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This paper discusses the disease-free and endemic equilibrium points of a SVEIRS propagation
disease model which potentially involves a regular constant vaccination. The positivity of such a
model is also discussed as well as the boundedness of the total and partial populations. The model
takes also into consideration the natural population growing and the mortality associated to the
disease as well as the lost of immunity of newborns. It is assumed that there are two finite delays
affecting the susceptible, recovered, exposed, and infected population dynamics. Some extensions
are given for the case when impulsive nonconstant vaccination is incorporated at, in general,
an aperiodic sequence of time instants. Such an impulsive vaccination consists of a culling or a
partial removal action on the susceptible population which is transferred to the vaccinated one.
The oscillatory behavior under impulsive vaccination, performed in general, at nonperiodic time
intervals, is also discussed.

1. Introduction

Important control problems nowadays related to Life Sciences are the control of ecological
models like, for instance, those of population evolution (Beverton-Holt model, Hassell model,
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Ricker model, etc. [1–5]) via the online adjustment of the species environment carrying
capacity, that of the population growth or that of the regulated harvesting quota as well
as the disease propagation via vaccination control. In a set of papers, several variants
and generalizations of the Beverton-Holt model (standard time-invariant, time-varying
parameterized, generalized model or modified generalized model) have been investigated
at the levels of stability, cycle-oscillatory behavior, permanence, and control through the
manipulation of the carrying capacity (see, e.g., [1–5]). The design of related control
actions has been proved to be important in those papers at the levels, for instance, of
aquaculture exploitation or plague fighting. On the other hand, the literature about epidemic
mathematical models is exhaustive in many books and papers. A nonexhaustive list of
references is given in this manuscript, compare [6–14] (see also the references listed therein).
The sets of models include the most basic ones, [6, 7].

(i) SI-models where not removed-by-immunity population is assumed. In other
words, only susceptible and infected populations are assumed.

(ii) SIR-models, which include susceptible, infected, and removed-by-immunity popu-
lations.

(iii) SEIR-models where the infected populations is split into two ones (i.e., the
“infected” which incubate the disease but do not still have any disease symptoms
and the “infectious” or “infective” which do exhibit the external disease symp-
toms).

The three abovemodels have two possible major variants, namely, the so-called “pseudomass
action models,” where the total population is not taken into account as a relevant disease
contagious factor or disease transmission power, and the so-called “true-mass action
models”, where the total population is more realistically considered as being an inverse
factor of the disease transmission rates. There are other many variants of the above models,
for instance, including vaccination of different kinds: constant [8], impulsive [12], discrete-
time, and so forth, incorporating point or distributed delays [12, 13], oscillatory behaviors
[14], and so forth. On the other hand, variants of such models become considerably simpler
for the disease transmission among plants [6, 7]. Some generalizations involve the use of
a mixed regular continuous-time/impulsive vaccination control strategies for generalized
time-varying epidemic model which is subject to point and distributed time-varying delays,
[12, 13, 15–17]. Other well-known types of epidemic models are the so-called SVEIRS
epidemic models which incorporate the dynamics of a vaccinated population, and the
“infected” population without external symptoms of the SEIR-type models is replaced with
an “exposed” population subject to a certain dynamics, [18, 19]. Thus, in the context of
SVEIRS models, the infected and infectious populations of the SEIR models are joined in
a single “infected” population I(t) while there is an exposed population E(t) present in
the model. In this paper, we focus on the existence and some properties of disease-free
and endemic equilibrium points of a SVEIRS model subject to an eventual constant regular
vaccination rather than to an impulsive vaccination type. Some issues about boundedness
and positivity of the model are also investigated. The following impulsive-free SVEIRS
epidemic model, of a modified true-mass action type, with regular constant vaccination is
being firstly considered

Ṡ(t) = b(1 − S(t)) − β
S(t)I(t)
1 + ηS(t)

+ γI(t −ω)e−bω + ν(1 − Vc)N(t), (1.1)

V̇ (t) = −δβV (t)I(t)
1 + ηV (t)

− (γ1 + b
)
V (t) + νVcN(t), (1.2)
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E(t) = β

∫ t

t−ω

(
S(u)I(u)
1 + ηS(u)

+
δV (u)I(u)
1 + ηV (u)

)
e−b(t−u)du, (1.3)

İ(t) = βe−bτ
(

S(t − τ)
1 + ηS(t − τ)

+
δV (t − τ)

1 + ηV (t − τ)

)
I(t − τ) − (γ + b + α

)
I(t), (1.4)

Ṙ(t) = −bR(t) + γ1V (t) + γ
(
I(t) − I(t −ω)e−bω

)
, (1.5)

where S, V, E, I, and R are, respectively, the susceptible, vaccinated, exposed, infected (or
infective or infectious), and recovered populations, N(t) is the total population being the
sum of the above ones, and Vc ∈ [0, 1] is a constant vaccination action. There are potential
latent and immune periods denoted by τ and ω, respectively, which are internal delays in the
dynamic system (1.1)–(1.5), and b is the natural birth rate and death rate of the population.
The parameter ν < b takes into account a vaccination action on newborns which decreases
the incremental susceptible population through time, γ1 is the average rate for vaccines to
obtain immunity and move into recovered population, and β (disease transmission constant)
and δβ are, respectively, average numbers for contacts of an infective with a susceptible
and an infective with a vaccinated individual per unit of time, [18]. The periodic impulsive,
rather than regular, vaccination action proposed in [18, 19], can be got from (1.1)–(1.5) with
Vc = 0 while adding either corresponding “culling” action, or, alternatively, a less drastic
“partial removal of susceptible from the habitat” action. This implies in practical terms to
put in quarantine a part of the susceptible population so as to minimize the effects of the
disease propagation what corresponds with a population decrease of the susceptible in the
habitat under study and a parallel increase of the vaccinated populations at times being an
integer multiple of some prefixed period T > 0. This paper investigate through Sections 2–
4 the existence and uniqueness of the delay-free and endemic equilibrium points as well as
the positivity and boundedness of the state-trajectory solutions under arbitrary nonnegative
initial conditions and optional constant vaccination. Some generalized extensions concerning
this model are given in Section 5 by using aperiodic impulsive vaccination with time-varying
associated gains, in general, and investigating the state-trajectory solution properties. This
impulsive vaccinations strategy will be performed as follows at a sequence of time instants
{tk}k∈Z0+

ran in general at a nonperiodic “in-between” sampling interval sequence:

S
(
t+k
)
= (1 − θk)S(tk); V

(
t+k
)
= V (tk) + θkS(tk),

E
(
t+k
)
= E(tk); I

(
t+k
)
= I(tk); R

(
t+k
)
= R(tk).

(1.6)

Examples are provided in Section 6. It has to be pointed out that other variants of epidemic
models have been recently investigated as follows. In [20], a mixed regular and impulsive
vaccination action is proposed for a SEIR epidemic mode model which involves also mixed
point and distributed delays. In [21], an impulsive vaccination strategy is discussed for a
SVEIR epidemic model whose latent period is a point delay while the existence of an immune
period is not assumed. In [22], a latent period is introduced in the susceptible population of a
SIR epidemic model with saturated incidence rate. The disease-free equilibrium point results
to be locally asymptotically stable if the reproduction number is less than unity while the
endemic equilibrium point is locally asymptotically stable if such a number exceeds unity.
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2. The Disease-Free Equilibrium Point

The potential existence of a disease-free equilibrium point is now discussed which
asymptotically removes the disease if ν < b.

Theorem 2.1. Assume that ν < b. Then, the disease-free equilibrium point E∗ = I∗ = 0 fulfils

R∗ =
νγ1VcN

∗

b
(
γ1 + b

) = γ1
(b − ν(1 − Vc))N∗ − b

(
γ1 + b

)
b

,

V ∗ =
νVcN

∗

γ1 + b
=

(b − ν(1 − Vc))N∗ − b

γ1 + b
, S∗ = 1 +

νN∗(1 − Vc)
b

,

(2.1)

which imply the following further constraints:

N∗ =
b

b − ν
, S∗ − 1 =

ν(1 − Vc)
b − ν

, V ∗ + R∗ =
νVcN

∗

b
=

νVc

b − ν
. (2.2)

Two particular disease-free equilibrium points are S∗ = N∗ = b/(b − ν), E∗ = I∗ = V ∗ = R∗ = 0 if
Vc = 0, and S∗ = 1, V ∗ = νN∗/(γ1 + b) = νb/(γ1 + b)(b − ν), R∗ = νγ1/(γ1 + b)(b − ν), E∗ = I∗ = 0
if Vc = 1.

If ν ≥ b, then there is no disease-free equilibrium points.

Proof. Any existing equilibrium points are calculated as follows by zeroing (1.1), (1.2), (1.4),
and (1.5) and making (1.3) identical to an equilibrium value E∗ what leads to:

b −
(
b +

βI∗

1 + ηS∗

)
S∗ + γI∗e−bω + νN∗(1 − Vc) = 0,

−
(

δβI∗

1 + ηV ∗ + γ1 + b

)
V ∗ + νN∗Vc = 0,

(2.3)

E∗ =
β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗, (2.4)

βe−bτ
(

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗ − (γ + b + α

)
I∗ = 0, (2.5)

γ1V
∗ − bR∗ + γ

(
1 − e−bω

)
I∗ = 0. (2.6)
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The disease-free equilibrium point satisfies the constraints

E∗ = I∗ = 0,

b(1 − S∗) + νN∗(1 − Vc) = 0 =⇒ S∗ = 1 +
νN∗(1 − Vc)

b
,

γ1V
∗ − bR∗ = 0 =⇒ V ∗ =

bR∗

γ1
,

−(γ1 + b
)
V ∗ + νN∗Vc = 0 =⇒ V ∗ =

νN∗Vc

γ1 + b
=

bR∗

γ1
,

N∗ = S∗ + V ∗ + R∗ = 1 +
νN∗(1 − Vc)

b
+
(
1 +

b

γ1

)
R∗,

= 1 +
νN∗(1 − Vc)

b
+
νN∗Vc

b
=

b + νN∗

b
=⇒ N∗

=
b

b − ν
provided that ν < b.

(2.7)

The proof follows directly from the above equations.

Remark 2.2. Note that if γ1 = b, then R∗ = V ∗ = (νVcN
∗/2b) = (νVc/(2(b − ν))). Note also that

if ν = 0, as in the particular case of impulsive-free SVEIRSmodel obtained from that discussed
in [18, 19], then the disease-free equilibrium satisfies E∗ = V ∗ = I∗ = R∗ = 0, N∗ = S∗ = 1. In
such a case, the model can be ran out with population normalized to unity.

Assertion 1. Assume that β ≤ (γ + b + α)ebτ(b(1 + δ) − ν)/b(1 + δ). Then,

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ =
b − νVc(

1 + η
)
(b − ν) + ην(1 − Vc)

+
δνbVc(

γ1 + b
)
(b − ν) + ηνbVc

,

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ ≤
(
γ + b + α − εβ

)
ebτ

β
,

(2.8)

where R0+ � εβ := γ + b + α − (βb(1 + δ)/(b(1 + η) − ν))e−bτ .

Proof. Note from Theorem 2.1 that the disease-free equilibrium point satisfies from simple
direct calculations that

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ =
b − νVc(

1 + η
)
(b − ν) + ην(1 − Vc)

+
δνbVc(

γ1 + b
)
(b − ν) + ηνbVc

=
1

S∗−1 + η
+

δ

V ∗−1 + η
≤ 1 + δ

N∗−1 + η
=

b(1 + δ)
b
(
1 + η

) − ν
=

(
γ + b + α − εβ

)
ebτ

β

(2.9)
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since min(S∗−1 , V ∗−1) ≥ N∗−1 what also yields β = (γ + b + α − εβ)ebτ((b(1 + η) − ν)/b(1 + δ)),
that is, εβ := γ + b + α − (βb(1 + δ)/(b(1 + η) − ν))e−bτ .

Note that the exposed population at the equilibrium defined by (1.3) can be equivalently
described by a differential equation obtained by applying the Leibniz differentiation rule
under the integral symbol to yield

˙̃E(t) = −bẼ(t) + β

(
S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)(
Ĩ(t) − Ĩ(t −ω)e−bω

)
. (2.10)

The local asymptotic stability of the disease-free equilibrium point is guaranteed by that
of the linearized incremental system about it. The linearized model about the equilibrium
becomes to be defined from (1.1), (1.2), (2.10) and (1.4), (1.5) by the state vector x̃(t) :=
(S̃(t), Ṽ (t), Ẽ(t), Ĩ(t), R̃(t))T which satisfies the differential system

˙̃x(t) = A∗
0x̃(t) +A∗

τ x̃(t − τ) +A∗
ωx̃(t −ω); x̃(0) = x̃0, (2.11)

where, after using the identities in Theorem 2.1 related to the equilibrium point and provided
that Assertion 1 holds, one gets

A∗
0 = A∗

0d + Ã∗
0,

:=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ν(1 − Vc) − b ν(1 − Vc) ν(1 − Vc) ν(1 − Vc) −
βS∗

1 + ηS∗ ν(1 − Vc)

νVc νVc −
(
γ1 + b

)
νVc νVc −

δβV ∗

1 + ηV ∗ νVc

0 0 −b β

(
S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
0

0 0 0 −(γ + b + α
)

0

0 γ1 0 γ −b

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

:=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ν(1 − Vc) − b ν(1 − Vc) ν(1 − Vc) ν(1 − Vc) −
β(b + ν(1 − Vc)N∗)

b + η(b + ν(1 − Vc)N∗)
ν(1 − Vc)

νVc νVc −
(
γ1 + b

)
νVc νVc −

δβνVcN
∗

γ1 + b + ηνVcN∗ νVc

0 0 −b (
γ + b + α − εβ′

)
ebτ 0

0 0 0 −(γ + b + α
)

0

0 γ1 0 γ −b

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(2.12)
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where εβ′ > εβ is a real constant, and

A∗
0d := Diag

(
ν(1 − Vc) − b, νVc −

(
γ1 + b

)
,−b,−(γ + b + α

)
,− b

)
, (2.13)

Ã∗
0 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

0 ν(1 − Vc) ν(1 − Vc) ν(1 − Vc) −
β(b + ν(1 − Vc)N∗)

b + η(b + ν(1 − Vc)N∗)
ν(1 − Vc)

νVc 0 νVc νVc −
δβνVcN

∗

γ1 + b + ηνVcN∗ νVc

0 0 0
(
γ + b + α − εβ′

)
ebτ 0

0 0 0 0 0

0 γ1 0 γ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, (2.14)

and the matrices A∗
τ and A∗

ω are entry-wise defined by

(A∗
τ)44 = γ + b + α − εβ′ , (A∗

ω)14 = γe−bω,

(A∗
ω)34 = −(γ + b + α − εβ′

)
eb(τ − ω), (A∗

ω)54 = −γe−bω,
(2.15)

with all the remaining entries being zero. The following inequalities apply for equivalent
norms of either vectors or vector-induced norms of matricesM of dimension or, respectively,
order n:

n−1‖M‖2 ≤ n−1/2‖M‖∞ ≤ ‖M‖2 ≤ n1/2‖M‖1 ≤ n‖M‖2. (2.16)

Thus, one gets from the above inequalities (2.16) that

‖A∗
τ‖2 + ‖A∗

ω‖2 ≤
√
5(‖A∗

τ‖∞ + ‖A∗
ω‖∞) ≤

√
5
(
γ + b + α

)
max

(
1, eb(τ−ω)

)
≤ γ, (2.17)

where

γ =

⎧
⎪⎪⎨

⎪⎪⎩

√
5
(
γ + b + α

)
, if τ ≤ ω,

√
5
(
γ + b + α

)
eb(τ−ω), if τ > ω.

(2.18)

Note from (2.18) that
√
5(γ + b + α)eb(τ−ω) ≤ b − b0 for a given b and any given positive real

constant b0 < b if (γ + b + α) and (τ −ω), if positive, are small enough such that, equivalently,

−∞ ≤ 1
2
ln 5 + ln

(
γ + b + α

)
+ b(τ −ω) ≤ ln(b − b0). (2.19)
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Thus, one gets from (2.17)–(2.19) that

‖A∗
τ‖2 + ‖A∗

ω‖2 ≤ γ ≤ b − b0. (2.20)

On the other hand, we can use from L’Hopital rule the following limit relations in the entries
(1, 4) and (2, 4) of the matrix Ã∗

0:

β(b + ν(1 − Vc)N∗)
b + η(b + ν(1 − Vc)N∗)

−→ β

1 + η
;

δβνVcN
∗

γ1 + b + ηνVcN∗ −→ 0 as b −→ ∞ (2.21)

if the remaining parameters remain finite and then N∗ = S∗ = 1 and E∗ = I∗ = V ∗ = R∗ = 0
from Theorem 2.1. By continuity with respect to parameters, for any sufficiently large M ∈
R0+, there exist ε1,2 = ε1,2(M) ∈ R0+ with ε1,2 → 0 as t → ∞ such that for b ≥ M,

β(b + ν(1 − Vc)N∗)
b + η(b + ν(1 − Vc)N∗)

≤ β + ε1
1 + η

;
δβνVcN

∗

γ1 + b + ηνVcN∗ ≤ ε2 (2.22)

and, one gets from (2.14),

∣∣∣Ã∗
0

∣∣∣ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 ν(1 − Vc) ν(1 − Vc)
∣∣∣∣ν(1 − Vc) −

β + ε1
1 + η

∣∣∣∣ ν(1 − Vc)

νVc 0 νVc |νVc − ε2| νVc

0 0 0
(
γ + b + α − εβ′

)
ebτ 0

0 0 0 0 0

0 γ1 0 γ 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.23)

and for b being large enough such that it satisfies

b ≥ max
(
1
τ
max

(
ln

γ + γ1
γ + b + α

, ln
4 max(1, ν)
γ + b + α

)
, ba

)
, (2.24)

with ba being some existing real positive constant, depending on the vaccination constant Vc,
such that ν(1−Vc) ≥ ((β+ε1)/(1+η)), it follows from inspection of (2.22), (2.23) that ‖ Ã∗

0 ‖∞ ≤
(γ + b + α)ebτ . Using again (2.16), (2.17), it follows that the following close constraint to (2.19)
for large enough b:

−∞ ≤ 1
2
ln 5 + ln

(
γ + b + α

)
+ b(τ −ω) ≤ 1

2
ln 5 + ln

(
γ + b + α

)
+ bτ + ln

(
1 + e−bω

)
≤ ln(b − b0)

(2.25)
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guarantees

‖A∗
τ‖2 + ‖A∗

ω‖2 +
∥
∥
∥Ã∗

0

∥
∥
∥
2
≤
√
5
(
‖A∗

τ‖∞ + ‖A∗
ω‖∞ +

∥
∥
∥Ã∗

0

∥
∥
∥
∞

)

≤
√
5
(
γ + b + α

)(
max

(
1, eb(τ −ω)

)
+ ebτ

)
≤ γ1,

(2.26)

where

γ1
(
> γ

)
=

⎧
⎪⎨

⎪⎩

√
5
(
γ + b + α

)(
1 + ebτ

)
, if τ ≤ ω,

√
5
(
γ + b + α

)(
ebτ

(
1 + e−bω

))
, if τ > ω.

(2.27)

On the other hand, note that the linearized system (2.11)–(2.17) is asymptotically stable if
and only if

det
(
sI −A∗

0d − Ã∗
0 − Ã∗

τe
−τs − Ã∗

ωe
−ωs

)
/= 0; ∀s ∈ C0+ := {s ∈ C : Re s ≥ 0} (2.28)

which is guaranteed under the two conditions below:

(1) det(sI −A∗
0d)/= 0, for all s ∈ C0+ := {s ∈ C : Re s ≥ 0}, equivalently, A∗

0d is a stability
matrix

(2) the �2-matrix measure μ2(A∗
0d) of (A

∗
0d) is negative, and, furthermore, the following

constraint holds

γ1 ≤ b −max
(∣∣γ1 − νVc

∣∣, ν(1 − Vc)
)

(2.29)

which guarantees the above stability Condition 2 via (2.26), (2.27), and (2.13)

∥∥∥Ã∗
0

∥∥∥
2
+
∥∥∥Ã∗

τ

∥∥∥
2
+
∥∥∥Ã∗

ω

∥∥∥
2
≤
√
5
(
γ + b + α

)(
max

(
1, eb(τ−ω)

)
+ ebτ

)
≤ γ1

<
∣∣μ2

(
A∗

0d

)∣∣ =
1
2

∣∣∣λmax

(
A∗

0d +A∗T
0d

)∣∣∣ =
∣∣λmax

(
A∗

0d

)∣∣

= b −max
(∣∣γ1 − νVc

∣∣, ν(1 − Vc)
)
.

(2.30)

The following result is proven from Theorem 2.1, by taking into account the above asymptotic
stability conditions for the linearized incremental system about the disease-free equilibrium
point, which imply that of the nonlinear one (1.1)–(1.5) about the equilibrium point, and the
related former discussion.

Theorem 2.3. Assume that β ≤ (γ+b+α)ebτ((b(1+η)−ν)/b(1+δ)). Then, there is a sufficiently large
b > max(|γ1 − νVc|, ν(1 − Vc)) such that the disease-free equilibrium point is locally asymptotically
stable for any constant vaccination Vc ∈ [0, 1] and a sufficiently small amount (γ+b+α), a sufficiently
small delay τ and a sufficiently small difference delay (τ −ω) (this being applicable if τ > ω) such that
(2.30) holds.
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Note that the statement of Theorem 2.3 guarantees the local stability of the disease-free
equilibrium point under its existence condition of Theorem 2.1 requiring ν < b.

3. The Existence of Endemic Equilibrium Points, Uniqueness Issues,
and Some Related Characterizations

The existence of endemic equilibrium points which keep alive the disease propagation is now
discussed. It is proven that there is a unique equilibrium point with physical meaning since
all the partial populations are nonnegative.

Theorem 3.1. Assume that ω > 0. Then, the following properties hold.

(i) Assume that β ≥ ((ηebτ(γ +b+α))/(1+δ)) for Vc > 0 and β ≥ ηebτ(γ +b+α) for Vc = 0.
Thus, there is at least one endemic equilibrium point at which the susceptible, vaccinated,
infected, exposed, and recovered populations are positive and the vaccinated population is
zero if and only if Vc = 0 (i.e., in the absence of vaccination action). Furthermore, such an
equilibrium point satisfies the constraints

E∗ =
β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗ > 0,

min
(
S∗ + δV ∗,

1 + δ

η

)
≥ S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ =
ebτ

(
γ + b + α

)

β
> 0,

R∗ =
γ1V

∗ + γ
(
1 − e−bω

)
I∗

b
≥ γ

(
1 − e−bω

)
I∗

b
> 0.

(3.1)

(ii) If the disease transmission constant is small enough satisfying β < β := (ηebτ(γ + b +
α)/(1 + δ)) for Vc > 0, and β < ηebτ(γ + b + α) for Vc = 0, then there is no reachable
endemic equilibrium point.

Proof. The endemic equilibrium point is calculated as follows:

βe−bτ
(

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
− (γ + b + α

)
= 0, (3.2)

E∗ =
β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗ > 0, (3.3)

with

E∗ > 0, I∗ > 0, (3.4)

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗ =
ebτ

(
γ + b + α

)

β
> 0 (3.5)

(since, otherwise, the above disease-free equilibrium point would be considered).
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S∗ > 0 since, otherwise, the following contradiction would follow:

0 < b + γI∗e−bω + νN∗(1 − Vc) = 0. (3.6)

V ∗ = 0 if and only if Vc = 0, since otherwise for Vc > 0 and V ∗ = 0, it would follow that
νN∗Vc = 0, what is only possible in the disease-free equilibrium if the total population is
extinguished, is a contradiction at the endemic point

R∗ =
γ1V

∗ + γ
(
1 − e−bω

)
I∗

b
≥ γ

(
1 − e−bω

)
I∗

b
> 0, for ω/= 0. (3.7)

Remark 3.2. Note that ifω = 0, then it follows from (1.3) and (2.4) that E(t) = E∗ = 0, for all t ∈
R0+ so that the SVEIRS model (1.1)–(1.5) becomes a simpler SVIRS one without specification
of the exposed population dynamics.

Remark 3.3. Note that, under the constraints in Theorem 3.1(ii) for β, if there is no reachable
endemic equilibrium point because β < β, then the solution trajectory of (1.1)–(1.5) can
only either converge to the disease-free equilibrium point provided that it is at least locally
asymptotically stable or to be bounded converging or not to an oscillatory solution or to
diverge to an unbounded total population depending on the values of the parameterization
of the model (1.1)–(1.5). Note that the endemic-free disease transmission constant upper-
bound β increases as η, τ and (γ + b + α) increase and also as δ decreases.

If Vc > 0, then it follows from Theorem 3.1 that there exist positive constants αS, αV ,
αE, αI , and αR satisfying α−1

S + α−1
V + α−1

E + α−1
I + α−1

R = 1 such that the endemic equilibrium
points, if any, satisfy the constraints

N∗ = αSS
∗ = αVV

∗ = αEE
∗ = αII

∗ = αRR
∗ (3.8)

so that one gets from (3.3)–(3.7) that

R∗ =
γ1/αV + γ

(
1 − e−bω

)
/αI

b
αRR

∗ =
γ1αI + γ

(
1 − e−bω

)
αV

bαIαV
αRR

∗, (3.9)

β

b

(
1 − e−bω

) 1 + δ

1 + η
≤ E∗

I∗
=

αI

αE
=

β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
≤ β

b

(
1 − e−bω

)1 + δ

η
(3.10)

if min(S∗, V ∗) ≥ 1, otherwise, then only the upper-bounding constraint holds in (3.10)

b −
(

b +
βαSS

∗

αI

(
1 + ηS∗)

)

S∗ + γ
αS

αI
S∗e−bω + ναSS

∗(1 − Vc) = 0, (3.11)

αVV
∗

αS + αV ηV ∗ +
δV ∗

1 + ηV ∗ =
ebτ

(
γ + b + α

)

β
. (3.12)
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Equation (3.9) is equivalent, since R∗ > 0 at the endemic equilibrium point, to

γ1αIαR + γ
(
1 − e−bω

)
αVαR

bαIαV
= 1. (3.13)

Equation (3.11) is equivalent to

[
αSη

(
ναI(1 − Vc) + γe−bω

)
+ βαS − bαIη

]
S∗2

+
[
αS

(
γe− bω + ναI(1 − Vc)

)
+ bαI

(
η − 1

)]
S∗ + bαI = 0.

(3.14)

Equation (3.14) is an algebraic equation of real coefficients of the form aS∗2 +dS∗ + c = 0 with
c > 0. Such an equation has two positive real roots if a > 0, d < 0 and d2 ≥ 4ac and one
positive real root if a < 0 and d > 0. Thus, since there is a nonzero susceptible population at
an endemic equilibrium point, then either (3.15) below holds

αSη
(
ναI(1 − Vc) + γe−bω

)
+ βαS > bαIη,

αS

(
γe−bω + ναI(1 − Vc)

)
< bαI

(
1 − η

)
, provided that η < 1,

[
αS

(
γe−bω + ναI(1 − Vc)

)
+ bαI

(
η − 1

)]2 ≥ 4bαI

[
αSη

(
ναI(1 − Vc) + γe−bω

)
+ βαS − bαIη

]

(3.15)

or, alternatively,

β <
αI

αS
bη −

(
ναI(1 − Vc) + γe−bω

)
η =

η

I∗
[
bS∗ −

(
νN∗(1 − Vc) + γe−bω

)]
,

b <
αS

(
γe−bω + ναI(1 − Vc)

)

αI

(
1 − η

) =
γe−bωI∗ + νN∗(1 − Vc)

S∗(1 − η
) ,

(3.16)

with η < 1 hold. On the other hand, (3.12) is equivalent to

αV β0
(
1 + ηV ∗)V ∗ + δβ0V

∗(αS + ηαVV
∗) =

(
1 + ηV ∗)(αS + ηαVV

∗), (3.17)

where β0 := β/ebτ(γ + b + α) so that (3.17) is of the form specifically as follows:

aV ∗2 + dV ∗ + c ≡ (
η − (1 + δ)β0

)
αV ηV

∗2 +
(
αV

(
η − β0

)
+
(
η − δβ0

)
αS

)
V ∗ + αS = 0. (3.18)
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Now, the same reasoning as that used for the susceptible endemic equilibrium component is
applied to (3.18) to conclude that, since there is a nonzero vaccinated population for at most
two endemic equilibrium points with min(S∗, V ∗) ≥ 1, then

(
γ + b + α

)
ebτ

η

1 + δ
≤ β ≤ (

γ + b + α
)
ebτ

1 + η

1 + δ
, (3.19)

which is obtained from (3.2), and either

αV

(
β0 − η

)
+
(
δβ0 − η

)
αS = (αV + αSδ)β0 − ηαV − ηαS > 0,

β0 >
ηαV + ηαS

αV + αSδ
⇐⇒ β >

ηαV + ηαS

αV + αSδ
ebτ

(
γ + b + α

)
,

(
αV

(
η − β0

)
+
(
η − δβ0

)
αS

)2
> 4

(
η − (1 + δ)β0

)
ηαVαS

(3.20)

or, a < 0, d > 0 in (3.18). The uniqueness of the endemic equilibrium point with all partial
populations being nonnegative for all time is now proven as follows. First, define auxiliary
variables

A = η
(
ναI(1 − Vc) + γe−bω

)
> 0; B =

A

η
= ναI(1 − Vc) + γe−bω > 0. (3.21)

Thus, since N∗ = αSS
∗, (3.14) can be rewritten as follows:

−bαIηS
∗2 +

[
bαI

(
η − 1

)
+N∗(A + β

)]
S∗ + (bαI +N∗B) = 0. (3.22)

If such an equation has two positive real roots for the susceptible equilibrium (implicitly
depending on N∗), then either bαIη < 0 or (bαI +N∗B) < 0 what is impossible and leads to
a contradiction. Then, there is a unique nonnegative susceptible population S∗ ≥ 0 at the two
potentially existing endemic equilibrium points provided that the total population N∗ at the
endemic equilibrium point is unique. Furthermore, simple inspection of the above equation
implies strict positivity S∗ > 0. On the other hand, it follows from Theorem 3.1, (3.5), that
δV ∗/(1 + ηV ∗) = (ebτ(γ + b + α)/β) − (S∗/(1 + ηS∗)), which has a unique solution in V ∗ for a
given S∗. Since there is a unique S∗ > 0, then there is a unique V ∗ > 0 as a result. From (2.5) in
the proof of Theorem 2.1, there is also a unique population at the infected population endemic
equilibrium I∗ > 0, then unique related exposed and recovered equilibrium populations E∗ >
0 and R∗ > 0 from (2.4) and (2.6), respectively. Thus, there is a unique endemic equilibrium
point with all the partial populations being nonnegative. The above discussion concerning
the existence of a unique endemic equilibrium point with all the partial populations being
nonnegative is summarized as follows.

Theorem 3.4. Assume that Vc ∈ (0, 1] and that (γ + b+α)ebτ(η/(1+δ)) ≤ β ≤ (γ + b+α)ebτ((1+
η)/(1 + δ)) (the upper-bounding condition does not hold if min(S∗, V ∗) < 1) so that N∗ = αSS

∗ =
αVV

∗ = αEE
∗ = αII

∗ = αRR
∗ for some positive constants αS, αV , αE, αI and αR. If N∗ is unique at
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the endemic equilibrium then, there is a unique endemic equilibrium point with all the corresponding
partial populations being positive, and the following parametrical constraints hold:

α−1
S + α−1

V + α−1
E + α−1

I + α−1
R = 1,

β

b

(
1 − e−bω

)1 + δ

1 + η
≤ αI

αE
≤ β

b

(
1 − e−bω

)1 + δ

η
.

(3.23)

The constants αS, αI , and αV satisfy either (3.15), or (3.16), and the constraint αV (η − β0) + (η −
δβ0)αS > 0 so that d > 0 in (3.18).

This result will be combined with some issues concerning the existence of limits of all
the partial population at infinite time to conclude that there is a unique total population at the
endemic equilibrium points so that, from Theorem 3.4, there is a unique endemic equilibrium
point (see Remark 5.1 and Theorem 5.2 in Section 5).

4. About Infection Propagation and the Properties of
Uniform Boundedness of the Total Population and Positivity
of All the Partial Populations

This section discuses briefly the monotone increase of the infected population and the
boundedness of the total population as well as the positivity of the model.

Theorem 4.1. If the infection propagates through (t − τ, t) with the infected population being
monotone increasing, then

S(σ)
1 + ηS(σ)

+
δV (σ)

1 + ηV (σ)
≥ γ + b + α

β
ebσ ; ∀σ ∈ (t∗ − 2τ, t∗ − τ). (4.1)

Proof. Note from (1.4) that for t ∈ (t∗ − 2τ, t∗)

İ(t) > 0 ⇐⇒ I(t)
I(t − τ)

<
βe−bτ

γ + b + α

(
S(t − τ)

1 + ηS(t − τ)
+

δV (t − τ)
1 + ηV (t − τ)

)
(4.2)

and if, furthermore, I(t) > I(t − τ) for t ∈ (t∗ − τ, t∗), then

1 <
I(t)

I(t − τ)
<

βe−bτ

γ + b + α

(
S(t − τ)

1 + ηS(t − τ)
+

δV (t − τ)
1 + ηV (t − τ)

)
. (4.3)

Now, rewrite (1.3) in differential equivalent form by using Leibnitz’s rule as follows:

Ė(t) = −bE(t)

+ β

[(
S(t)

1 + ηS(t)
+

δV (t)
1 + ηV (t)

)
I(t) −

(
S(t −ω)

1 + ηS(t −ω)
+

δV (t −ω)
1 + ηV (t −ω)

)
I(t −ω)e−bω

]
.

(4.4)
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Theorem 4.2. Assume that ν < b. Then, the following properties hold provided that the SVEIR
epidemic model (1.1)–(1.5) has nonnegative solution trajectories of all the partial populations for all
time:

(i) assume furthermore that ψ := (eντ + (β(1 + δ)(1 − e−(b− ν)τ)/η(b − ν)))e−bτ < 1, then
the total population is uniformly bounded for all time, irrespective of the susceptible and
vaccinated populations, for any bounded initial conditions and

lim sup
t→∞

N(t) ≤ 1 − e−(b−ν)τ

b − ν

(
1 − ψ

)−1
< ∞, (4.5)

(ii) assume that the disease transmission constant is large enough satisfying β ≥ (1/(1 +
δ))supt∈R0+

(bη(1 + η)/(ηe−bωI(t − ω) − (1 + η)e−bτ I(t − τ))) subject to (η/(1 + η)) >
eb(ω− τ) and ω < τ , then N : R0+ → R0+ is monotone decreasing and of negative
exponential order so that the total population exponentially extinguishes as a result.

Proof. Consider the SVEIRS model in differential form described by (1.1), (1.2), (1.4), (1.5),
and (4.4). Summing up the five equations, one gets directly

Ṅ(t) = (ν − b)N(t) + b − αI(t)

+ β

[(
S(t − τ)I(t − τ)
1 + ηS(t − τ)

+
δV (t − τ)I(t − τ)
1 + ηV (t − τ)

)
e−bτ

−
(
S(t −ω)I(t −ω)
1 + ηS(t −ω)

+
δV (t −ω)I(t −ω)
1 + ηV (t −ω)

)
e−bω

]

(4.6)

≤ (ν − b)N(t) + b + β

(
S(t − τ)

1 + ηS(t − τ)
+

δV (t − τ)
1 + ηV (t − τ)

)
I(t − τ)e−bτ

≤ (ν − b)N(t) + b + β
1 + δ

η
e−bτ I(t − τ) ≤ (ν − b)N(t) + b + β

1 + δ

η
e−bτN(t − τ)

(4.7)

since S(t)/(1 + ηS(t)) + δV (t)/(1 + ηV (t)) ≤ (1 + δ)/η; for all t ∈ R0+. Then,

N(t) ≤ ψ sup
t−τ≤σ≤t

N(σ) +
b
(
1 − e−(b−ν)τ

)

b − ν
< ∞; ∀t ∈ R0+, (4.8)

and Property (i) follows since ψ < 1. Two cases are now discussed separately related to the
proof of Property (ii).

(a) Note that if the solution trajectory is positive subject to min(S(t), V (t)) ≥ 1
(equivalently if max(S−1(t), V −1(t)) ≤ 1), then

0 <
1 + δ

1 + η
≤ S(t)

1 + ηS(t)
+

δV (t)
1 + ηV (t)

≤ 1 + δ

η
(4.9)
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so that one gets from (4.6)

Ṅ(t) ≤ (ν − b)N(t) − αI(t) +
(
b − β

[
1 + δ

1 + η
I(t −ω)e−bω − 1 + δ

η
I(t − τ)e−bτ

])

≤ −(b − ν)N(t) − αI(t) ≤ −(b − ν)N(t) ≤ 0

(4.10)

with identically zero upper-bound in (4.10) holds for some t ∈ R0+ if and only ifN(t) = I(t) =
0 since b > ν and

β ≥ 1
1 + δ

(
bη
(
1 + η

)

ηe−bωI(t −ω) − (1 + η
)
I(t − τ)e−bτ

)

> 0 (4.11)

provided that (η/(1 + η))eb(ω−τ) with ω < τ . Then, N(t) ≤ e−(b −ν)t N(0) < N(t′), for all
t, t′(< t) ∈ R0+.

(b) If max(S(t), V (t)) ≤ 1 (equivalently, if min(S−1(t), V −1(t)) ≥ 1), then

0 ≤ S(t)
1 + ηS(t)

+
δV (t)

1 + ηV (t)
≤ 1 + δ

1 + η
≤ 1 + δ

η
(4.12)

so that (4.10) still holds and the same conclusion arises. Thus, Property (ii) is proven.

A brief discussion about positivity is summarized in the next result.

Theorem 4.3. Assume that Vc ∈ [0, 1]. Then, the SVEIRS epidemic model (1.1)–(1.5) is positive
in the sense that no partial population is negative at any time if its initial conditions are nonnegative
and the vaccinated population exceeds a certain minimum measurable threshold in the event that the
recovered population is zero as follows: V (t) ≥ max((γ/γ1)(I(t − ω)e−bω − I(t)), 0) if R(t) = 0.
The susceptible, vaccinated, exposed, and infected populations are nonnegative for all time irrespective
of the above constraint. If, in addition, Theorem 4.2(i) holds, then all the partial populations of the
SVEIRS model are uniformly bounded for all time.

Proof. First note that all the partial populations are defined by continuous-time differentiable
functions from (1.1)–(1.5). Then, if any partial population is negative, it is zero at some
previous time instant. Assume that S(σ) ≥ 0 for σ < t and S(t) = 0 at some time instant
t. Then, from (1.1)

Ṡ(t) = b + γI(t −ω)e−bω + ν(1 − Vc)N(t) ≥ 0; ∀Vc ∈ [0, 1]. (4.13)

Thus, S(t+) ≥ 0. As a result, S(t) cannot reach negative values at any time instant. Assume
that V (σ) ≥ 0 for σ < t and V (t) = 0 at some time instant t. Then, V̇ (t) = νVcN(t) ≥ 0 from
(1.2) so that V (t+) ≥ 0. As a result, V (t) cannot reach negative values at any time. E(t) ≥ 0
for any time instant t from (1.3). Assume that I(σ) ≥ 0 for σ < t and I(t) = 0 at some time
instant t. Then, İ(t) ≥ 0 from (1.4). As a result, I(t) cannot reach negative values at any
time. Finally, assume that R(σ) ≥ 0 for σ < t and R(t) = 0 at some time instant t. Thus, Ṙ(t) =
γ1V (t)+γ(I(t)−I(t−ω)e−bω) ≥ 0 from (1.5) if V (t) ≥ max((γ/γ1)(I(t− ω)e−bω−I(t)), 0). Thus,
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if V (t) ≥ max((γ/γ1)(I(t−ω)e−bω − I(t)), 0)when R(t) = 0, then all the partial populations are
uniformly bounded, since they are nonnegative and the total population N(t) is uniformly
bounded from Theorem 4.2(i).

It is discussed in the next section that if the two above theorems related to positivity
and boundedness hold, then the solution trajectories converge to either the disease-free
equilibrium point or to the endemic equilibrium point.

5. Solution Trajectory of the SVEIRS Model

The solution trajectories of the SVEIRS differential model (1.1)–(1.5) are given below.
Equation (1.1) yields

S(t) = e−
∫ t
0(b+β(I(ξ)/(1+ηS(ξ))))dξS(0)

+
∫ t

0
e−

∫ t
ξ(b+β(I(σ)/(1+ηS(σ))))dσ

(
γI(ξ −ω)e−bω + ν(1 − Vc)N(ξ) + b

)
dξ.

(5.1)

Equation (1.2) yields

V (t) = e−
∫ t
0(γ1+b+(δβI(ξ)/(1+ηV (ξ))))dξV (0) + νVc

∫ t

0
e−

∫ t
ξ(γ1+b+(δβI(σ)/(1+ηV (σ))))dσN(ξ)dξ. (5.2)

Equation (1.3) is already in integral form. Equation (1.4) yields

I(t) = e−(γ+b+α)t
[

I(0) + βe−bτ
∫ t

0
e(γ+b+α)ξ

(
S(ξ − τ)

1 + ηS(ξ − τ)
+

δV (ξ − τ)
1 + ηV (ξ − τ)

)
I(ξ − τ)dξ

]

(5.3a)

≤ e−(γ+b+α)t
[

I(0) +
1 + δ

η
βe−bτ

∫ t

0
e(γ+b+α)ξI(ξ − τ)dξ

]

. (5.3b)

Equation (1.5) yields

R(t) = e−bt
[

R(0) +
∫ t

0
ebξ

(
γ1V (ξ) + γ

(
I(ξ) − I(ξ −ω)e−bω

))
dξ

]

. (5.4)

The asymptotic values of the partial populations can be calculated from (5.1)–(5.4) as time
tends to infinity as follows provided that the involved right-hand-side integrals exist:

S(∞) =
∫∞

0
e−

∫∞
ξ (b+β(I(σ)/(1+ηS(σ))))dσ

(
γI(ξ −ω)e−bω + ν(1 − Vc)N(ξ) + b

)
dξ,

V (∞) = νVc

∫∞

0
e−

∫∞
ξ (γ1+b+(δβI(σ)/(1+ηV (σ))))dσN(ξ)dξ,
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E(∞) =
β

b

(
1 − e−bω

)( S(∞)
1 + ηS(∞)

+
δV (∞)

1 + ηV (∞)

)
I(∞),

I(∞) = βe−bτe−(γ+b+α)t
∫∞

0
e(γ+b+α)ξ

(
S(ξ − τ)

1 + ηS(ξ − τ)
+

δV (ξ − τ)
1 + ηV (ξ − τ)

)
I(ξ − τ)dξ,

R(∞) = lim
t→ ∞

(∫ t

0
e−b(t−ξ)

(
γ1V (ξ) + γ

(
I(ξ) − I(ξ − τ)e−bω

))
dξ

)

.

(5.5)

Remark 5.1. If any of the above right-hand-side integrals with upper-limit +∞ does not exist,
then the corresponding limit of the involved partial population as time tends to infinity does
not exist and, then, the limit value has to be replaced by the existing limit superior as time
tends to infinity. Note that if Theorems 4.2 and 4.3 hold then all the limit values at infinity
of the partial populations exist since the total population is uniformly bounded and all the
partial populations are nonnegative for all time. A conclusion of this feature is that under
positivity and boundedness of the solutions, all the partial populations of the impulsive-
free SVEIRS model (1.1)–(1.5) have finite limits as time tends to infinity. As a result, all the
trajectory solutions converge asymptotically either to the disease-free equilibrium point or to
the endemic equilibrium point.

The considerations in Remark 5.1 are formally expressed as the subsequent important
result by taking also into account the uniqueness of the infected population at any endemic
equilibrium points, the uniqueness of the vaccinated population at such points (which
follows from (3.12) and which implies the uniqueness of the total population at such an
equilibrium endemic points (see Remark 5.1).

Theorem 5.2. The following two properties hold.

(i) The endemic equilibrium point is unique.

(ii) Assume that Theorems 4.2 and 4.3 hold. Then, any solution trajectory of the SVEIRS
impulsive-free vaccination model (1.1)–(1.5) generated for finite initial conditions
converges asymptotically either to the disease-free equilibrium point or to the endemic
equilibrium point as time tends to infinity.

Now, assume that the solution trajectory converges to some locally asymptotically
stable equilibrium point (S∗, V ∗, E∗, I∗, R∗)T . The above equations ensure the existence of
integrands fS ∈ L1(R0+), fV ∈ L1(R0+), fI ∈ L1(R0+), being nonnegative, and fR(t) = O(ebt)
such that fR(t)e−bt ≤ KR(t) for some KR ∈ L1(R0+), for any initial conditions in some small
neighbourhood of the equilibrium, such that

S(∞) = S∗ =
∫∞

0
fS(t)dt; V (∞) = V ∗ =

∫∞

0
fV (t)dt, I(∞) = I∗ =

∫∞

0
fI(t)d,

R(∞) = R∗ = lim
t→∞

(∫ t

0
e−btfR(ξ)dξ

)

,

(5.6)
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which leads to

γ1V (t) + γ
(
I(t) − I(t − τ)e−bω

)

≤ fR(t)e−bt ≤ KR(t) =⇒ −γI(t −ω)e−bω ≤ KR(t + τ −ω) − γ1V (t + τ −ω)

− γI(t + τ −ω),

N(t) =
1

νVc

(
e
∫∞
t (γ1+b+(δβI(σ)/(1+ηV (σ))))dσ

)
fV (t)

=
1

ν(1 − Vc)

[(
e
∫∞
t (b+(βI(σ)/(1+ηS(σ))))dσ

)
fS(t) − γI(t −ω)e−bω − b

]

≤ 1
ν(1 − Vc)

[(
e
∫∞
t (b+(βI(σ)/(1+ηS(σ))))dσ

)
fS(t) +KR(t + τ −ω)

−γ1V (t + τ −ω) − γI(t + τ −ω) − b
]
.

(5.7)

Any equilibrium point also satisfies the following constraints from (5.1)–(5.4), and (1.3) after
performing the replacements 0 → kT (for the initial time instant), t → (k + 1)T for the final
time instant, for any given T ∈ R0+, and taking limits as k(∈ Z0+) → ∞S(kT) = S[(k + 1)T] =
S∗, V (kT) = V [(k + 1)T] = V ∗, E(kT) = E[(k + 1)T] = E∗, I(kT) = I[(k + 1)T] = I∗, R(kT) =
R[(k+1)T] = R∗, andN(kT) = N[(k+1)T] = N∗. This leads to the following implicit relations
being independent of T and being applicable for any (disease-free or endemic) equilibrium
point:

S∗ =
(
γI∗e−bω + ν(1 − Vc)N∗ + b

)(
1 − e−(b+β(I

∗/(1+ηS∗)))T
)
−1

×
(

lim
k(∈Z0+)→∞

∫ (k+1)T

kT

e−
∫ (k+1)T
ξ (b+β(I∗/(1+ηS∗)))dσdξ

)

=
γI∗e−bω + ν(1 − Vc)N∗ + b

b + β
(
I∗/

(
1 + ηS∗)) .

(5.8)

Equation (1.2) yields

V ∗ = νVcN
∗
(
1 − e−(γ1+b+(δβI

∗/(1+ηV ∗)))T
)−1

lim
k(∈Z0+)→∞

(∫ (k+1)T

kT

e−(γ1+b+(δβI
∗/(1+ηV ∗)))((k+1)T−ξ)dξ

)

=
νVcN

∗

γ1 + b +
(
δβI∗/

(
1 + ηV ∗)) ,

(5.9)

E∗ =
β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗. (5.10)
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Equation (1.4) yields

I∗ = βe−bτ
(
1 − e−(γ+b+α)T

)−1( S∗I∗

1 + ηS∗ +
δV ∗I∗

1 + ηV ∗

)(

lim
k(∈Z0+)→∞

∫ (k+1)T

kT

e−(γ+b+α)((k+1)T−ξ)dξ

)

=
βe−bτ I∗

γ + b + α

(
S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
,

(5.11)

which is identical to (2.5), that is, either I∗ = 0 or 1 = (βe−bτ I∗/(γ + b + α))(S∗/(1 + ηS∗) +
δV ∗/(1 + ηV ∗)) . Equation (1.5) yields

R∗ =
(
1 − e− bT

)−1(
γ1V

∗ + γ
(
1 − e−bω

)
I∗
)(

lim
k(∈Z0+)→∞

∫ (k+1)T

kT

e−b((k+1)T−ξ)dξ

)

=
1
b

(
γ1V

∗ + γ
(
1 − e−bω

)
I∗
)
,

(5.12)

which is identical to (2.6).

Remark 5.3. Some fast observations useful for the model interpretation follow by simple
inspection of (5.1)–(5.4) and (5.10).

(1) If b > 0 or Vc < 1, then S(t) → 0 as t → ∞ is impossible.

(2) V (t) → 0 as t → ∞ occurs if Vc is eventually a function of time, rather than a real
constant, subject to Vc(t) ≤ KN−1(t)e−

∫ t
0(γ1+b+(δβI(σ)/(1+ηV (σ)))dσ) for some K ∈ R+, for

almost all t ∈ R0+ except possibly at a set of zero measure in the case that the total
population does not extinguish.

(3) I(t) can converge to zero exponentially with time, for instance, to the disease-free
equilibrium point, while being a function of exponential order −(γ + b + α) and, in
such a case, E(t) also converges to zero exponentially while being of exponential
order −(γ + α) and satisfying E(t) ≤ K′ωe(γ+b+α)ω((1 + δ)/η)e−(γ+α)t from (1.3).

(4) R(t) → 0 as t → ∞ requires from (5.4) the two above corresponding conditions
for the infective and vaccinated populations to converge to zero. In such a case, the
convergence of the recovered population to zero is also at an exponential rate. An
alternative condition for a convergence to zero of the recovered population, perhaps
at a rate slower than exponential, is the convergence to zero of the function

V (t) +
(

γ

γ1

)(
I(t) − I(t −ω)e−bω

)
, (5.13)

(see (5.4) with alternating sign on any two consecutive appropriate time intervals
of finite lengths).
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5.1. Incorporation of Impulsive Vaccination to the SVEIRS Model

Impulsive vaccination involving culling-type or removal actions on the susceptible popula-
tion has being investigated recently in [18, 19]. It has also being investigated in [20] in the
context of a very general SEIR model. Assume that the differential system (1.1)–(1.5) is used
for modelling in open real (tk, tk+1) intervals for some given real sequence of time intervals
{Tk}k∈Z0+

with Tk ≥ Tmin > 0, for all k ∈ Z0+ and an impulsive vaccination is used at time
instants tk = tk−1 + Tk−1 =

∑k−1
j=0 Tj , t0 ≥ 0 in the sequence {tk}k∈Z0+ which leads to a susceptible

culling (or partial removal of susceptible from the habitat) and corresponding vaccinated
increase as follows for some given real sequence {θk}k∈Z0+

, where θk ∈ [0, 1]:

S
(
t+k
)
= (1 − θk)S(tk); V

(
t+k
)
= V (tk) + θkS(tk),

E
(
t+k
)
= E(tk); I

(
t +
k

)
= I(tk); R

(
t+k
)
= R(tk),

(5.14)

so that S(t+
k
) + V (t+

k
) = S(tk) + V (tk). The following simple result follows trivially.

Theorem 5.4. Let {tk}k∈Z0+
and {θk}k∈Z0+

be arbitrary except that the second one has all its elements
in [ε, 1] for some ε(< 1) ∈ R+. Then, there is no nonzero equilibrium point of the impulsive SVEIRS
model (1.1)–(1.5), (5.14). If θk → 0 as k → ∞, then the equilibrium points of the impulsive model
are the same as those of the SVEIRS model (1.1)–(1.5).

Equations (5.1), (5.2) yield to the following recursive expressions:

S
(
tk + ρ

)
= e−

∫ρ
0 (b+β(I(tk+ξ)/(1+ηS(tk+ξ))))dξS

(
t+k
)

+
∫ρ

0
e−

∫ρ
ξ
(b+β(I(tk+σ)/(1+ηS(tk+σ))))dσ

×
(
γI(tk + ξ −ω)e−bω + ν(1 − Vc)N(tk + ξ) + b

)
dξ; ∀ρ ∈ [0, Tk),

(5.15)

S
(
t+k+1

)
= (1 − θk+1)S(tk+1) = (1 − θk+1)e−

∫Tk
0 (b+β(I(tk+ξ)/(1+ηS(tk+ξ))))dξS

(
t+k
)

+ (1 − θk+1)
∫Tk

0
e−

∫Tk
ξ

(b+β(I(tk+σ)/(1+ηS(tk+σ))))dσ

×
(
γI(tk + ξ −ω)e−bω + ν(1 − Vc)N(tk + ξ) + b

)
dξ,

(5.16)

V
(
tk + ρ

)
= e−

∫ρ
0 (γ1+b+(δβI(tk+ξ)/(1+ηV (tk+ξ))))dξV

(
t+k
)
+ νVc

∫ρ

0
e−

∫ρ
ξ
(γ1+b+(δβI(tk+σ)/(1+ηV (tk+σ))))dσ

×N(tk + ξ)dξ; ∀ρ ∈ [0, Tk),
(5.17)
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V
(
t+k+1

)
= θk+1S(tk+1) + V (tk+1) = θk+1e

− ∫Tk0 (b+β(I(tk+ξ)/(1+ηS(tk+ξ))))dξS
(
t+k
)
+ θk+1

×
∫Tk

0
e−

∫Tk
ξ

(b+β(I(tk+σ)/(1+ηS(tk+σ))))dσ
(
γI(tk + ξ −ω)e−bω + ν(1 − Vc)N(tk + ξ) + b

)
dξ

+ e−
∫Tk
0 (γ1+b+(δβI(tk+ξ)/(1+ηV (tk+ξ))))dξV

(
t+k
)
+ νVc

∫Tk

0
e−

∫Tk
ξ

(γ1+b+(δβI(tk+σ)/(1+ηV (tk+σ))))dσ

×N(tk + ξ)dξ.
(5.18)

The solutions in-between two consecutive impulsive vaccinations are obtained by slightly
modifying (5.15)–(5.18) by replacing θk by zero and tk+1 by tk + ρ < tk+1 for ρ ∈ [0, Tk). The
following result about the oscillatory behaviour of the vaccinated population holds.

Theorem 5.5. Assume that Vc : R0+ → [0, 1] is a piecewise continuous function rather than a
constant one with eventual bounded step discontinuities at the sequence of impulsive time instants.
Define real sequences at impulsive time instants with general terms

Vc1(tk) :=
V
(
t+
k

)

ν
∫∞
0 e−

∫∞
ξ (γ1+b+β(I(tk+σ)/(1+ηS(tk+σ))))dσN(tk + ξ)dξ

,

Vc2(tk) :=
V
(
t+
k

) − ∫∞0 e−
∫∞
ξ (b+β(I(tk+σ)/(1+ηS(tk+σ))))dσ(γI(tk + ξ −ω)e−bω + νN(tk + ξ) + b

)
dξ

ν
∫ ∞
0

(
e−

∫∞
ξ (γ1+b+(δβI(tk+σ)/(1+ηV (tk+σ))))dσ − e−

∫∞
ξ (b+β(I(tk+σ)/(1+ηS(tk+σ))))dσ

)
N(tk + ξ)dξ

.

(5.19)

Then, the vaccinated population is an oscillating function if there is a culling sequence {tk}k∈Z0+
of

time instants for some given real sequence {θk}k∈Z0+
with θk ∈ [0, 1], of impulsive gains if any two

consecutive impulsive time instants satisfy some of the two conditions below.

Condition 1. Vc1(tk) ≤ 1 and 0 ≤ Vc2(tk+1) ≤ 1 with a regular piecewise continuous vaccination
Vc(tk) ∈ [Vc1(tk), 1] and Vc(tk+1) ∈ [0, Vc2(tk+1)].

Condition 2. 0 ≤ Vc1(tk+1) ≤ 1 and Vc2(tk) ≤ 1 with a regular piecewise continuous vaccination
Vc(tk) ∈ [0, Vc1(tk)] and Vc(tk+1) ∈ [Vc2(tk+1), 1].

Proof. One gets directly by using lower and upper-bounds in (5.18) via θk+1 = 0 and θk+1 = 1
for V (t+k+1) − V (t+k)

νVc(tk)
∫Tk

0
e−

∫Tk
ξ

(γ1+b+(δβI(tk+σ)/(1+ηV (tk+σ))))dσN(tk + ξ)dξ

−
(
1 − e−

∫Tk
0 (γ1+b+(δβI(tk+ξ)/(1+ηV (tk+ξ))))dξ

)
V
(
t+k
)

≤ V
(
t+k+1

) − V
(
t+k
) ≤ e−

∫Tk
0 (b+β(I(tk+ξ)/(1+ηS(tk+ξ))))dξS

(
t+k
)

+
∫Tk

0
e−

∫Tk
ξ

(b+β(I(tk+σ)/(1+ηS(tk+σ))))dσ
(
γI(tk + ξ −ω)e−bω + ν(1 − Vc)N(tk + ξ) + b

)
dξ

+ νVc(tk)
∫Tk

0
e−

∫Tk
ξ

(γ1+b+(δβI(tk+σ)/(1+ηV (tk+σ))))dσN(tk + ξ)dξ

−
(
1 − e−

∫Tk
0 (γ1+b+(δβI(tk+ξ)/(1+ηV (tk+ξ))))dξ

)
V
(
t+k
)

(5.20)
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so that as Tk → ∞ and also for some sufficiently large Tk = tk+1 − tk,

lim inf
Tk →∞

(
V
(
t+k+1

) − V
(
t+k
))

≥ νVc(tk)
∫∞

0
e−

∫∞
ξ (γ1+b+β(I(tk+σ)/(1+ηS(tk+σ))))dσN(tk + ξ)dξ − V

(
t+k
)
> 0,

(5.21)

if Vc(tk) ∈ (Vc1(tk),∞), and

lim sup
Tk →∞

(
V
(
t+k+1

) − V
(
t+k
))

≤ e−
∫∞
0 (b+(βI(tk+σ)/(1+ηS(tk+σ)))dσ)

+
∫∞

0
e−

∫∞
ξ (b+β(I(tk+σ)/(1+ηS(tk+σ))))dσ

(
γI(tk + ξ −ω)e−bω + νN(tk + ξ) + b

)
dξ

+ νVc(tk)
∫∞

0

(
e−

∫∞
ξ (γ1+b+(δβI(tk+σ)/(1+ηV (tk+σ))))dσ − e−

∫∞
ξ (b+β(I(tk+σ)/(1+ηS(tk+σ))))dσ

)

×N(tk + ξ)dξ − V
(
t+k
)
< 0

(5.22)

if Vc(tk) ∈ (− ∞, Vc2(tk)). Thus, Vc1(tk) ≤ 1 and 0 ≤ Vc2(tk+1) ≤ 1 imply that V (t+k+1) > V (t+k)
and V (t+k+2) < V (t+k+1), and 0 ≤ Vc1(tk) ≤ 1 and Vc2(tk+1) ≤ 1 imply that V (t+k+1) < V (t+k) and
V (t+

k+2) > V (t+
k+1) for some θk, θk+1 ∈ [0, 1] and some sufficiently large intervals in-between

consecutive impulses Tk and Tk+1 via the use of an admissible regular piecewise continuous
vaccination Vc(tk) ∈ [Vc1(tk), 1] and Vc(tk+1) ∈ [0, Vc2(tk+1)].

It turns out that Theorem 5.5 might be generalized by grouping a set of consecutive
impulsive time instants such that V (t+k+i+1) > V (t+k) and V (t+k+i+j+1) < V (t+k+i+1) for some
positive integers i = i(k), j = j(i, k).

A further property now described is that of the impulsive-free infection permanence in
the sense that for sufficiently large initial conditions of the infected populations the infected
population exceeds a, initial conditions dependent, positive lower-bound for all time if no
impulsive vaccination is injected under any regular vaccination.

Theorem 5.6. Assume that the SVEIRS model is positive (in the sense that no partial population
reaches a negative value for any time under nonnegative initial conditions) and, furthermore, that
the susceptible and vaccinated populations remain positive for all time. Assume also that the disease
transmission constant is subject to the subsequent constraint

gβ2e
bτ
(
γ + β + α

)[
η +max

(
u−1
S , u−1

V

)]

1 + δ
≥ β ≥ gβ1e

bτ
(
γ + β + α

)[
η +max

(
u−1
S , u−1

V

)]

1 + δ
, (5.23)

for some positive real constants dependent on the delay τ

gβ1 = gβ1(τ) ≥ 1, gβ2 = gβ2(τ) ≥ max

(

gβ1,
g̃ − e−(γ+b+α)τ

1 − e−(γ+b+α)τ

)

, g̃ = g̃(τ) ≥ 1. (5.24)

Then, the infection is permanent for all time if it strictly exceeds zero along the initialization interval.
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Proof. Note from the solution trajectories of the susceptible and vaccinated populations (5.1)
and (5.2) that for some inft∈R0+S(t) ≥ uS > 0 and inft∈R0+V (t) ≥ uV > 0 for some real constants
uS > 0 and uV > 0, if b > 0 and Vc ∈ (0, 1]. Then,

S(t)
1 + ηS(t)

+
δV (t)

1 + ηV (t)
=

1
S−1(t) + η

+
δ

V −1(t) + η
≥ 1

u−1
S + η

+
δ

u−1
V + η

≥ 1 + δ

η +max
(
u−1
S , u−1

V

) ; ∀t ∈ [−τ,∞),

(5.25)

so that, from (5.3a), since the SVEIR model is positive

I(t + σ) ≥ e−(γ+b+α)(σ+τ)I(t − τ) +
βe−bτ(1 + δ)

(
γ + b + α

)[
η +max

(
u−1
S , u−1

V

)]

×
(
1 − e−(γ+b+α)(τ+σ)

)(
inf

t−2τ≤ξ≤t−τ+σ
I(ξ)

)

≥
(

e−(γ+b+α)(τ+σ) +
βe−bτ(1 + δ)

(
γ + b + α

)[
η +max

(
u−1
S , u−1

V

)]
(
1 − e−(γ+b+α)(τ+σ)

))

×
(

inf
t−2τ≤ξ≤t−τ+σ

I(ξ)
)

≥
(

βe−bτ(1 + δ)
(
γ + b + α

)[
η +min

(
u−1
S , u−1

V

)] −
(

βe−bτ(1 + δ)
(
γ + b + α

)[
η +max

(
u−1
S , u−1

V

)] − 1

)

× e−(γ+b+α)τ
)(

inf
t−2τ≤ξ≤t−τ+σ

I(ξ)
)

≥
(
gβ1 −

(
gβ2 − 1

)
e−(γ+b+α)τ

)(
inf

t−2τ≤ξ≤t−τ+σ
I(ξ)

)
≥ g̃

(
inf

t−2τ≤ξ≤t−τ+σ
I(ξ)

)

≥ g̃ inf
t−2τ≤ξ≤t−τ+σ

I(ξ) = g̃ inf
τ≤ξ≤0

I(ξ) ≥ min
(
gβ1, g̃

)
inf
τ≤ξ≤0

I(ξ); ∀σ ∈ R0+, ∀t ∈ R0+.

(5.26)

The two last inequalities following from the fact that the former one stands, for all t ∈
R0+ (an “ad-hoc” complete induction reasoning will lead to an identical conclusion), and,
furthermore,

lim inf
t→∞

I(t + σ) ≥ gβ1 inf
τ≤ξ≤0

I(ξ) ≥ min
(
gβ1, g̃

)
inf
τ≤ξ≤0

I(ξ). (5.27)

Thus, the infection is permanent for all time if it is permanent for the initialization time
interval [−τ, 0].

It is also obvious the following simplification of Theorem 5.6.
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Theorem 5.7. Theorem 5.6 still holds under (5.24) and the “ad-hoc” modified inequality (5.23) if
either the susceptible or the vaccinated (but not both) population reaches zero in finite time or tends to
zero asymptotically.

Proof. It is similar to that of Theorem 5.6 by zeroing either uS and uV and removing the
inverses from the corresponding conditions and proofs.

Close to the above results is the asymptotic permanence of the infection under
sufficiently large disease constant.

Theorem 5.8. The infection is asymptotically permanent for a positive initialization of the infected
population on its initialization interval if the disease transmission constant is large enough.

Proof. Note from (5.26) that for any given small ε ∈ R0+, there is a sufficiently large finite
T = T(t, ε) ∈ R0+ such that for any σ ≥ T and any t ∈ R0+, one gets

I(t + σ) ≥
(

βe−bτ(1 + δ)
(
γ + b + α

)[
η +max

(
u−1
S , u−1

V

)] − ε

)(
inf

t−2τ≤ξ≤t−τ
I(ξ)

)
≥ inf

t−2τ≤ξ≤t−τ
I(ξ) (5.28)

if the disease transmission constant is large enough to satisfy

β ≥ (1 + ε)
(
γ + b + α

)
ebτ

[
η +max

(
u−1
S , u−1

V

)]

1 + δ
. (5.29)

If either uS or uV (but not both) is zero, then its inverse is removed from the above condition.

The above results suggest that the infection removal require periodic culling (or
partial removal) of the susceptible population through impulsive vaccination so that both
populations can become extinguished according to (5.8).

6. Simulation Results

This section contains some simulation examples illustrating the theoretical results introduced
in Sections 2 and 5 concerning the existence and location of disease-free and endemic
equilibrium points under regular and impulsive vaccination as well as the eventual
oscillatory behavior. The objective of these examples is to numerically verify the theoretical
expressions obtained there. The parameters of the model are: b = 0.05 (days)−1, γ = 0.005
(days)−1, 1/γ1 = 7 days, β1 = β/3 (days)−1, δ = β1/β, τ = 4 days, η = 0.5, α = 0.005 (days)−1,
and ω = 8 days. The initial conditions are S(0) = 250, V (0) = 150, E(0) = 150, I(0) = 250, and
R(0) = 200. Firstly, the disease-free case is considered in Section 6.1 while the endemic case
will be treated in Sections 6.2 and 6.3.
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Figure 1: Solution trajectories for Vc = 0.
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Figure 2: Zoom on the solution trajectories showing the disease-free equilibrium point for Vc = 0.

6.1. Disease-Free Equilibrium Point

Consider now β = 0.15 (days)−1, ν = 0.95b (days)−1 satisfying ν < b. The two particular cases
corresponding to Vc = 0 and Vc = 1 in Section 2 will be studied separately. Thus, the following
simulations have been obtained for the SVEIR system (1.1)–(1.5) and Vc = 0.

As it can be appreciated in Figure 1, the vaccinated, exposed, infected, and removed-
by-immunity (or “immune” or “recovered”) population converge to zero and cannot be
distinguished in the figure. This situation corresponds to the case when the disease naturally
vanishes. On the other hand, the susceptible population presents a different dynamics,
reaching a maximum and then converging to a nonzero endemic equilibrium point. Figure 2
shows a zoom on the equilibrium point reached by the model in Figure 1.
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Figure 3: Disease-free equilibrium point when Vc = 1.
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Figure 4: Solution trajectories converging to an endemic equilibrium point.

It can be noted that the vaccinated, exposed, infectious, and removed populations are
zero while the susceptible one converges to a number of 20 individuals. Furthermore, those
values correspond to the ones stated in Theorem 2.1 for Vc = 0, since all the populations
vanish except the susceptible which converges to S∗ = b/(b − ν) = 20. If Vc = 1, then the
solution trajectories converge to the equilibrium point as depicted in Figure 3.

In this case, only the exposed and infected tend to zero while the remaining
populations tend to the values calculated in Theorem 2.1 when Vc = 1

S∗ = 1, V ∗ =
νb

(
γ1 + b

)
(b − ν)

= 4.926, R∗ =
νγ1

(
γ1 + b

)
(b − ν)

= 14.07, E∗ = I∗ = 0.

(6.1)
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Figure 5: Zoom the solution trajectories showing the endemic equilibrium point.
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Figure 6: Effect of the impulsive vaccination in susceptible and vaccinated populations.

In the next example, the existence of an endemic equilibrium point is studied through a
numerical simulation.

6.2. Endemic Equilibrium Point

In order to study the endemic equilibrium point, the value of β is changed now to a new
value β = 1.5 (days)−1 and ν = 0.9b (days)−1 satisfying the condition β ≥ ηebτ(γ + b+α) stated
in Theorem 3.1(i) for Vc = 0. Thus, the system’s trajectories are showed in Figure 4.

A zoom on Figure 4 will show the equilibrium point of the system as represented in
Figure 5.

Figure 5 reveals that there is an endemic equilibrium point, associated to nonzero
populations of the exposed and infectious, whose coordinates in view of (5.5) in Section 5
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Figure 7: Zoom on the steady-state of susceptible and vaccinated populations.

satisfy the constraints

S∗ =
γe−bωI∗ + ν(1 − Vc)N∗ + b

b + β
(
I∗/

(
1 + ηS∗)) = 2.77; V ∗ =

νVcN
∗

γ1 + b + δβ
(
I∗/

(
1 + ηV ∗)) = 0,

E∗ =
β

b

(
1 − e−bω

)( S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗ = 12.33,

I∗ =
β

(
γ + b + α

)e−bτ
(

S∗

1 + ηS∗ +
δV ∗

1 + ηV ∗

)
I∗ = 25.62,

R∗ =
γ1V

∗ + γ
(
1 − e−bω

)
I∗

b
= 0.8.

(6.2)

As it can be verified in Figure 5, all the calculated values correspond to the ones obtained
in the simulation example. Note that an endemic equilibrium point exists since the exposed
and infected are different from zero. The endemic equilibrium point is lost when impulsive
vaccination is applied on the system as the next section illustrates.

6.3. Effect of the Impulsive Vaccination on the Endemic Equilibrium Point

In this last simulation, the impulsive vaccination considered in Section 5 is introduced in
the system. Thus, Equations (5.8) and (5.9) are used, at certain time instants, to remove
population from susceptible while increasing the vaccinated. The impulsive vaccination is
used once a week (i.e., every 7 days) with θk = θ = 0.8. The following Figures 6 and 7
show the effect of the impulsive vaccination on the population of susceptible and vaccinated
while Figures 8, 9, and 10 show the effect of impulses on the exposed, infected, and immune,
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Figure 8: Effect of the impulsive vaccination on exposed.
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Figure 9: Effect of the impulsive vaccination on infected.

respectively. Notice that the evolution of infected, exposed, and immune is continuous since
the impulsive vaccination does not influence directly those populations.

It can be appreciated in Figure 6 that, as expected, the impulsive vaccination reduces
the susceptible population in a 20%, that is, such a population is reduced drastically during
the first applications of the impulse. On the other hand, Figure 7 depicts the steady-state
behavior of the susceptible and vaccinated. In agreement with Theorems 5.4 and 5.5 in
Section 5, the endemic equilibrium point is now lost while an oscillatory (periodic indeed)
steady-state behavior is obtained. Figures 8, 9, and 10 show the effect of impulse vaccination
on the exposed, infected, and immune populations, respectively. It can be observed that the
impulse vaccination reduces the maximum peak of the exposed and infected populations
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Figure 10: Effect of the impulsive vaccination on the immune population.

while increases the maximum peak of the immune population. However, the solution
trajectory solutions are very similar to the nonimpulsive case after the transient. The main
reason for this feature relies on the fact that the susceptible population tends to a very
small value during the transient and, afterwards, the influence of its variations on the
exposed, susceptible, and immune populations is less relevant. Hence, the improvement on
the epidemic model state-trajectory solution is concentrated on the transient. In this way, the
theoretical results of the manuscript have been illustrated through simulation examples.
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