) that (3.26) and (3.27) hold.

So we have proved (3.25) - (3.27) which finishes this proof. [

The foregoing lemma will be repeatedly used in the proof of

*

LEMMA 3.2. For each s¢S , we have

Of;-vo(s)-+t;S*PO(s,t)v0(t)-+RO(5)—bH (3.41)

*

and te S\S: P (sst) = 0. (3.42)

PROOF. (3.42) is in view of (3.16) already proved in lemma 2.1. (Cf.

For each s e S

(3.24) with k=1 and u=0.) Take s S™. By (Yl) of lemma 2.1:

1 20 by (3.18) and (3.13):
&
02 cq(s) = =vg(s)Rg(s) + = £ P_(s:E)vy(t) - I Pols,t)y(t) (343



if [ )

This implies that we have shown that (3.41) holds, if we prove

g
e L P_u(s,t)vu(t) <0 (3.44)
teS u=l1
and
) Po(s,t)vM(t) = by, (3.45)
teS
By Temma 2.1 and (3.42) =% Po(s,t)vM(t) =, § PO(S,t)vM(t) = bM’ SO

teS tely
(3.45) holds. Take e 11525.5.:M}. For ‘eaen ve{0,1,...,u-1}, we have

in view of lemma 2.1:

P fsat) =0 W Rl Ty (3.46)

P (5%

" O AFt € h

I

AT (3.47)

So by (3.9) and (3.47):
P_u(s,t) =0 Aaf te;T1+u\Tu (3.48)
By (3.7) and (3.46):

) P i(sst) =~ & P_.As%) (3.49)
W teT,, g

But then, by (3.46), (3.49), (3.48) and (2.12), for each ue {1,...,M}:

2 P (s,t)v () = = P (s,t)(v (t)-b ) < O (3.50)

-U u u
ted tET1+U\TU

Now (3.50) implies (3.44) and this finishes the proof. [J

For notational conveniences, we now suppose w.l.0.g. that

s* = {1.,2,....2%} with z* < z. Let P" be the z xz -submatrix

e g

[Po(s,t)]S=1 bl in the left upper corner of the stochastic z x z-matrix
Z 2 :

P0 = [PO(S’t)]s=1,t=1' Then, by (3.42) of lemma 3.2 and (3.7), this

submatrix P~ is also a probability matrix. This implies that the Cesaro-

Timit
* i N

D := 1im N+ T 5 P
n=0

N0

*

)n
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of P*, is the z xz -submatrix in the left upper corner of the
Cesaro-limit QO of PO.

V4

[f we denote for an element Xx = (xl,xz,...,xz) - R™ , the element

£ 5
(xl,xz,...,xz*)tzﬂQ‘*, by x, then, obviously we have

*

(QeX)¢ = (Q°x), for all se(1,2,...,27) (3.51)

Now we give the

PROOF OF THEOREM 2.1. Suppose that player 1 uses stationary strategy
EO in the undiscounted game I and player 2 the stationary strategy o.
Then the limit average expected payoff for player 1 is given by the

formula

if s is the initial state. So, by (3.51), for s<S" this payoff equals

(Q*éo)s. From (3.41) in lemma 3.2 we derive

0 < -vyt PPvg + Ry - lez* (3.52)
Z : .
where 1 ¢ R is the vector, for which all coordinates are equal to
Z'k
1. Since Q*(O) = 10, Q*l 0 Q*P* = Q* and Q"r is monotone and
7l Z

linear, we may conclude from (3.52):

0 < -Q Vg t QP Vg * Q RO - lez* = ) RO - le . (3.53)

*

S0 for se S

*

{QORO)S = (Q RO)S - bm(s) (3..58)

and by the mentioned result of Mertens and Neyman (4], the right
member of (3.54) is the value of the undiscounted stochastic game T,
if the initial state is s. So we have proved that player 1, using ;O’

can obtain at least the value, if the initial state 1s 1n L against
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each stationary strategy of player 2. Since it is well-known that
player 2 cannot do better with arbitrary (history dependent) strategies,
if player 1 uses EO’ we may conclude that EO is optimal for player 1
for each initial state s¢S . This finishes the proof of theorem 2.1.
i
We conclude with two examples. In the first example the set of easy

* %k

initial states of player 1 (2) coincides with Se (S ) and S:= S*LJS**,

* * %

S"nS™ = g. In the second example S~ (S

x Kk

) is a proper subset of the

set of easy initial states of player 1 (2) and ST uS™~ # S.

EXAMPLE 3.3. Let I be the game described by
1]

State 1 State 2

where the notation

means that if the players choose the row and column corresponding to
this box, then player 2 pays the amount r to player 1 and the state 1n
the next stage is s. Then V = (V(1),V(2)) = (V(1)-V(1l)) with

V(1) = 3/76+1 -3 = Op +3/2 6° -;+%/2 Y SRR
Hence, S = {1}, S°© = {2}. The value of the undiscounted game is

(0,0) and it is clear that state 1 is not an easy initial state for
player 2 and that state 2 is not easy for player 1.
For the strategy EO’ we have that 30(1,1) = 1. This strategy 1s opti-

mal for player 1 if the play starts in state l.

EXAMPLE 3.4. Let r be the ganie described by
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I ;0 éésoa%ﬁ)l

state 2 state 1 state 3 state 4

In this game, if the system is in state 4, then it jumps to states 1

and 3 with probability 1/».

Now

V

(V(1),0,-V(1),0) with

1 e

V(1) = (1+8 ~)(Ye+l-1) = DB-PB%—I-P.

This implies that S* = (1}, 77 = {3} and that the value of the undis-

counted game is (0,0,0,0).

State 4 is not easy for both players and state 1 (3) is not an easy

initial state for player 2 (1), while state 2 is easy for both players.
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