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Abstract

We study the existence and properties of fast magnetosonic modes in 3D compressible MHD turbulence by
carrying out a number of simulations with compressible and incompressible driving conditions. We use two
approaches to determine the presence of fast modes: mode decomposition based on spatial variations only and
spatio-temporal 4D fast Fourier transform (4D FFT) analysis of all fluctuations. The latter method enables us to
quantify fluctuations that satisfy the dispersion relation of fast modes with finite frequency. Overall, we find that
the fraction of fast modes identified via the spatio-temporal 4D FFT approach in total fluctuation power is either
tiny with nearly incompressible driving or ∼2% with highly compressible driving. We discuss the implications of
our results for understanding the compressible fluctuations in space and astrophysical plasmas.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Interplanetary turbulence (830); Alfven
waves (23); Space plasmas (1544); Magnetohydrodynamical simulations (1966)

1. Introduction

Magnetized plasma systems, such as magnetic fusion experi-
ments (e.g., Diamond et al. 2005), solar wind (e.g., Matthaeus &
Goldstein 1982), interstellar medium (e.g., Armstrong et al. 1995),
and intracluster medium (e.g., Hitomi Collaboration et al. 2018),
are often turbulent. Magnetohydrodynamics (MHD) is generally
employed to describe turbulence in such systems. Understanding
the nature of compressible fluctuations is also critical in describing
the relationship between the limits of weak and strong turbulence
(e.g., Chandran 2005; Galtier 2009, 2018; Meyrand et al. 2016),
because the cascade process, anisotropy, and energy spectrum are
likely all modified by compressible effects.

The eigenmodes in a compressible MHD system are
different from those in the incompressible limit. We choose
to focus on fast magnetosonic modes or fast modes in this
study. Fast modes are often included in global solar
wind models, and are critical in preferential ion heating at
kinetic scales through turbulent cascade (e.g., Cranmer &
Ballegooijen 2012). They may also play an important role in
interpreting the recent Voyager 1 observations (Zank et al.
2017, 2019, 2020; Burlaga et al. 2018). Fast modes have also
been used in accelerating particles in solar flares (e.g., Miller
et al. 1996) and cosmic rays (e.g., Schlickeiser 2002), and in
scattering cosmic rays in the interstellar medium (e.g., Yan &
Lazarian 2002). Furthermore, it is postulated that fast-mode
turbulence is effective in producing stochastic particle
acceleration in various high-energy astrophysical systems
as well (e.g., Dermer et al. 1996; Li & Miller 1997; Demidem
et al. 2020).

Earlier studies have examined the fraction of compressible
modes in MHD turbulence and their cascade properties. The
primary method is to use only the spatial variations of various
variables and decompose them into three eigenmodes—fast,
slow, and Alfvén modes (see, e.g., Marsch 1986; Cho &
Lazarian 2003; Zhang et al. 2015; Yang et al. 2018). The

effects of turbulence driving conditions have been examined by
Makwana & Yan (2020), and they found that the Fourier power
in fast modes could be up to ∼30% of the total turbulent power
if the turbulence driving is highly compressible, and the power
in slow modes is even more significant.
Another interesting approach in identifying fast modes in a

turbulence simulation was discussed by Svidzinski et al.
(2009). They demonstrated that a spatio-temporal analysis
method can be used to decompose the fluctuations (say
magnetic fields) using a fast Fourier transform (FFT) in both
spatial and temporal domains, if a large number of data
volumes at different time slices are stored to resolve both
low and high frequencies (we will refer to this approach as
4D FFT). Similar approaches have also been applied to
simulations of MHD turbulence (e.g., Dmitruk & Matthaeus
2007, 2009; Clark di Leoni et al. 2015; Meyrand et al. 2016;
Andrés et al. 2017; Lugones et al. 2019; Yang et al. 2019;
Brodiano et al. 2021), as well as in hybrid kinetic simulations
(Markovskii & Vasquez 2020). Dmitruk & Matthaeus (2007,
2009) examined spatio-temporal turbulence signals in the
incompressible regime. The existence of compressible modes
(fast and slow waves) that satisfy dispersion relations in the
frequency–wavenumber (ω versus k) space (e.g., Andrés
et al. 2017; Yang et al. 2019) has also been demonstrated.
Following these earlier studies, we build similar 4D FFT
routines to analyze MHD turbulence. In particular, the recent
paper by Brodiano et al. (2021) is most similar to the study
presented here. They studied the effects of how compressible
versus incompressible driving affects the presence of waves
in turbulence. They concluded that the system is mainly
dominated by nonlinear fluctuations (i.e., not waves).
In this paper, we aim to address the detailed properties of fast

modes in compressible MHD turbulence, particularly the
existence of finite-frequency waves and how they vary under
different turbulence driving conditions. In Section 2 we
describe our simulation setups and various runs we performed.
In Section 3 we present our analysis and results of numerical
simulations. Conclusions and implications of our results are
given in Section 4.
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2. Model Description

2.1. Numerical Schemes

To address the existence and properties of fast modes
in compressible MHD turbulence, we solve the time-
dependent ideal MHD equations numerically in a three-
dimensional Cartesian coordinate system (x, y, z) using the code
ATHENA++ (Stone et al. 2020). We introduce fv and fB terms in
the momentum and induction equations as turbulence driving
forces on velocity and magnetic fields, respectively. Both fv and
fB take the form of ( · )A k xsin f+ across the computational
domain with wavenumbers k that satisfy a periodic boundary,
and randomly selected phases f, and amplitudes Av and AB for
velocity and magnetic fields, respectively. The amplitude is
decomposed into components parallel and perpendicular to the
background magnetic field B0 as A∥ and A⊥. For velocity
driving, we further define a free parameter fc as |A∥|=
|A⊥| × fc/(1− fc) so that fc= 0 and fc = 1 represent the
incompressible and fully compressible driving limits, respec-
tively. All runs have uniform background density and magnetic
fields in which we choose our normalization as ρ0= 1 and
B0= [8, 0, 0], so the characteristic Alfvén speed is vA= 8. We
use an isothermal equation of state. The initial mean velocity is
set to 0, and for all runs, we set a uniform initial sound speed
c ps r= using β= 8πp/B2= 0.4. We apply random driving
that follows the Ornstein–Uhlenbeck process with a correlation
time tcor= 0.5τA (Eswaran & Pope 1988), where τA= L0/vA
with L0 being the box size along B0. All driving and/
or injection occurs at specific wavenumbers that have
0< |kinj|� 2. The range of turbulent Mach number Mturb≡
δv/cs is between 0.12 and 0.18 for the simulations dis-
cussed here.

2.2. Mode Decomposition Methods

We describe two methods to identify various wave modes in
turbulence. The first one is the “spatial-only” method described in
Cho & Lazarian (2003) and Yang et al. (2018), which uses the
velocity output at each time frame to identify the fractions of
Alfvén, fast, and slow modes, according to the polarization features
of velocity predicted by linear wave theory. This approach relies
on the fact that any spatial variations at any given time frame can
be projected onto three eigenvectors mathematically. The physical
interpretation of this approach, however, is a bit unclear. It
certainly makes sense physically when the fluctuation amplitudes
are small and nonlinear interactions among different modes are not
dominant. But for strong MHD turbulence, the nonlinear
interactions become important. It is unclear whether this approach
alone can be used to determine the fractions of various wave
components.

The other method we used is the spatio-temporal Fourier
transform (4D FFT), which allows us to obtain both spatial and
frequency information on variations. By storing the data
outputs frequently with sufficient time resolution (∼100 frames
within each τA up to ∼10 τA), we are able to resolve the
dispersion relation of linear waves. This ensures that both the
high and low frequencies are captured (they are also related to
the spatial resolution and box size). To reduce the data volume,
we split the 4D Fourier transform into two steps. First, we
make a 3D spatial FFT for a variable (e.g., velocity), and store
the intermediate data in a time series. Second, we perform the
fourth (temporal) layer of the spatio-temporal Fourier transform
(for individual frequencies) by integrating the intermediate data

over time, and save the results in a series of individual
frequencies for further analysis. The outcome of these analyses
will be spectral power populated within the 4D ω–k volume.
This approach has the advantage of assessing whether the fast,
slow, and Alfvénic fluctuations indeed satisfy their respective
dispersion relations.
The three eigenmodes delineate three isosurfaces in the ω–k

volume. To determine whether a certain spectral power belongs
to a specific eigenmode, we allow±10% deviation in ω for a
specific k to compensate for two effects. First, there is the well-
known issue of spectral leakage in a Fourier transform when
periodic signals are truncated unevenly (Harris 1978), which is
the case in the temporal dimension. (We employ periodic
boundaries in the spatial dimensions.) To suppress the spectral
leakage, the Hanning window function is used in the temporal
dimension. Second, there is the possible frequency broadening
due to nonlinear interactions. We have also tried to use other
“widths” of ±3% and±40%, but the main conclusions do not
change qualitatively.

3. Results

We present results from three runs A, B, and C that differ in
their turbulence driving: both A and C have only velocity
driving (fv) but A has incompressible driving ( fc= 0) while C
has highly compressible driving ( fc= 0.9). Run B has fc= 0,
but with both fv and fB. All simulations use 5123 resolution.
Both A and C have a cubic simulation box of size 2π× 2π×
2π, and B has an elongated box of size 8π× 2π× 2π. All
analyses are performed after simulations have reached a quasi-
steady state, typically after several τA.
First, we show the outcome of 4D FFT analyses in

identifying various waves as depicted in Figure 1. Panel (a)
shows the spatio-temporal spectrum of run B with an elongated
box in a 3D representation of ω versus kx and ky with kz= 0 for
this plot. We note that k∥; kx and ( )k k ky z

2 2 1 2 +^ . It is clear
that fluctuations have cascaded to higher k and with finite
frequency. Several main features can be identified. The
theoretical dispersion planes are marked as gray surfaces for
fast, Alfvén, and slow modes. The vertical feature along the ω
axis at small |k|� 2 is due to driving. Panel (b) shows a 2D cut
with kx= 0, in which the fast mode is most easily identified,
given its finite frequency. In this limit, both Alfvén and slow
modes have zero frequency. Panel (c) shows another 2D cut
with k⊥= 5. This brings out all three wave branches (as
marked by the three white lines). Panel (d) shows the power
distribution in the k∥–k⊥ plane by integrating the spectrum over
all frequencies. This distribution is similar to the previous
studies that demonstrate the anisotropic cascade in k-space
(e.g., Chhiber et al. 2020). Note that in panels (b), (c), and (d)
we have integrated all possible combinations of ky and kz for a
given k⊥ to capture all the spectral power.
It is interesting to see that there is a limited amount of power

(to be quantified later) in fluctuations that cascade to both
higher k and higher ω and satisfy the dispersion relations for the
three eigenmode branches, as most easily seen in panels (c) and
(b). Slow modes tend to cascade further in k than both the
Alfvén and fast modes, as corroborated by panel (a).
The most prominent feature is the large fraction of

fluctuation power not on any of the three wave branches,
which is clearly shown in the lower right region in panel (b)
and the regions in-between three wave surfaces in panel (a).
These fluctuations contain finite k and finite ω even though the
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highest concentration of power tends to be in the low-ω region.
We call them the “non-wave” component, which, judging from
these plots, contains the most power. By inference, most of the
power contained in the k⊥ cascade shown in panel (d) resides in
this “non-wave” component as well.

Second, we quantify the percentage of spectral power in various
components using runs A, B, and C, when the evolution of each
run has reached a quasi-steady state (after 7–10τA). Because it is
uncertain how to interpret the power associated with the injection
k-space, we adopt two approaches. The first is to use outputs
including the injection phase space and calculate the percentage of
various components using the spatial-only method. We find that
the fractions of Alfvén/fast/slow (or A/F/S) for runs A, B,
and C are: 0.760/0.017/0.223 (A), 0.628/0.028/0.344 (B), and
0.400/0.206/0.394 (C), respectively. These are represented as the
(shaded) left bars in Figure 2. Both the dominance of Alfvén
modes and the increasing fraction of fast modes with compressible
driving are consistent with the previous studies (e.g., Makwana &
Yan 2020).

The other approach we used is to exclude certain regions in
k-space, then use both the spatial-only and the 4D FFT methods
to calculate the power fraction in each component. In order to
avoid ambiguity, we exclude the following parts from our
percentage analysis. First, because the injection k range is

Figure 1. Spatio-temporal (4D FFT) spectrum of run B in the ω vs. k⊥ and k∥ domain, showing the fast, Alfvén, and slow components that are indicated by the gray
surfaces shown in panel (a), as well as fluctuations we call “non-waves.” 2D cuts are shown in panels (b) and (c) to emphasize the three wave branches and the non-
wave component. Panel (d) depicts the power distribution in the k∥–k⊥ plane by integrating the spectrum over all frequencies.

Figure 2. Percentage of spectral power derived from the spatial-only mode
decomposition (left and middle bars) and spatio-temporal spectra (right bars)
for runs A, B, and C. The (shaded) left bars use the whole data cubes, while the
middle and right bars use data cubes with some regions excluded (see text for
details). With the spatio-temporal spectra method, the non-wave component is
dominant and the fast mode fraction is very small (right bars).
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dominated by the injection process, we will exclude fluctuation
power with |k|� 2 in all analysis. In run B, this is ∼70% of the
total spectral power in the simulation. In addition, we also
exclude fluctuations with k∥= 0 and ω= 0 due to the
degeneracy of Alfvén and slow modes. This is ∼3% of the
total power. After these modifications to the data outputs, in
Figure 2 we compare those derived from the spatial mode
decomposition method (middle bars) and spatio-temporal
spectrum method (right bars). For the spatial decomposition
method, we find the following: the A/F/S fractions are 0.237/
0.003/0.760 (A), 0.425/0.007/0.568 (B), and 0.210/0.137/
0.653 (C), respectively. The slow mode actually has the largest
fraction among three wave modes using the spatial decom-
position method. This is different from the previous results by
other groups probably because we excluded the injection range.
The fast mode fraction, being 0.3% for run A and 0.7% for
run B, is negligible when the driving is incompressible but
becomes a noticeable fraction of 14% in run C when the
driving is highly compressible, which is expected.

For the 4D FFT approach, we identify various wave branches
according to the theoretical dispersion relations, and we allow
10% deviation in the theoretical frequencies above/below the
gray wave surfaces in Figure 1(a) for each wave branch. The
remaining power that does not fit within any of the three branches
is considered as non-wave. Quantitatively, the percentages of
these four components non-wave/A/F/S are 0.792/0.204/1×
10−4/0.003 (A), 0.762/0.225/8× 10−7/0.013 (B), and 0.729/
0.238/0.024/0.009 (C), respectively. They show that the non-
wave component is dominant. With regard to wave modes, the
Alfvén component has the largest fraction. The fast mode
component is negligible for both A and B but reaches ∼2.4%
for C.

One key conclusion demonstrated in Figure 2 is that, while the
spectral power can always be decomposed into one of three
“wave” modes using the spatial decomposition method, when
taking into account their frequency behavior, most of these
fluctuations do not follow any dispersion relation. Figure 2 also
shows that the total fraction in waves using the 4D FFT method
is less than ∼25%. Run B is designed to have the most Alfvénic
component by including magnetic injection. Indeed, for both
methods, the Alfvén mode fraction is higher in B than in either A
or C. This driving also generates a finite, albeit small, fraction of
slow waves in run B. Run C is designed to have the most
compressible modes, but its fast mode fraction decreases from
∼14% using the spatial decomposition method to ∼2.4% using
the 4D FFT method.

To test the dependence on the choice of frequency “width,”
we also calculate the percentages of spectral power by capturing
the power within±3% and±40% of the theoretical frequency,
using data cubes with exclusions as described above. These
are summarized in Figure 3. The non-wave/A/F/S components
are: for±40%, 0.727/0.218/0.005/0.050 (A), 0.590/0.289/7×
10−6/0.121 (B), and 0.535/0.283 /0.080/0.102 (C); for±3%,
0.795/0.204/1× 10−4/8× 10−4 (A), 0.773/0.224/2× 10−7/
0.003 (B), and 0.749/0.236/0.011/0.002 (C), respectively. It
can be seen that the overall trends do not change as we vary
from±3% to±40%.

Third, we examine the second-order structure function of
various components to further quantify their properties. We
calculate the structure functions of individual components in
run B obtained using the two mode decomposition methods
and use 3% frequency width.

Figure 4 shows the contours of the second-order structure
function from run B using the spatial-only mode decomposition
(top) and the 4D FFT method (bottom). For the top row, we split
the Fourier spectral power of the total velocity into fast, Alfvén,
and slow modes. Then we make the inverse Fourier transform and
calculate the second-order structure function of these three modes
in real space. Fast modes tend to be isotropic, while Alfvén and
slow modes are elongated, consistent with previous studies
(Goldreich & Sridhar 1995; Cho & Lazarian 2002, 2003). To
avoid double-counting, we exclude the fluctuations with k∥= 0
(where Alfvén and slow modes are degenerate) and k⊥= 0 (where
Alfvén and fast modes are degenerate). For the bottom panel, we
first identify various wave branches according to the theoretical
dispersion relation, allowing 3% deviation in the theoretical
frequencies above/below the gray wave surfaces in Figure 1(a) for
each wave branch. Then we make a 4D inverse Fourier transform
and calculate the structure functions for the non-wave, fast, Alfvén,
and slow components, as shown in the contour plots. We see the
general trend that the fast mode appears more isotropic, and the
other three components are more anisotropic. (The slow comp-
onent might be too noisy to be accurate.)
To further quantify the differences in wave components derived

from the two methods, in Figure 5 we plot the relationship
L Lq
 µ ^ of various components identified in runs B and C. We

summarize the power index q as follows: run B spatial-only, total/
A/F/S= 2

3
/2

3
/1/ ;2

3
run B 4D FFT, non-wave/A/F/S= 2

3
/1/1/

1; run C spatial-only, total/A/F/S= 5

6
/2

3
/4

5
/ ;2

3
run C 4D FFT,

non-wave/A/F/S= 5

6
/2

3
/1/1. (Note that we have added the

results for run C using the spatial-only method.)
Taking Figures 4 and 5 together, we can tentatively draw the

following conclusions. (1) Using the spatial-only method with
incompressible driving, the relations L L2 3

 µ ^ for the total,
Alfvén, and slow components, and L∥∝ L⊥ for the fast component,
are the same as those given by previous studies (e.g., Cho &
Lazarian 2003). (2) Using the spatial-only method but with highly
compressible driving, the slopes for the total (5/6) and fast mode
(4/5) components are actually slightly different from the
incompressible case (2/3 for total and 1 for fast). (3) Using the

Figure 3. Fractions of spectral power for non-wave, Alfvén, fast, and slow
components (from top to bottom), for runs A, B, and C. These are obtained
using the spatio-temporal method only.
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4D FFT method, for A/F/S components, both runs B and C give
either the same or slightly steeper slopes than those obtained via the
spatial-only method. (4) Using the 4D FFT method, there are
differences in the slopes for the non-wave and Alfvén components
when comparing runs B and C. (5) The fast component using the
4D FFT method gives a slope of 1 for both runs B and C. (6) As a
consistency check, for both runs B and C, the slopes for the total
and for the non-wave component are the same (2/3, 5/6) because
they dominate the spectral power using either the spatial-only
or the 4D FFT method. These slopes, showing slight variations
under different conditions, suggest that additional theoretical and
numerical studies are needed to address these differences.

4. Conclusion and Discussion

To understand the nature of MHD turbulence fluctuations in the
frequency versus wavenumber domain in more detail, we have
applied both the spatial decomposition method and the spatio-
temporal method to examine the properties of MHD turbulence.
In particular, we present results from three simulations, one (run
A) with incompressible velocity driving, one (run C) with highly
compressible velocity driving, and one (run B) with incompres-
sible velocity and magnetic field driving.
After excluding fluctuations associated with driving and the

(k∥= 0, ω= 0) component, we find that: when taking into
account the frequency behavior, the majority of the fluctuations
cannot fit within any of the Alfvén, fast, and slow mode branches.
We call them the “non-wave” component, and they account for
about 75%–80% of the total power. Furthermore, we find that
most of the “non-wave” power is of low frequencies. Similar
findings of ultralow-frequency spectral power were presented in
Dmitruk & Matthaeus (2007, 2009), i.e., their “1/f noise.”
However, to resolve the “1/f noise” in 4D FFT analysis may
require an even longer time duration and a larger simulation
domain than what we used here, which is beyond the scope of this

Figure 4. Contours of the second-order structure function of velocity for run B, separately calculated using different components, using the spatial decomposition
analysis (top) and the 4D FFT analysis (bottom).

Figure 5. Relationships between L⊥ and L∥ for different components identified
in run B (spatial decomposition only), run B (4D FFT method), and run C (4D
FFT method).
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paper. Observationally, the strong non-wave component is
consistent with the results of Bieber et al. (1996) and subsequent
work that showed the solar wind admits frequently an 80%–20%
decomposition into 2D-slab modes. Theoretically, the nearly
incompressible models of MHD predict (for plasma beta ∼1
or 1 ) a dominance of 2D over slab fluctuations (Zank &
Matthaeus 1992, 1993; Zank et al. 2017, 2020).

For those fluctuations that fit within one of the wave branches,
the Alfvén mode dominates. The fast mode is essentially
negligible in runs with incompressible driving, and becomes
∼2.4% in the run with the highly compressible driving (see, e.g.,
Zhao et al. 2021, for the minority of fast modes in observations).

In addition, we find that the second-order structure functions
for different components show differences from those obtained
based on the spatial decomposition method.

Because the fast modes in MHD turbulence have been
postulated to play an important role in understanding particle
transport and energization, our results here should open up new
questions on the existence of these fast modes and what
quantitative roles they could play. Using the spatial decom-
position method to identify different wave modes might be too
optimistic in concluding the fraction of fast modes (and
compressible modes in general). Instead, we suggest that the
“non-wave” component needs to be taken into account in the
particle transport and energization processes in MHD turbu-
lence. This will be a subject of our future studies.
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