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Abstract. The existence of Nash equilibria in noncooperative flow control in a general product-

form network shared by K users is investigated. The performance objective of each user is to

maximize its average throughput subject to an upper bound on its average time-delay. Previous

attempts to study existence of equilibria for this flow control model were not successful, partly

because the time-delay constraints couple the strategy spaces of the individual users in a way that

does not allow the application of standard equilibrmm existence theorems from the game theory

literature. To overcome this difficulty, a more general approach to study the existence of Nash

equilibria for decentralized control schemes is introduced. This approach is based on directly
proving the existence of a fixed point of the best reply correspondence of the underlying game.

For the investigated flow control model, the best reply correspondence is shown to be a function,

implicitly defined by means of K interdependent linear programs. Employing an appropriate

definition for continuity of the set of optimal solutions of parametrized linear programs, it is

shown that, under appropriate conditions, the best reply function is continuous. Brouwer’s

theorem implies, then, that the best reply function has a fixed point.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]: Network Opera-

tions—network management; D.4.8 [Operating Systems]: Performance —queueing dzeo~: G. 1.6

[Mathematics of Computing]: Optimization—constrained optimization, linear programming

General Terms: Performance, Theory
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1. Introduction

F1OW control algorithms allow each user of a telecommunication network to

regulate the traffic it sends into the network and thereby satisfy certain

performance objectives. Typically, as the load of traffic a user offers to the

network increases, the packet queues at the nodal buffers build up and may

eventually lead to degradation in the quality of service provided to the user, for

example, to excessive delays and even to packet loss due to buffer overflow.

The main objective of flow control is to achieve an efficient trade-off between

high network utilization (e.g., average throughput) and guaranteed quality of

service (e.g., low average time-delay and small probability of packet loss).
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The complexity of modern high-speed wide-area networks calls for decentral-

ized congestion control algorithms, where the control tasks are performed

“locally” by the appropriate network entities. A decentralized flow control

scheme, under which each user determines the load of traffic it offers to the

network so that it satisfies its own performance objective, can be modeled as a

game [Fudenberg and Tirole 1992; Myerson 1991]. In this setting, flow control

can either be cooperative, if the users are allowed to make joint decisions on

their strategies, or noncooperative, if joint decisions are not possible. An

extensive survey on cooperative and noncooperative optimal flow control can

be found in Korilis and Lazar [1992]. In the present paper, the focus will be on

noncooperative flow control.

In a noncooperative flow control scheme, each user selects among its

available strategies those that optimize its own performance objective. Since

the performance of a user depends, in general, on the strategies of the other

users, this mode of operation results in a dynamic behavior. Understanding the

dynamics of the network when the users implement their optimal control

strategies is of fundamental importance. One of the key questions is whether

the network converges to an equilibrium operating point, such that no user is

willing to unilaterally modify its flow control strategy. In the game-theory

language such a point is called a Nash equilibrium.

The game theoretic models that arise in congestion control schemes are

constrained games, due to the presence of stability and/or quality of service

constraints. In this type of games the set of strategies that a user is allowed to

choose from is affected by the actions of the other users. The subset of the

product strategy space defined by the constraints is called the joint strategy

space. Existence of Nash equilibria of constrained games is typically estab-

lished in the congestion control literature based on a theorem by Rosen [1965].

The theorem asserts that a game has an equilibrium point if

(i) The joint strategy space is convex and compact.

(ii) The objective function that each player seeks to maximize is concave in its

own strategy and continuous at every point in the product strategy space.

The “greedy algorithm” for an .\ M/l queue was one of the first noncooper-

ative flow control schemes to be studied in a game-theoretic framework

[Bovopoulos and Lazar 1988; Douligeris and Mazumdar 1988, 1992]. Each user

maximizes its power (average throughput over average time-delay) by regulat-

ing its (state independent) input rate. The properties of the power criterion

indicate that the stability constraint of the system does not become effective,

provided that the users behave optimally. Consequently, this constraint may be

treated as absent, resulting in an unconstrained game, that was shown to have

a unique Nash equilibrium. Convergence of synchronous and asynchronous

implementations of the algorithm to the unique equilibrium point was exam-

ined in Zhang and Douligeris [1992]. The greedy algorithm for a “store-and-

forward” network of ./M/l queues was studied in Bovopoulos and Lazar

[1988]. Existence was established using Rosen’s theorem; again, the underlying

model was an unconstrained one. The same theorem was also used in Orda et

al. [1993] to show existence of Nash equilibria in a noncooperative routing

scheme.

State-dependent flow control strategies for a network of ./M/l queues were

analyzed in Hsiao and Lazar [1991]. The traffic generated by each user enters
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the network at a rate that depends on the number of packets that the user has

outstanding in the network. The performance objective of the user is to

maximize its average throughput subject to an upper bound on its average

time-delay. The structure of the optimal strategies was found by means of a

simplified equivalent network model, that allows a transformation of the

optimization problem associated with the user to a linear program. Existence

of Nash equilibria was shown for a special class of networks that satisfy certain

monotonicity properties.

In the present paper, we study the existence of Nash equilibria of the flow

control model introduced in Hsiao and Lazar [1991] for a general product-form

network where the monotonicity assumptions of that reference do not neces-

sarily hold. Simple examples show that the joint strategy space—defined by the

time-delay constraints of all users—does not satisfy the convexity condition

posed by Rosen’s theorem. On the other hand, the conventional game theo-

retic approach of incorporating the time-delay constraint of each user as a

penalty component in its utility results in utility functions that either are not

continuous, or do not satisfy certain second order monotonocity properties

required by the standard equilibrium existence theorems (e.g., quasi-concavity).

To overcome these difficulties, we take a more general approach to the

problem of equilibrium existence in noncooperative flow control algorithms.

The concept of the best reply correspondence of the underlying game plays a

central role in this approach. Finding a noncooperative equilibrium of a

decentralized control scheme (“game”) amounts to simultaneously solving a

number of interdependent individual constraint optimization problems. Given

a choice of strategies for all but one of the controllers, the set of optimal

strategies for the remaining controller can be found. This way, a point-to-set

correspondence, that maps the product strategy space of the game into itself, is

defined. This is the best reply correspondence of the game [Border 1985]. Any

Nash equilibrium is a jixed point of this correspondence [Nash 1951].

Instead of using standard game-theoretic results that concentrate on the

properties of the utility functions and the joint strategy space, we focus on the

best reply correspondence of the flow control game and examine the existence

of fixed points of this correspondence. From a technical standpoint, the merits

of this approach are clear. The requirements in Rosen’s theorem—and other

similar results from game theo~—guarantee that the best reply correspon-

dence satisfies the sufficient conditions of some fixed-point theorem. Neverthe-

less, the best reply correspondence might satisfy these conditions, while the

requirements on the utility functions and the joint strategy space are not met.

Conceptually, on the other hand, the best reply correspondence is the natural

representation of a decentralized control algorithm, for which objective func-

tions or quality of service constraints might not even be explicitly defined.

The outline of the paper is the following: The flow control model and its best

reply correspondence are presented in Section 2. A fundamental result from

Hsiao and Lazar [1991] on the structure of the best reply correspondence is

briefly analyzed in Section 3. This result is based on the observation that each

user can determine its best reply to any choice of strategies of the other users

by means of a linear program. In Section 4, we provide a further characteriza-

tion of the best reply correspondence by showing that it is a function. The

continuity properties of the best reply function are examined in Section 5. In

studying these properties, we adopt a general definition and derive sufficient
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conditions for continuity of parametrized linear programs, The related analysis

is presented in Appendix A and can be read independently of the rest of the

paper. Using these sufficient conditions, we establish, under a certain regular-

ity assumption, continuity of the best reply function and, thus, existence of

Nash equilibria.

2. The Model and Game Theoretic Formulation

The flow control model under consideration is depicted in Figure 1. There are

K users sharing a network of Z quasi-reversible queues [Kelly 1979]. This is a

generalization of the model studied in Hsiao and Lazar [1991], where a

network of ./M/l-FCFS queues was considered. Node i can be of any of the

following types:

(i)

(ii)

(iii)

A single server FCFS (first-come-first-served) queue with class indepen-

dent service times that are exponentially distributed with mean l/K’, that

is, an ./M/l-FCFS queue.

A single server queue where the service times for class k packets are

independent and identically distributed (iid) following a general distribu-

tion with mean l/K~’ and the service discipline is either LCFS-PR

(last-come-first-served, preemption]resume) or PS (processor sharing),

that is, either a ./GI/l-LCFS or a ./GI/l-PS queue.

An infinite server queue where the service times for class k packets are

independent and identically distributed following a general distribution

with mean l/pk’, that is, a ./GI/~ queue.

This is one of the most general analytically tractable network models

[Walrand 1988] and it is well-suited for modeling a broad class of practical

networking environments. It allows for nodal schedulers that employ not only

the traditional FCFS policy, but also a wide class of scheduling algorithms that

approximate the processor sharing service discipline and have been receiving

increasing attention in recent years due to their fairness properties and their

ability to provide quality of service guarantees [Demers et al. 1989; Parekh and

Gallagher 1993]. Moreover, the model allows for non-negligible propagation

delays that arise in high-speed, wide-area networks, and can be represented as

./GI/~ queues.



588 Y. A. KORILIS AND A. A. LAZAR

Let YI denote the set of nodes that belong to types Q) and (ii) and ~z the set

of type (iii) nodes. We denote the average service rate of class I% packets in

queue i by Pk’, with the understanding that it is class independent whenever i

is an .\ M/l-FCFS queue.

The traffic generated by user k enters the network as a conditional Poisson

stream, with rate A;, when the number of packets that the user has outstanding

in the network is lk. In practice, the information lk is provided to the user by

means of an acknowledgment protocol. The maximum number of packets that

user k can have outstanding is Nk and the maximum rate at which it can send

packets into the network is c‘, a positive constant.

Routing is probabilistic: Upon service completion, class k packets are routed

from node i to node j with probability r “] 1 < i ~ s 1. Class k packets en~er
‘ koj–a~d exit through node i withthe network at node j with probability r

probability r~’o = 1 – Z;= ~rk’J. Let t3k’ denote the visit ratio of class k

packets to node i. The visit ratios can be determined by the following linear

system:

Let the state of queue i be described by n, = (nl[, . . . . nKl), where rzk, is the

number of class k packets in the queue. The state of the network is described

byrz=(rzl,..., JZI). The network has a product-form equilibrium distribution

that is given by Kelly [1979]:

[

1,–1 lk–l

)

p(n) =p(o) JJ A:, .. . ~ A: fip,(lz,),
11=0 iK=lJ 1=1

(2.1)

where lk = ~ ~=, rzk, is the number of class k packets in the network when its

state is n, P(O) is the normalization constant, and

[

(7211+ ““” +7 ZK,)! K
n

n,, ! . . . ~Kt!
k=l

pz(n, ) =
(

(nl, + ““” +nK, )! K

nil! . . . n~t! q
h=l

Let us now introduce the following:

Definition 2.1. For given Nk G N and

trols Ak = (A;, )l~=-ol for user k is defined

Ck E R+, the set of admissible con-

by:

(Ak= Ake RNL:O+<Ck,
h

O <lk <Nk).

Ak is also called the strategy space of user k, and a hk G Ak is called a (flow

control) strategy of user k. The Cartesian product A = C#= ~ Ak of the individ-

ual strategy spaces is termed the product strategy space. Strategy K-tuples

A= (A’,..., Ak ) G A are called strategy profiles.
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The performance objective of user k is to find an admissible flow control

strategy A* L in AL that maximizes its average throughput Ey ~, subject to an

upper bound Tk > 0 on its average time-delay ET’. This optimization problem

depends on the strategies of the other users, described by the strategy profile
A-k = (A1 ,.. ., Al, Ak+l+l ?. ..7 AK), since Eyk and Erk depend on these

strategies as well. Note that user k can trivially satisfy its time-delay constraint,

by using the admissible strategy A:, = O, lk = O,..., N~ – 1, that is, by sending

no flow into the network, since in that case Er k = O < Tk, independently of

the actions of the other users, Under this strategy, the throughput of the user

is also zero, that is, Ey k = O. Let A ‘k denote the product strategy space of all

users except the kth. To each strategy profile A‘k in A ‘k we can assign the

(possibly empty) set Rk( A-k) of optimal strategies of user k, defining this way

a point-to-set correspondence [Border 1985] from A ‘k to Ak.

Definition 2.2. The point-to-set correspondence Rk: A ‘k +-+ Ak, that maps

each A‘k G A ‘k to the set of all A* k G Ak that achieve the maximum:

max Ey k (2.3)
E’Th STk

is called the best reply correspondence of user k. The correspondence R:

A * ~ A, with:

K

R(A) = @ Rk(A-~), AEA, (2.4)
k=l

is called the best reply correspondence of the flow control game.

In Section 3.2, it will be shown that Rk( A-k) is nonempty for all A-k G A-k,

that is, the user always has an optimal response to any strategy profile of the

other users.

Under the typical game-theoretic approach, the preferences (in terms of

strategy profiles in A) of user k are expressed by means of a utility function,

Uk: A -+ R, that assigns to each strategy profile A = A the “payoff” Uk( A) to

the user when this profile is in effect. A Nash equilibrium of the game is a

strategy profile A* G A, from which no user finds it beneficial to unilaterally

deviate, such that:

Uk(A*k, A“-k) = ~~=ax,Uk(Ak, A*-k), l<k~K.

The presence of the time-delay constraints does not allow a direct applica-

tion of this conventional approach to the flow control game. However, the

time-delay constraint of each user can be enforced as a penalty on its utility

function, such that the constraint is not violated at any Nash equilibrium. In

particular, the performance objective of user k can be represented by the

following utility function:

(Uk(A) = ‘2’k7
if ETk < Tk

AEA,
—E, if E~k > Tk’

(2.5)

where E >0 and Ey k and ET k are the average throughput and time-delay of

the user that correspond to the strategy profile A. The assignment of negative

utility for the case Er k > Tk implies that the optimal response of user k to
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any strategy profile A‘A G A ‘h of the other users never leads to a violation of

its time-delay constraint, since the user can receive a zero payoff by sending no

flow into the network. Hence:

max l.l~(hh, A-k) = max Eyk. (2.6)
~k ~ ~k Erks Tk

Therefore, the best reply correspondence of the game (defined by means of the

user utility functions (2.5)) is precisely the one given by Definition 2.2. It is easy

to see that a strategy profile A* G A is a Nash equilibrium if and only if it is a

fixed point of the best reply correspondence, that is, if and only if A* G I?( A“).

Note that eq. (2.6) indicates that any Nash equilibrium is a strategy profile in

the subset A’ of the product strategy space where the time-delay constraints of

all users are satisfied. A‘ is called the joint strategy space.

Let us now consider the problem of existence of equilibrium points of the

flow control game. Since the average throughput of user k is always nonnega-

tive, the utility function of the user, as defined in (2.5), is not continuous at any

A ● A, such that the user’s time-delay holds tight, that is, Et-k = Tk. 1 There-

fore, the classical equilibrium existence theorems for infinite games (games

with strategy spaces that are not countable sets), for example, the theorems by

Debreu, Glicksberg, and Fan (see, e.g., Fudenberg and Tirole [1992] and

references therein), cannot be applied, because one of their main conditions

requires that the utility functions of the users be continuous at every point in

the product strategy space. It is worth mentioning that, typically, in a telecom-

munication network the average time-delay encountered by a user increases

with its average throughput, and thus the Nash equilibria (if any) of the flow

control game typically appear at the discontinuity points where the time-delay

constraints of the users hold tight.

The existence of equilibria in games with discontinuous payoffs has been

investigated by Dasgupta and Maskin [1986]. The main existence theorem of

that reference relaxes the continuity requirement to two weaker conditions. It

retains, however, the quasi-concavity assumption of the theorems by Debreu,

Glicksberg and Fan. More precisely, it requires that the user’s utility function

be quasi-concave in its strategy.z In Section 3.2, we provide a simple example

showing that enforcing the constraint of the user as in eq. (2.5) results in a

utility function Uk that might fail to be quasi-concave in Ak.

Hence, the conventional game-theoretic approach of incorporating the

time-delay constraint of each user as an additional penalty to its payoff results

in utility functions that do not satisfy, in general, the requirements of the

standard existence theorems. However, since any Nash equilibrium lies in the

joint strate~ space, we can extend the definition Uk( A) = Eyk for all A G A,3

but restrict the set of admissible strategy profiles to the joint strategy space A’.

Under this approach, the time-delay constraints introduce a coupling of the

individual strategy spaces, since the set of strategies that a user is allowed to

1These discontmuities cannot be removed, even if we define UA( N = O for the case ETA > Tk.
k – o for all lk > 0 Hence, for anyAs can be seen by the analysis in Section 3, EyL > 0 unless AIi –

$ such that ETh = Tk >0, we have E-yh >0.

- A function ~: R“ a R! is quasi-concave if and only if for any x, y = 02” and any a = [0,1], we

have ~(ax + (1 – a)y) > min{~(x), ~(y)}.

~ This extension makes Uk continuous at every A = A, since Ey k is a continuous function of A,

as can be seen from the analysis in Section 3.
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choose from is a subset of its strategy space and depends on the actions of the

other users. Existence of equilibria for constrained games of this type is

typically established based on Rosen’s theorem [Rosen 1965], which requires

that: (i) the joint strategy space be convex and compact, and (ii) the utility

function of each user be continuous at every A 6 A and concave in Ak. For the

flow control game, simple examples can be constructed (see Section B.1 in

Appendix B) to demonstrate that, in general, the joint strategy space is not

convex. Thus, Rosen’s theorem cannot be applied to deduce existence of Nash

equilibria.

The conditions that the existence theorems impose on the individual utility

functions and/or the joint strategy space are sujj’7cient conditions that guaran-

tee—via the Kakutani fixed-point theorem [Border 1985] —thrut the best reply

correspondence has a fixed point. Since the conditions of these theorems are

not satisfied by the flow control model under consideration, we take a more

general approach and study directly the existence of fixed points of its best

reply correspondence. It is essential to realize that this correspondence encap-

sulates the constraints (see (2.3)), leaving, this way, the individual strategy

spaces uncoupled. The structure of the best reply correspondence has been

characterized in Hsiao and Lazar [1991] and is briefly presented in the

following section.

3. The Structure of the Best Reply Correspondence

Suppose that the flow control strategies of all users except the Icth are fixed

and described by the profile A- k, The best reply of user k to this strategy

profile is the set (Definition 2.2):

Rk(A-k) = arg max Eyk. (3.1)
~k~Ah ETk<Th

To find the structure of Rk( A-k), we need analytic expressions for the average

throughput and time-delay of user k. The properties of the average throughput

are presented in Subsection 3.1. These properties are used in Subsection 3.2 to

transform the optimization problem on the right-hand side of eq. (3.1) into a

linear program and characterize the structure of the user’s best reply corre-

spondence.

3.1. THE STRUCTURE OF THE AVERAGE THROUGHPUT. Let u~ denote the

conditional expectation of the rate at which class k packets are served by the
network, given that there are 1A such packets in it. If p~ is the probability that

the number of class k packets in the network is lk, then the average through-

put Ey k of user k and the average number of packets EQL that the user has

in the network are:

N, NL–l N,,

The average time-delay of the user is given by Little’s formula [Kelly 1979;

Schwartz 1987]:

(3.3)



592 Y. A. KORILIS AND A. A. LAZAR

Inthesequel, wederive expressions forv~ andp~ and represent a structural

result called the separation principle. This principle allows the computation of

Eyk by means of a simplified equivalent queueing model.

De fine #(lo,..., 1~) to be the set of all network states n, for which the total

number of class k packets in the network is 1~, 1 < k s K, that is:

xl,,

(

. . ..l~)= n=(nl,..., nl): fjnkl=lk,

)

l<k <K.
1=1

The probability that there are 1~ class k packets in the network is then:

N.

Pt= x ~ p(n), Zk=O,...,N,. (3.4)
lm=on~xl, > .,lK)
m+k

The expected rate of class k packets leaving the network through node i,

given that the state of the node is n,, is:

(pk’nk, rk’o,

Equation (3.5) is immediate for the ./GI/l-PS and .\GI/~ cases. For an

./M/ l-FCFS or a ./GI/l-LCFS queue, given that its state is n,, the packet

classes in the queue are independent [Kelly 1979] and, provided that the queue

is not empty, nkl/X~ nm, is the probability that the packet in service is of class

k. Note that Z, qk’(n,) is the expected service rate of class k packets, given that

the network is in state n = (nl, ..., nf).

The conditional expectation of the rate at which class k packets are served

by the network, given that there are lk (1 s lL s Nk) such packets, is:4

k=
5X

p(n)

Vlk ~qk’(nl)~

l,n=on=tifl l,.,.,lk)l=l h
m~k

where we have made use of eqs. (3.4) and (2.1), and pl(n, ) and qk’(nl) are

given by eqs. (2.2) and (3.5), respectively.

From eq. (3.6), we observe that v~ does not depend on the flow control strategy

of user k and is only a function of A- k. In a Markovian network, the marginal

probabilities p~ and the conditional estimates v; satisfy [Hsiao and Lazar

1989]:

~?,Pt = v[+l P~+17 lk=(),..., Nl -l. (3<7)

4 By convention, null summations are equal to zero and null products equal to one.
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/t v:,

r- FIG. 2. Equivalent network model associated

with user k.

This property can be verified for the network model of Figure 1, using eqs.

(3.4) and (3.6).5 Note that eqs. (3.7) are precisely the detailed balance equa-

tions of the birth–death process that describes the state of an M/M/1 queue

k Therefore, thewith state-dependent service rate vf and arrival rate Al,.

average throughput of user k is equal ~o the throughput of the queueing model

depicted in Figure 2, which is usually called Norton’s equivalent [Schwartz

1987]. By abuse of terminology, the term, Norton’s equivalent, will be used to

denote both the equivalent model in Figure 2 and the vector of conditional

estimates Vk = ( v~)~=,.

This structural result, called the separation principle, was used in Hsiao and

Lazar [1991] to transform the optimization problem in eq. (3.1) into a linear

program. The linear programming formulation will be presented in the follow-

ing subsection.

Observe that the expression in the denominator of v~ in eq. (3.6) is positive

for all A-k, since the term corresponding to 1~ = O for all m # k is a positive

constant (independent of A‘k ). Thus, v~ is a continuous function of A-~.

Continuity of v~ over the compact set A ‘k implies that it attains its minimum

and maximum values:

k_
~,k — min v: > 0, –k _

Vlk —
~-k~~-k

k follows from the observationPositivity of ZJ,

expression in eq, (3,6) is positive for all A ‘k.

max v~. (3.8)
~-k=~-h

that the numerator of the

3.2. THE STRUCTURE OF THE BEST REPLY CORRESPONDENCE. In this sec-

tion, we show that the best reply Rk( A-k) of user k to any strategy profile A-k

of the other users is a set of “band-bang” control strategies.

Using eqs. (3.2) and (3.3), the best of user k can be written as:

Nk–l

Rk(A-k) = arg max x A!,P!7 (3.9)
*kEAk X~.,(lL–TkV~)P~SII lL=O

5 The proof is identical to the one in Hsiao and Lazar [1991], for a network of ./M/1 queues, and

is not repeated here.
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where:

Nk J–l ~h ‘1

1

1+~~+ , lk=O,..., N~, (3.10)
,=1 1=0 VL+l

by virtue of eq. (3.7). Note that Rk( A-h) depends on A-k only through the

~ These estimates are independent of the kth user’sconditional est~mates Vi,.

flow control strategy (see eq. (3.6)) and, therefore, can be obtained in practice

by means of an appropriate estimation technique.

The constrained maximization problem on the right-hand side of eq. (3.9) is

nonlinear in Ak. Nonetheless, if we define the equilibrium flows [Hsiao and

Lazar 1991]:

Y~ = A;, P~> O<l~<N~, (3.11)

this nonlinear optimization problem can be transformed into the following

linear program [Gale 1960; Luenberger 1984] with unknown vectorb ( y~, pk) @

R2~’+1, where yk = (y;,..., y~, _l), pk = (p{,..., p~, ):

max y; + ‘“” +y;L_l (3.12)

subject to:

Y; = V;+l P:+l> l~=O,..., N1, l, (3.13)

p;+pf+ -.” +p;, = 1, (3.14)

y~ – ckp~ <0, lk= o,. ... N~–1, (3.15)

~ (lk - TkV;)P~ <O, (3.16)

lL=I

p; 20, /k=o,..., Nk, (3.17)

yf >0, l~=O,..., Nl–l. (3.18)

Constraints (3.13) represent the detailed balance equations (3.7). Constraint

(3.15) is the peak constraint on the control which, together with the nonnega-

tivity constraints, assures that Ak E Ak. Thus, the linear program is equivalent

to the maximization problem in (3.9).

The linear program (3.12)–(3. 18) is parametrized by A-k, the strategy profile

of the other users, through the Norton’s equivalent v‘. Let &k: A ‘k ~ +

R2~’+ 1 denote the point-to-set correspondence that maps each strategy profile

A-k to the set of optimal solutions of the linear program. If (yk, pk) is a point

in _$?h(A-k), then Ak, with:

[

Y;
if p~>O

A?,= ~’ O<l~<Nk, (3.19)

o, if p~=O

is a strategy in the kth user’s best reply Rk(A-k ).7

b Throughout this paper, all vectors are assumed to be column-vectors. Since transposition of

column-vectors, when necessary, is implied by the context, it is not denoted explicitly.
k – 0 although arbitrary, k a natural one, since user k7 Note that the definition A;, = O if pl~ – ,

never has Ik (or more) packets in the network.
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A linear program either possesses an optimal solution, or is infeasible, or has

an unbounded objective value. Note that the linear program described by

(3.12)-(3.18) is feasible for any A-k: yk = (O,... ,0), pk = (1,0,... ,0) is a

feasible solution, since Th >0. Furthermore, its objective value (the average

throughput of user k) is bounded between O and Ck. Therefore, the linear

program always has an optimal solution, that is, user k has a best reply to any

strategy profile of the other users. The following lemma [Hsiao and Lazar 1991]

characterizes the structure of any such optimal strategy.

LEMMA 3.2.1. Let Ak be a best rep~ of user k to a given strategy profile A-k of

the other users. Then there exists some integer Lk, 1 < L~ < N~, such that:

[

0, L~<l~<N~

Al, = A;, c (O, Ck), atmosfon6?mk,o<mk<Lk, (3.20)

Ck, O<lk<Lk,lk#mk

that is, Ak is of a generalized window-type, with at most one “intermediate” point,

at some mk. In particular, the intermediate point appears only if the time-delay

achieved by Ak is equal to Tk.

Remark 3.2.2. Let Ak be as in eq. (3.20). Then the peak constraints (3.15) of

the linear program for O s lk < Lk, lk + mk, are binding (hold as equalities),

while the peak constraint for lk = mk is nonbinding. Thus, the last assertion of

Lemma 3.2.1 implies that, at optimality, at most one of the peak constraints

(3.15) for lk = O,..., Lk – 1,or the time-delay constraint (3.16) can be non-

binding.

If a Nash equilibrium exists, then it is a profile of window-type strategies, as

described by (3.20). Existence of equilibria was established in Hsiao and Lazar

[1991] only for the special class of product-form networks, where the equivalent

service rate v~ is concave increasing in lk, for every user k. Under this

assumption, the user’s optimal strategy is unique [Lazar 1983], and thus its best

reply correspondence is a point-to-point mapping, that is, a function. Further-

more, any intermediate point of the user’s best reply appears at the end of the

window ( mk = Lk – 1).Nevertheless, simple examples show that these mono-

tonicity properties do not necessarily characterize product-form networks.

Consider, for instance, a single ./M/ l-FCFS queue with service rate p = 1

shared by two users, and take NI = Nz = 2 and Az = (1/19, 2). Then, eq. (B.2),

in Appendix B, gives v{ = 0.814> 0.794 = vi.

This lack of monotonicity is inherited by the average throughput and

time-delay of the user and does not allow the application of standard existence

results from the game theory literature to the flow control game. The following

example shows that the utility function of user k, as defined in (2.5), might fail

to be quasi-concave in Ah.

Example 3.2.3. Let Nk = 3, CL = 3 and Tk = 1.51. Fix a strategy profile A-k

k – 1 and V: = 2. Consider now theof the other users, such that, v~ = Vz —

following strategies of user k: Ak(l) = (3,1, O) and Ak(2) = (3,3, 0.65). The

respective average throughputs and time-delays of user k are E-y ‘(1) = 0.857,

E~k(l) = 1.5 and Ey~(2) = 1.194, ETk(2) = 1.504, as can be seen by eqs. (3.2),

(3.3), and (3.10). Then, by eq. (2.5), we have Uk( Ak(l), A-L ) = 0.857 and
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11~(AL(2), A-L) = 1.194. Consider the strategy Ak(3) = 0.5( Ak(l) + Ak(2)), for

which E-y~(3) = 1.028, E7~(3) = 1.548, thus U~( AL(3), A-k) = – e < 0. There-

fore, U~(A~(3), A-k) < min{Uk(A~(l), A-k), Uk(Ak(2), A-k )}, that is, UA is not

quasi-concave in Ak. A closer investigation of this example reveals that the

average throughput itself is concave in the linear segment ( Ak(l), Ak(2)). The

time-delay, however, first increases to a maximum and then decreases in that

segment resulting, this way, in the non-quasi-concavity of UL.

In the following section, the uniqueness result of Lazar [1983] is extended to

the general case where no monotonicity assumptions are made on the equiva-

lent service rate. This result will be used in subsequent sections to substantially

simplify the overall proof of existence of a Nash equilibrium point.

4. The Best Reply Correspondence Is a Function

In this section, we show that the best reply of user k to any strategy profile of

the other users is unique and, therefore, its best reply correspondence is a

function. This amounts to showing that the optimal flow control strategy of the

single-class model depicted in Figure 2 is unique. Throughout this section, we

temporarily drop the sub\superscripts that denote the particular user to

simplify the notation.

PROPOSITION 4.1. The optimal flow control strategy for the model of Figure 2

is unique.

PROOF. Suppose that there exist two distinct optimal flow control strate-

gies, say A(l) and A(2). Let (y(l), p(l)) and (y(2), p(2)) be the corresponding

optimal solutions of the linear program. Then, by linearity, (y(3), p(3)) =

0.5(y(l), p(l)) + 0.5(y(2), p(2)) is also an optimal solution. Let ET(i) denote

the average time-delay achieved by (y(i), p(i)), i = 1,2,3. All optimal solutions

achieve the same average throughput. If L, is the window size (see Lemma

3.2.1) resulting from the optimal solution (y(i), p(i)), it is easy to see that

Lq = max{Ll, Lz}.

If a peak constraint is nonbinding for one of the optimal solutions, say

(y(l), p(l)), the same constraint is nonbinding for (y(3), p(3)). To see this,

assume that yin(l) – cp~(l) <0, for some m < L1. Then, y~(3) – cp~(3) =

0.5(y~(l) – cp~(l)) + 0.5(yn(2) – cp~(2)) <0. Similarly, if the time-delay con-

straint is nonbinding for one of (y(i), p(i)), i = 1,2, it is nonbinding for

(y(3), p(3)) as well. We have to consider the following cases:

(i) At least one of ET(1) and ET(2) is less than T.

Then ET(3) < T. Therefore, both A(1) and A(2) must have fidl windows,

with no intermediate points.8 Since these optimal solutions are distinct, their

windows are not equal. Suppose that L ~ < Lz < N. Then:

Y~f3) – CP.f3) = 0.5( Y.\l) – cp~~l)) + 0.5(y@ – cP./2))

—– –o.5cpL$l) <0,

since:

y&(l) = o, p~,(l) >0, yl.,(2) = cpLJ2) .

HIf one of them, say Ml), had an intermediate point, (y(l), p(l)) would lead to a nonbinding peak

constraint of the linear program and the same constraint would be nonbinding for (y(3), p(3)),

contradicting this way optimality of ( Y(3), p(3)): see Remark 3.2.
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This implies that both the time-delay constraint and the peak constraint for

1 = L1 < L~ are non-binding at (y(3), p(3)). Thus, according to Remark 3.2.2,

(y(3), p(3)) cannot be an optimal solution of the linear program.

(ii) E’r(l) = ~T(2) = T.

Then ET(3) = T. First suppose that A(1) has an intermediate point at 1 = m,

O s m <N. If A(2) had an intermediate point at a different 1, (y(3), p(3))

would lead to two nonbinding peak constraints of the linear program and

would not be an optimal solution. Therefore, any intermediate point of A(2)

should appear at 1 = m. A similar argument shows that the corresponding

window sizes must be equal: LI = Lz = L. Then, A(1) # A(2) implies:

Am(l) # A~(2). (4.1)

Define @l = VI .“” Vl, for 1 z 1, arid @O= 1. Then:

[’
c’

1=1,..., m
‘o(z) “ i’

p,(i) =
1–1 > i=l,2,

c
po(i)A~(i) o — l=m+l,,,,, L

41 ‘

and the average queue length resulting from A(i) is:

[

/1

Q(i) = ~~ol$+A.(i) ~ l—

l=m+l 42 1
(4.2)

Since ET(1) = ET(2) = T and Ey(l) = E7(2), then EQ(l) = EQ(2). In view

of (4.1) and (4.2), the latter can hold only if

or equivalently:

(4.3)

Recalling that c Y O, we conclude that eq. (4.3) is a contradiction, since the

expression on its left-hand side is always positive.

Finally, consider the case where both A(l) and A(2) have full windows and

assume that L ~ < Lz. A similar argument, based on the equality of the average

queue lengths, can be used to obtain a contradiction to A(1) + A(2). ❑

Proposition 4.1, together with Lemma 3.2.1, generalizes the results of Lazar

[1983] for the flow control model of Figure 2, to the case where no assumptions

are made on the rnonotonicity properties of the state-dependent service rate.

The optimal flow control strategy is unique and has a generalized window
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structure with at most one intermediate point. Under the assumptions of Lazar

[1983] the intermediate point can only appear at the end of the window. The

following example shows that if the Norton’s equivalent is not concave increas-

ing, the optimal strategy may have an intermediate point that does not occur at

the end of the window. Thus, the structure of the optimal strategy is completely

characterized by Lemma 3.2.1 and Proposition 4.1.

Example 4.2. Let N = 5, c = 3, T = 1,and VI = 2, v:? = 1, Vj = 3, Vd = v~

= 2. Using the linear programming formulation, one can see that the optimal

flow control strategy is AO = A? = 3 = c. Al = 1 < c, As = Ad = O. The time-

delay constraint is binding at this optimal solution, that is, Er =

l=T.

Extending Proposition 4.1 to the multiclass model of Figure 1, we conclude

that the best reply correspondence of user k is a best repij function Rk:

A-h -+ Ak that maps each strategy profile A- h to the unique best reply of user

k. Consequently, the best reply correspondence of the flow control game is also

a function R: A + A and its definition in (2.4) can be rewritten as:

R(A) = (Rl(A-l),. ... R~(~)),), A=A. (4.4)

A Nash equilibrium is a fixed point of this best reply function, that is, a

strategy profile A* = A, such that A* = R( A*).

5. Continuity of the Best Reply Function

Sufficient conditions for a function to have a fixed point are provided by

Brouwer’s theorem [Border 1985]. The theorem asserts that a continuous

function mapping a convex and compact set into itself has a fixed point. The

product strategy space A satisfies the convexity and compactness requirements

of Brouwer’s theorem. Therefore, if the best reply function R: A ~ A is

continuous, it has a fixed point which is a Nash equilibrium of the flow control

game. In this section we show that, under a certain regularity condition, R is

indeed continuous.

The best reply function of user k is defined implicitly, by means of the linear

program (3.12)–(3.18). Specifically, AL is the best reply to A-k, if and only if the

equilibrium distribution pk and the equilibrium flows y k resulting from

(AL A-k) are the optimal solution of the linear program. Let f k: A s llz~’ +1

de~ote the function that assigns to each (AL, A-‘) the corresponding equilib-

rium distribution and equilibrium flows, according to eqs. (3.6), (3.10), and

(3.11). Then, for all (Ak, A-k) = A:

(5.1)AL =R~(A-A) +fk(~k, A-k) =&k(A-L).

Clearly, the continuity properties of Rk are closely related to those of J?’h.9

The continuity of L?” is treated in a general setting in Appendix A. In that

appendix we consider a parametrized linear program and investigate the

continuity properties of the set of its optimal solutions. We employ a definition

of continuity for the general case, that includes the possibility of multiple

optimal solutions, and derive sufficient conditions for continuity in Theorem

A.3. These conditions require that the dual linear program exhibits certain

properties.

YThroughout this section S?k-defined as a point-to-set correspondence m SectIon 3.2—will be

treated as a fiwtctton, by virtue of Proposition 4.1.
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By abuse of terminology, the dual linear program associated with (3.12)-(3.18)

will be referred to as the dual flow control problem. The dual problem is also

parametrized by the strategy profile A-k of the other users through the

Norton’s equivalent v ‘. Let ~k( A‘k ) denote the set of its optimal solutions.

Then, Corollary A.4 in Appendix A implies that L?’k is continuous if the

following conditions are satisfied:

(i) T#x~ ~i~ a compact set Ok c R z~~+l, such that Jj?k(A-k) G ok, for all

(ii) There exis~s a compact set W’k c R’2NL+2, such that gk(A-k) fl W~ # @,

for all A-k = A-k.

AI-Iy feasible solution (y~, pk) of the linear program described by (3.12)-(3.18)

satisfies:

Osp: <l, O<ik<N~,

for all A ‘k and, by defining Ok = [0, CkIN’ @ [0, lIN’+ 1, condition (i) above

automatically holds. In the sequel, we will derive a sufficient condition for the

dual flow control problem to satisfj’ property (ii).

The dual flow control problem for user k is a minimization problem with

unknown vector w k = R 2N’+ 2 described by:

min w~~+ 1 (5.2)

subject to:

l’vl~ + wck+NL+l > 1, i=l >. ..> N~ , (5.3)

W(IL+ 1 > 0,— Ckw;k+z _ (5.4)

—V,kW,k + W;k +.1 – CkW/’+NL+2 + (i – V} Tk)W$NL+2 2 0,

i=l ,..., N1, l, (5.5)

W:, . . ..w&A+l. “ unrestricted,

W;L+2, ..., > 0.‘;NL+2 — (5.7)

LEMMA 5.1. If the upper bound Tk on the al)erage time-delay of user k

satisfies:
*

(5.8)

then, there exists a compact set Wk c RzNk~2, such that sk( A-L) c Wk, for all
A-k ~ A-k.

PROOF. Fix A-k in A-h and let Wk be an optimal solution in S7’1 A-L).

The objective values of the primal and the dual linear programs are equal at

optimality. Therefore, wfiL+ 1 is equal to the optimal throughput of user k,

given that the strategy profile of the other users is A‘h. Thus:

0< Wjk+l s Ch. (5.9)
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Then, (5.4) implies:

< 1,W;k+z —

which, together with (5.3) for i = 1, gives:

w: ~ o.

Inequality (5.5) for i = 1 gives:

(vfTk .
q~Lvk+2 ~ Wj, +l s Ck,

since w f and w:,+ ~ are nonnegative. Under condition (5.8), we have:

11
:S> <Tk*v; Tk–l>z~Tk–l> O,
VI ~1

and (5. 12) gives:
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(5.10)

(5.11)

(5.12)

c’

‘:Nk+2 ~ = i7;Nk+2,
Z~Tk – 1

(5.13)

Note that ~~, and therefore fi~~~ ~~, does not depend on A-k (see eq. (3.8)).

Multiplying inequality (5.3) by v, and adding it with (5.5), we obtain:

which, in view of (5.7) and (5.13), implies:

~k
i

wL’+Nk+2 < 1 + :W1’+NL+, + —i7k
Ck

~k 2N~+29 i= l,..., ~k – 1, (5.14)

Since w&. ~ S 1, we can recursively obtain upper bounds ~,i N, + z on Wk. N,. ~

using (5.14), for i = 1, ..., Nk – 1. These bounds do not depend on A-k, as 7)

is independent of A ‘k.

Now, by inequality (5.3), we have:

Wzk> 1 — iijk+Nk+l, i=’2 ,., .> Nk .

Finally, (5.5) and (5.6), together with (5.9), give:

c’ i
Wck< ~ + ‘ZIN~+Z,

J
i=l 9..., Nk .

-1

Thus, for all i = 1,,.., 2Nk + 2, there exist ~~, i7}, independent of A-k,

such that ~~ s wf s Z:. Defining:

2N~~2

w’ = 8 [YJJV]>
icl

the result follows. D

Note that the result of the lemma is stronger than the sufficient condition

SZk(A-k ) n Wk # 0, for all A-k = A ‘k. Using this result, continuity of &k is

established in the following:

LEMMA 5.2. If l/vf < Tk, then -%k: A-k * @k is continuous.
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PROOF. The linear program (3.12)–(3.18) is continuously parametrized

(Appendix A) by A-k, since the Norton’s equivalent v k is a continuous

function of A-k (Section 3.1). Furthermore, Ok is compact and in view of

Lemma 5.1 the sufficient conditions of Corolla~ A.4 in Appendix A are

satisfied. Thus, &?’k: A ‘k -+ ~ k is continuous. ❑

Let us define the set:

We are ready to prove the following:

THEOREM 5.3. If Tk = J&, then the best reply function of user k, Rk:

A-k + Ak, is continuous. Furthermore, if FL( A‘~ ) is the optimal throughput of

user k when the other users’ strategy projile is A ‘k, then Fk: A-k -+ [0, Ck] is also

continuous.

PROOF. Since Ak is compact, according to Lemma A.2 in Appendix A, RL:

A ‘k a Ak is continuous if and only if for every convergent sequence

{( Ak(n), A-k(n)), n > O} in A, with:

A~(n) = Rk(A-A(n)), n>O (5.15)

and

lim (Ak(n), A-k(n)) = (Ak, A-k),
n+.

we have:

AL = Rk(A-k).

From (5.1) and eq. (5.15), we obtain:

fk(A’(n), A-k(n)) =S’k(A-’(n)), rz>o. (5.16)

From eqs. (3.10) and (3.11) and continuity of the Norton’s equivalent Vk in

A-k it is easy to see that fk: A ~ R2~’+1 is continuous. Furthermore, Y’k is

continuous, by Lemma 5.2. Taking the limit as n -+ ~ on both sides of eq.

(5.16), we get:

f’(Ak, A-k) =&k(A-k).

Then, (5.1) implies Ak = Rk( A‘h ) and continuity of Rk follows.

Continuity of Fk in A-k can be proven using the continuity of the best reply

function and the Norton’s equivalent associated with user k. The details are

left to the reader. ❑

In Appendix B.2, we give a simple example of an .\ M/l queue shared by

two users showing that the best reply function of user k might be discontinu-

ous, if the upper bound on its average time-delay does not satisfy the condition

l/~~ < Tk. Therefore, this is a tight sufficient condition for continuity of Rk.

Remark 5.4. Recall, from eq. (3.8), that I! = minA-k V; > 0 is the mini-

mum rate at which user k is served in the network, given that it has one packet

in it. Hence, 1/1~ is the maximum time-delay of the user with one packet in

the network. The sufficient condition (5.8) for continuity of Rk ensures that if

user k sends just one packet in the network, that is, if A: > 0 and A~, = O for
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all 1~ z 1, then its time-delay constraint is not violated, independently of the

actions of the other users. As explained in Section 3.2, user k has a best reply

to any strategy profile A‘k = A-h of the other users. Condition (5.8), then,

implies that this best reply is such that the user sends at least one packet in the

network. In other words, it is a regularity condition guaranteeing that the flow

control problem has always the structure of a K-person game: there is no

strategy profile of the other users, that can force user k to refrain from

utilizing network resources, in order to satisfy its time-delay constraint. In fact,

if user k can be forced by the actions of the other users to send no flow into

the network, its best reply function is discontinuous. More specifically, using

eq. (3.10) in eqs. (3.2) and (3.3), it can be easily verified that the average

throughput of the user is increasing in A;, while its average time-delay does not

depend on Al. Thus, as long as the user can satisfy its time-delay constraint, Al

is equal to Ck, whereas inability of the user to satisfy its constraint implies

At = O Therefore, if the user is forced to “withdraw” from the game, A$ drops

from c-k to zero and its best reply function is discontinuous.

A condition similar to (5.8) has been postulated in Lazar [1983] for the

time-delay constraint of the user. A condition that secures that no user can be

forced by the actions of the others to withdraw from the game has also been

imposed on the routing game of Orda et al. [1993]. It is important to notice

that condition (5.8) does not imply that the time-delay constraint of the user

will not hold tight at an equilibrium. Typically, the average time-delay of the

user increases with the number of packets it sends into the network.1” There-

fore, although the constraint is not effective if the user sends just one packet, it

will eventually become tight as the user sends more packets in the network, in

order to maximize its throughput.

Since the individual best reply functions are continuous (Theorem 5.3), the

best reply function of the flow control game R: A ~ A, defined by eq. (4.4), is

also continuous and, by Brouwer’s theorem, it has a fixed point. This point is a

Nash equilibrium of the flow control game. We have, therefore, proven the

following:

THEOREM 5.5. A Nash equilibrium point exists for the jlow control problem of

K users sharing a network of quasi-rellersible queues, when the control of user k

(1 < k < K) is state-dependent and bounded and its performance objectiue is to

maximize its individual aL’erage throughput subject to an upper bound Tk = @ on

its auerage time-delay.

Remark 5.6. An immediate question that arises from the existence result of

Theorem 5.5, is whether the flow control game has a unique or multiple Nash

equilibria. In Appendix B.3, we provide a simple example of a two-user flow

control game with multiple equilibria. The presence of multiple Nash equilibria

is to be contrasted with the uniqueness results for the greedy algorithm in

Bovopoulos and Lazar [1988] and Douligeris and Mazumdar [1988].

‘0 In single-class networks of ./M/l queues, the average time-delay increases with the number of

packets [Walrand 1988]. Although there is no proof of this monotonicity result for general

multiclass queueing systems, this behawor is typical in telecommunication networks.
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It is important to realize that, although the best reply correspondence of the

flow control model considered in this paper is a function, uniqueness of the

best reply for each user is not the key property that leads to the existence

result of Theorem 5.5. Rather, the continuity of the best reply function plays

the fundamental role in the existence of Nash equilibria. In general, the best

reply correspondence of a congestion control scheme might not be a function.

In such cases, Kakutani’s theorem provides sufficient conditions for a point-to-

set correspondence, mapping a convex and compact set into itself, to have a

fixed point. Continuity in Brouwer’s theorem is replaced by closeness (Defini-

tion A.1 in Appendix A) of the correspondence in Kakutani’s theorem; there is

also an additional condition that requires that the best reply of each user to

any strategy profile of the other users be a nonempty and convex set. Since the

set of optimal solutions of a linear program is convex, given that it is not

empty, Theorem A.3 provides sufficient conditions for existence of equilibrium

points in decentralized control schemes, where the control parameters are

determined by means of a number of interconnected (mutually parametrized)

linear programs.

6. Conclusions

In the present paper, we investigated the existence of Nash equilibria in

noncooperative flow control of a general product-form network. Existence of

equilibria was established, under a regularity condition guaranteeing that no

user can be forced by the other users to withdraw from utilizing network

resources. The network model is one of the most general analytically tractable

models: a network of quasi-reversible queues. High-speed networks with propa-

gation delays and nodal schedulers that approximate the processor sharing

service discipline belong to this category. The user performance objective,

defined as maximizing the utilization of network resources without violating

certain quality of service constraints, is well suited for realistic networking

environments. This is to be contrasted with other game theoretic studies in the

congestion control literature, where it is a priori assumed that the users’ utility

functions satisfy first and second order monotonicity properties that allow a

direct application of standard equilibrium existence results.

We proposed a general method to study the existence of equilibria in

noncooperative congestion control schemes that is based on the best reply

correspondence of the underlying game. This method relies on the most

general mathematical techniques available to show existence of noncooperative

equilibria, namely fixed-point theorems. Thus, it can be applied to constrained

game models that do not satisfy the conditions of standard game theoretic

results, for example, Rosen’s theorem.

The problem of continuity of the optimal solution correspondence of a

parametrized linear program was addressed. Theorem A.3 provides sufficient

conditions for this correspondence to be closed and is of interest on its own

right. More importantly, it can be readily applied to study the existence of

equilibria in decentralized control schemes where the control parameters are

determined via a collection of interdependent linear programs.

Several topics for future research arise from the existence result, such as

characterizing the set of Nash equilibria and their properties (e.g., stability)

and examining convergence of synchronous and asynchronous algorithms to an
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equilibrium point. The formulation of the flow control problem around its best

reply function provides a means to systematically study these topics. Moreover,

the properties of the best reply function established in the present paper might

prove to be an important starting point in this direction.

Appendix A. Linear Programming and ContinuiQ

In this appendix, we study the problem of continuity in linear programming.

Consider the linear program in standard form:

max cy

subject to:

Ay = b, y>o,

where y c R“ is the unknown vector and c c F!m, b = R~ and A is a k X m

matrix. Now suppose that the “constants” of the problem, that is, vectors c and

b and matrix A, are functions of a parameter x that takes values in some set

X. Denote the parametrized linear program by:

max c(.x)y (Al)

subject to:

i4(X)y = b(x), y>o. (AZ)

If the entries of matrix A and vectors c and b are continuous functions of x,

we say that the linear program (A. 1)–(A.2) is continuously parametrized by x.

Each value of the parameter x leads to a different linear program, according

to (A. 1)–(A.2). The set of optimal solutions of this linear program depends on

the parameter x and is denoted by 57(x). This way, we define a point-to-set

correspondence .5?: X s ~ R”, that maps each x E X to the set of optimal

solutions of the linear program. Therefore, to address the issue of continuity in

linear programming, we need an appropriate definition of continuity for

point-to-set correspondences. Conceptually, continuity means that a small

perturbation in the parameter x will result in a small change in the set of

optimal solutions of the linear program. There are several definitions that

generalize the concept of continuity from functions to correspondences

[Takayama 1985]. In the present paper, we adopt the concept of a closed

correspondence.

Definition A. 1. Let X and Y be subsets of two (finite dimensional) Eu-

clidean spaces. A point-to-set correspondence R: X * d Y is said to be closed

if its graph

YR = {(~, y) =X@ Y: y ~R(x)}

is a closed subset of X 8 Y, that is, if for any convergent sequence {( x“, y n),

n > O} in .&R:

Iim (X’, yn) = (x, y) G &R.
n~%

A relation between closeness for correspondences and continuity for func-

tions is given in the following lemma [Takayama 1985, Theorem 2.D. 12]:

LEMMA A.2. A jimction f: X -+ Y, where Y is a compact set, is closed if and

only if f is continuous.
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In the sequel, we derive sufficient conditions for a continuously parametrized

linear program to have a closed graph. Continuity considerations are scarce in

the linear-programming literature. Most of the related studies treat cases

where either the objective vector c, or the right-hand-side vector b is varied

linearly with the parameter and concentrate on the implications of this pertur-

bation on the optimal basis and the simplex method; see, for example, Bazaraa

et al. [1990, Chapter 6] and references therein. In a more general context,

sufficient conditions for continuity of the set of solutions to a parametrized

maximization problem are given by the “maximum theorem,” due to Berge

[1963], which is one of the fundamental theorems employed in mathematical

economics [Border 1985; Takayama 1985]. However, as will be explained in the

sequel, the maximum theorem does not have the precise form needed in this

paper.

Consider the parametrized linear program (A.1)-(A.2) and fix x in X. By

the theory of duality in linear programming [Gale 1960; Luenberger 1984],

y = 11~ is an optimal solution of the linear program, if and only if there exists

some w = R~, such that:

z4(X)Y = b(x), (A.3)

WA(X) 2 c(x), (A.4)

wb(x) = c(~)y, (A.5)

y>o. (A.6)

If such a w exists, it is an optimal solution of the dual linear program:

minwb(x)

subject to:

WA(x) 2 c(x), w: unrestricted.

Define the point-to-set correspondence ~: X -+ ~ D?k that maps each x ~ X

to the set of optimal solutions of the dual linear program. If there exists a pair

of y and w that satis~ the optimality conditions (A.3)–(A.6), then y G-’%’(x)

and w =9(x). We are now ready to prove the following:

THEOREM A.3. Consider a linearprogram continuously parametrized by x G X,

a subset of a finite dimensional Euclidean space. If there exists a compact set

W c Rk, such that:

a(x) n w+ 0, (A.7)

for all x = X satisjjing &Z(x) + 0, then the point-to-set correspondence --$%

X ~ A Rm is closed.

PROOF. Let {(x”, y“), n z 0} be a convergent sequence in 22%, with limit

(x, y). We have to show that (x, y) = S%%.

For all n, we have yn =%(.x”). Thus, there exists a w“, such that the

optimality conditions (A.3)–(A.6) are satisfied:

/i(Xn)yn = b(x”), MM(x”) 2 C(xn),

w“b(x”) = C(X”)y ’z, y“ >0.
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Condition (A.7) implies that, for all n a O, w“ can be chosen to belong to W.

Hence, {w”} is a sequence in a compact set and it has a convergent subse-

quence {w~n, n ~ O} with limit w = W, Note that for all n:

A(x~”)y k. = b(x~n), l’vk”A(xk”) 2 C(xk”),
(A.8)

w~”b(x~”) = C(x+”), yk” 20.

By continuity of A(.), b(.), and co, taking the limit as n - ~ in (A.8), we get:

A(x)y = b(x), WA(X) 2 c(x), Wb(x) = C(x)y, y20.

These are precisely the optimality conditions that imply that y = L?’(x), or

equivalently that (x, y) = 3’2’-’. ❑

Condition (A.7) requires that whenever the primal linear program has an

optimal solution, at least one optimal solution of the dual belongs to W. The

set of optimal solutions of the dual is not necessarily a subset of W, but its

intersection with W’ must be nonempty. The following example shows that if

this sufficient condition is not satisfied, L? might fail to be closed.

Example A.4. Consider the following linear program, with parameter x z O:

m= YI +Y2

subject to:

X(yl +y2) <0, 2y, +y2 <1, yl, y2>o.

The dual linear program is:

min Wz

subject to:

xw, + 2W2 > 1, xwl+wo>l, W1, W220.

A little thought shows that:

({(0>0)}, X>o

‘(x)= {(0, 1)}, x=()

and

{

{(a, o): cl> l/x},
527(X) =

{(a,l):a> o},

From (A.9), one can see that L? does not have

X>o

X=o.

(A.9)

(A.1O)

a closed graph (take x” ~ O).

On the other hand, for every compact subset W of Rz, the~e &xists some x z O,

sufficiently small, such that ~(x) n W = 0, as can be seen from (A. 10). This

situation is depicted in Figure 3.

Remark A.5.11 The problem of continuity in linear programming is a special

case of the problem addressed in the “maximum theorem” [Berge 1963], which

‘‘ The discussion m this remark requires famiharity with topological notions, such as upper and

lower semi-continuity of correspondences [Border 1985; Takayama 1985]. The definitions of which

will not be presented here. For the purposes of this dr,cusslon, suffice lt to say that R: X ~ - Y

]s: (i) upper semi-continuous If lt is closed and Y N compact, (ii) lower semi-continuous, lf and

only if, for every x = X, x“ ~ z and y e R(x) imply that there is a sequence y“ = R(x”) with

Y“ a .Y, and (iii) continuous if it is both upper and lower semi-continuous.
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b

Wz

(0,0) l\
z)(x), x> o

;
w,

FIG. 3. Optimal solution set of the dual linear program.

states that the set of solutions to the problem of maximizing a cdmtinuous

function over a compact set that varies continuously with some parameter is an

upper semi-continuous correspondence. More precisely, let X and Y be

subsets of two (finite dimensional) Euclidean spaces, %7:X -+ -+ Y a compact-

valued correspondence and f: X ~ Y a R a continuous function. Define 17:

x+ + Y by I’(x) = argmaxv= g(,) ~(x, y), and F: X -+ R by F(.x) =

maxY e ~~., ~(x, y). The maximum theorem asserts that if % is continuous at
x = X, then r is closed and upper semi-continuous at x, and F is continuous

at x [Border 1985; Theorem 12.1].

Let us now investigate the relation of Theorem A.3 with the maximum

theorem. Consider the continuously parametrized linear program (A.1)-(A.2)

and define %(x) = {y 6 Rm: A(x)y = b(x), y a O} and ~(x, y) = c(x)y, for

allx=X, y=R~. We concentrate on the case that the constraint set ‘%(x) is

a subset of a compact set Y c R~, since this is the structure of the linear

program (3.12)–(3.18). Evidently, f is continuous in X @ Y and f%(x) is a

compact set for all x = X, as it is required by the maximum theorem.

Furthermore, it is easy to see that ‘%: X ~ e Y is closed and, since Y is

compact, it is also upper semi-continuous. Nonetheless, %’ is not lower semi-

continuous in general, as can be seen by the example following Theorem A.3.

In that example, we have:

(
{(0,0)}, X>o

‘(x) = {yl, y220:2y~ +yzs 1}, X=o”

Taking a sequence x“ >0 with x“ ~ O, and y = (O,1) G %(o), there is no
sequence y“ G %(x”) = {(O, O)} such that y“ -+ y; thus, % is not lower semi-

continuous.
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Theorem A.3 relaxes the requirement of continuity of the constraint set

itself to continuity of A(. ) and b(.), but it introduces the additional condition

(A.7) on the solution set of the dual linear program. It is worth noting that this

condition does not imply lower semi-continuity of the constraint set of the

primal. Consider, for example, the following linear program with parameter

X>o:

max yz

subject to:

.91 + Yz s 0, 2y1 +y2 <1, YI, Y220.

The dual linear program is:

subject to:

Xw, + 2W2 > o, W1+W221, W1, W220.

Then, 9(x) = {(a, O): a > 1}, for all x >0, and 9 satisfies the sufficient

condition of Theorem A.3. However, %(x) = {(O, O)} for all x > 0, while

%(0) = {(a, O): O s a s 1/2}; therefore, % is not lower semi-continuous at

X=o.

Combining the results of Lemma A.2 and Theorem A.3, we arrive at the

following:

COROLLARY A.6. Consider a continuousij parametrized linear program as in

Theorem A.3. If&(x) is a singleton for all x = X and in addition to the sujj$cient

condition (A.7) of Theorem A.3, there exists a compact set Y c R m, such that

S(x) c Y, for all x = X, then the function 2: X ~ Y is continuous.

Appendix B. The Two-User Case: Examples

In this appendix we use a simple flow control model to construct three

examples, the first of which demonstrates that the joint strategy space is

nonconvex, the second that if the sufficient condition of Theorem 5.3 is

relaxed, the best reply function of user k might be discontinuous, and the third

that a flow control game might, in general, have multiple Nash equilibria.

Consider the flow control model of Figure 1 with two users and the network

consisting of a single ./M/ l-FCFS queue with service rate ~. Let (1,, Zz) be the

state of the network queue, where lk is the number of

Using eqs. (2.1) and (2.2), the equilibrium distribution of

The conditional estimate of the rate at which class 1

the network queue, given that there are /l such packets in it, is:

4,= ,;OP&-P,,,,
2

class k packets in it.

the network queue is:

O s 1, s N,. (B.1)

packets are served in
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The conditional estimates vl~ for user 2 are given by a similar expression.

B.1. The Joint Strategy Space is Nonconvex

Let us now provide an example that shows that the joint strategy space defined

as the subset of A in which the time-delay constraints of all users are satisfied,

that is, A’ = {A = A: Erk s T~, k = 1,...,K} is not convex. For the two-user

model under consideration, the average throughput and average queue length

for user 1 are respectively:

N,–1 N, N, N,

Eyl = ~ AI, ~ Pl,l,~ EQI = z 1] ~ P~,~,~ (B.3)
1,=0 12=0 1,=1 12=0

Using Little’s formula, the time-delay constraint of user 1 can be written as

EQl – TIEyl <0.

Let N1 = 2 and Nz = 1. Us

of user 1 is given by:

[+-T)+ A,(+-$

g eqs. (B.1) and (B.3), the time-delay constraint

Similarly, the time-delay constraint for user 2 is:

~ o.

(B.4)

(B.5)

Now,let K = 1, c1 = C2 = 3, Tl = 1.5 and T2 = 1.6. The joint strategy space

A’ defined by O s A: s Ck, O s lk < Nk, k = 1,2, and the time-de[ay ~on-

straints (B.4) and (B.5$ is depicted in Figure 4 and can be easily seen not to be

convex.

B.2. Discontinuity of the Best Reply Function

Let us now construct an example that demonstrates that the best reply function

of a user might be discontinuous if its time-delay bound does not satisfy the

sufficient condition (5.8) of Theorem 5.3.

Consider the two-user model and restrict Ak (k = 1,2) to strategies that

have the window structure described by eq. (3.20) with the “intermediate”

point, if any, at the end of the window, that is, strategies of the form:

[

o, Lk<l~<Nk

A! = & ~(o,c~], l~=Lk–l ,
h

(B.6)

Ck, O<lk<Lk–l

where Lk is some integer between 1 and Nk.

Suppose that user 2 employs a strategy A’ G A’. Then, vi is concave

increasing in 11[Hsiao and Lazar 1984]. In that case, according to Lazar [1983],

the best reply of user 1 will have the structure described by eq. (B.6).

Therefore, if one of the users clhooses a strategy as in eq. (B.6), all subsequent
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FIG. 4. The joint strategy space A’ is

not convex.

best replies of both users will be of the same type. This observation allows us to

concentrate only on strategies Ah 6 Ak. However, in doing so, we do not

consider all the admissible strategies of the users and we partially observe the

behavior of the flow control game.

Due to its special structure, any strategy AL ~ Ah can be represented by a

single scalar, instead of a vector. Specifically, let us define Sk = Z~=–o* ,i~.

Then, any s~ ~ [0, Nkc~ ] corresponds to a unique strategy Ak E AL. Th~s

observation allows us to represent the best replies of the users in two-dimen-

sional plots.

Using standard differentiation techniques, it is a matter of simple algebra to

verify that v~,, given in eq. (B.2), is strictly decreasing in A;,, O s 12 < Nz.

Therefore, v; attains its minimum value when A;, = C2, for all 1,. Now, let

N1=N2=5, p=l, cl=c~= 2 and 7’1 = 5. From eq. (B.2) with fi, = C2, we

have l\I~ = 5.092> T 1, that is, the sufficient condition (5.8) for continuity of

R 1 is not satisfied. The best reply function of user 1 versus Sz is shown in

Figure 5. From that figure, it is evident that the best reply function of user 1 is

not continuous. In particular, at S2 = 9.625 the user’s best reply drops from 2

to O; note that this indicates that R 1 is not continuous in ~~, when & = .00 =

A: = 2. Using the same example, we have observed that the best reply function

is indeed discontinuous whenever T 1 does not satisfy (5.8); as T 1 is increased

toward 5.092, the discontinuity point moves toward S2 = 10.

13.3. Existence of Maltiple Nash Equilibria

We now proceed with an example that demonstrates that the flow control game

might have multiple Nash equilibria.

Consider the two-user model of the previous example. As in that example,

we concentrate on strategies AL of the type described by eq. (B.6), that can be

represented by a single scalar Sk = [O, NAc k]. If we plot the best reply curves of

both users in the same S1 – sz coordinate system, it is easy to see that the

points where these two curves intersect are Nash equilibria of the flow control

game. Note, however, that by using this method we can determine only the

equilibria that have the structure described by eq. (B.6).
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User 2 Strategy

FIG. 5. The best reply function of user 1 k discontinuous.

2

11
I

n

“o 1 2 3 4 5 6 7 8 9 10
User 2 Strategy

FIG. 6. Nash equilibria of the flow control game.

Now, let Nl=Nz=5, ~=1, cl= cz=2and Tl=TT=6. As in the

previous example, it can be seen that l/~k = 5.092< Tk, k = 1,2, that is,

the sufficient condition of Theorem 5.4 N satisfied. The best reply curves

of the users are depicted in Figure 6. In that figure, one can identify nine Nash

equilibria. Note that there exists an equilibrium (E) for which s 1 = S2, while

the remaining equilibria can be partitioned into symmetric pairs (A and A‘, B

and B‘, and so forth), something that should be expected, because of the

symmetry inherent in the model.

Using the two-user model, we have also observed the existence of multiple

Nash equilibria in flow control games with users that are not symmetrical.
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