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STUDIA MATHEMATICA T. XLV. (1973)

On the existence of fundamental
and, total bounded biorthogonal systems in Banach spaces

by R
W. J. DAVIS (Columbus, Ohio) and W. B. JOHNSON* (Houston, Tex.)

Abstraet. Tivory ﬂepamble Banach spaee admits (for any ¢ > 0) a biorthogonal
gystem (wy; o) with |wall ekl < 1-+¢ which may be selected either so that (m,) is
fundamental or so that (:)) is total. The first part of this result extends to eertain
non-geparable spaces (in pariieular m(x)): If X has a weakly compactly generated
quotient with the same density character as X, then X has a bounded biorthogonal
system (w,; #5) with (z,) fundamental.

I. Intreduction and notation. It is known (cf., e.g. [2], p. 238 or
[12]) that if X is o finite dimensional Banach space (say, dimX = m)
then X admits a biorthogonal sequence (#,, @n)r., With |w,l = |} = 1
forn =1,..., m. In Section II we prove two infinite dimensional versions
of this result. We show that, for each £ > 0, every separabls Banach space
admits a fundamental biorthogonal sequence bounded by 1-+-¢ and a total
biorthogonal sequence bounded by 1-+e The first result answers in the
affirmative a question of Singer’s ([8], p. 169); till unsolved is Banach’s
problem [2]: Does every separable Banach space admit a fundamental,
total bounded biorthogohal sequence? .

Our techniques also yield some information in the. non-separable
cage. Theorem 2 shows that if X iz a non-separable Banach space which
has & weakly compactly generated guotient with the same density charac-
ter ag the density character of X, then & admits a fundamental bounded
biorthogonal system.

Henceforth X, ¥, and Z will refer o infinite dimensional Banach
spaces over either the roa], or complex numbers. “Bubspace” means “closed,
infinite dimensional linear subspace”. For 4 < X, A is the annibilator
of 4 in X*, TFor 4 = X*, A7 ig the annihilator of 4 in X. Ii ¥ is a sub-
space of X, the dual of the quotient space X /¥ is identified with ¥+
in the canonical way. The real restrietion of the Banach space X i§ the real
Banach gpace obtained from X by allowing multiplication by real scalars
only.

* The second named author was supported by NSF GP-28719.
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X is weakly compacily generated provided X contains a weakly compact
subset whose closed linear span is X. The density character of X (written
dens X) is the smallest cardinal, », for which X has a dense subget of
cardinality ». We identify the cardinal » with the set of ordinals less
than x. N denotes the set of positive integers.

[wa] ig the closed linear span of the indexed family (z,). A family
(@5 )With (#,) = X, (a}) « X*is called bwﬂhogoml provided o} {i;) = 4,5
(ay %) i8: fundamemal it [z,] = X; total if (a})7 = {0}; bounded provxded
(z,) and (%) are both bounded; bounded by A (where i3> 1) provided
{,, &%) is bounded and |z, |&f| < A for every

A sequence (#,) < X i8 called basic provided that for each we [m,),
there exigts a unique sequenoe (e (w)) of sealars with @ = Yuh(w)m,. It is
well known that each j iy linear and continuous, and that (a,, #%) is
biorthogonal. For 1 > I, the basic sequence (#,) is said to be A-equivalent
to the basic sequence (y,) provided that the mapping taking =, to v, extends
to a linear homeomorphism 7' of [z,] onto [,] with |7 |7 < A

II. The existence theorems. Our first lemma generalizes a result of
Day’s [3] (and uses Day’s technigue). In the proof we make use of a con-
sequence of the Borsuk antipodal mapping theorem observed by Day [3]:
If I and G are subspaces of the real restriction of the same Banach space
and dim F << dimG < oo, then there is a unit vector g in G whose distanse

d(g, F) from F is one.
Ik

Levwma 1. Suppose that X is separable and set my, = ~0(—2;|-—1—)— for
kE=0,1,... X admits & biorthogonal sequénce (z,,, o) sabisfying

(D) flgll = fiwall = wp(@,) =1 for n =1,92,...

ng
{ii) For each wdrs:,], # = lim Z @y ()
Fero0 i=

{iil) In the real resiriction of X, ()51, 48 (1—2— )-eqm‘valcnt

to an orthogonal basis in the k-1 dimensional real L’uchdeam space 1
Jor k=0,1,2,

(iv) (@7 -+ [:v,,] is dense in X,

Proof. Let (d,) be a dense sequence in X with &, = 0. It iy sufficlent

to define sequences (»,) = X, (a) « X* and finite sels ¢ = F, < 7,
< Fy< ... of unft vectors in X* to satisfy (i), (iii) and

(V) @appie (FpU (8T for each % =0,1,... and F=1,..

vy k1
(¥i) o se((dbe U @B )" for cach & = 0,1, ... and § =1, ...

o k1.
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(vii) _for each kb == 0,1, ...

|IWH<(1~1 ‘IH 1)1/"(

For then (#,,#,) is biorthogomal by (i), (v}, and (vi). From (vii)
and (v) it follows that, for any s'cmlars (a5),

Bol<ler g
»-»«(1 : )xﬁﬁx}I(Zaiwi)k(l-}— )HZ’M

{ii) ip an cagy conauq_uonbe of this inequality. Finally, from (vi) we have
iy
dy.e ((w}“)fmmﬁ.x)"‘} ‘Z; @ () wye (@))7, whenee dye [2,1+ (2)7,
so that (iv) holds. §
Pick », and 2 to satisfy (i). Suppose that (a;, #F);%, and (F,),
have been defined. Set m == 2 (n,,,, +-3%) and use the Dvoretzky theorem [4]
to got an isomorphism T' from a real m dimensional subspace Z of the

and @< [(2,);55] there is fe Py, such that

o)

hence  d,—

17.]0

1
real restriction of ((#})it, U F)T onto ¥ with |IT] < 1—!——76—, N7y =1.

”k !

We select (w;)".fn,ﬂl e Z and (af) b1 5O sa’msfy (i); (v)y (vi} and

(vitl) (Tw,)i%sk,, is orikogonal.

Indeed, having defined (w.,,mi)?g,‘m;ﬁ for some j, 1<j<k+1, we
let W be the orthogonal complement in If* to (Ta,)fet! 7.1 and, nsing Day’s
lemma, scloct a unit veetor @, ;¢ (T'W) A ((a)fx)] +})T s0 that &(z, .,
(@ ()P ) = 1L (N ote that Day’s lemmsa applies, because if
wo sob G = (T'W) N (@)Y and F = [(d)f, V(@) ), then in
the real restriction of X dim I < 25 +2(ny+j—1) < 2k-4-2n,,, while
dimé = m—(j —1)—2(j — 1) 3= m—8k = 20y, --3k.) Now we use the Hahn-
Banach theorem to get %, v to satisfy (i) and (vi).

Finally, using the compactness of the unit ball of the finite dimensional
space [(a):"*] and the Hahn-Banach theorem, pick a finite set Fr., o F)
of unit voetors to satisfy (vii). o

lewrly (2, @) and (F,) satisfy (i) and (v)—(vili), while (ili) follows
from (viii), W

Romark 1. By using tho ’cechmques in [6] and & bit more care in
the ahove ]mm]l of Lomma 1, (z,, &) may be chogen so that (2,) is basie
and (w)) is w*-basie in the sengoe of [6].

Tonorny 1. Suppose X is separable and let e > 0. (2} X admits a fun-
darmental biorthogonal sequence bounded by 1+ e. {b) X admits a total biortho-
gonal sequence bounded by 1+,

§ = Studla Mathematica XLV.2
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Proof. Let (z,,x}) be a biorthogonal sequence for X satistying
(1)-(iv) of Lemma 1. Let p: ¥ X N -+ N be a bijection such that for each
#y p(, 1)< p(n, 2)<< ..., and for each n and % there exists j so that,
in real restriction of X, (m,q)/2f, is 2-equivalent to the usual basig
for 1%. It follows that for each =, (Bp(n,5))im1 18 & bagic sequence in the real
restriction of X not equivalent to the usual basis for I, (the space of abso-
lutely summable real sequences), so there is a seqguence (af}e; of real
numbers with 3 ala,,, . convergent and ¥ |a}] = oo.

=] gr2]
Let (y,) be dense in the unit ball of (#;)7, and set, for each » and 3,

wi = — exignaly, -+ DByin, iy

Obviously (w7, @,«)in-1 13 biorthogomal and [fw¥] |4, <12, so
we can complete the proof of (a) by showing that (w})*+ = {0}.
Suppose a*e (w})'. Then for each n and %,

13

k
@ ) atwyn) = o X latla*(9,).
; i=1

=

For fa.ch fixed n the left gide of the preceding equation is bounded in k,
80 & (y,) = 0, from which it follows that 8" (@pnn) =0 for 4 =1,2,...
Thus »* vanishes on (#)7 + [@,] whence, by (iv), #* = 0.
To prove (b), note that (iv) implies that, for each , w:(n,n converges
woak® to 0 ag { —co.
Let (2,) be a weak* dense sequence in the unit ball of () and set,
for each » and i,

no *
b = —ez, -+ Lpmyd) -

Clearly (@, 4, bf) is biorthogonal and bounded by 1+¢; we complete
the proof by showing (b%) is total. =
) Suppose 2« (b7)7. Then for each n and 4, s, () = 4 o) (). Letting
% — oo, 'We have that #,(2) = 0 for each n, hence also w;(m) (¢) =0 for
each » and 4. But then we (2})7 N[x,] and thus, by (i), # = 0. m
Remark 2. The perturbation technigue used in the above proot
(and in the proof of Theorem 2 below) was suggested by Singer’s proof of
Proposition 1 in [9]; however, Singer's construction there produced
unbounded biorthogonal sequences. Singer [11] has also modified his
technique of [9] to give a proot of 1 (b) with “1--z” roplaced by “2-¢”.
LEymA 2. Suppose that X is wealkly compactly generated and dons X
= %> sty Then X has a quotient ¥ which admits a bounded Jundamental
bzo.mhogmal SYSIem: {Ypns G e, nen Such that for each a, 0 i¢ a weak cluster
point of (YR,
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Proof. It follows from the results of Amir and Lindenstrauss [1]
that there is o family {I’,,: aex u{n}} of norm one projections on X satis-
fying

(8) PoPp = Prina,p for all a, f.

(b) [Puyq —P,1X is infinite dimensional for each ee x.

(c) .2, 18 the identity, and for each limit ordinal < », {P,: a< f}
tends strongly to Pg. '

Tor each ae », write @ = m, -+ u,, where m, is a limit ordinal (or zero),
M, I8 & non-negative integer, and “--” denotes ordinal addition. As in the
prOO';E of Lemma 1, for each o« we can choose a biorthogonal sequence
(o5, f3at® in [Py —P,)X with [wf] = Iff) =1 so that, in the real
restriction of 4}1’, (@Yied® ig 2-equivalent to the usual bagis for If«t?,

Bob ff = [} (Pupa—Ps). The system (a7, fTacw,icn,+1 is biorthogonal
by (a). Now for each wes, [P, ,—P,]X is the direct sum of [(af)fa']
and (( FERe )T, Brom this and (o) it follows that [af]+ (f2)7 is denge in X,
Thus by reindexing (xf, f7) we have that X admits a bounded biorthogonal
system (7, 08 um sy Robistying

(i) [#§1+(g8)" is dense in X. ‘

(1) for each aex and n =1,2,..., there exists k such that in the
real restriction of X, (F&)EHD,, is 2-equivalent to the usual basis for Z.

Lot ¥ = X/(g)7, let T: X - ¥ be the quotient map, and set y§
= T8, Clearly (¥%, ¢f) is 2 bounded biorthogonal system for ¥ and it
iy fundamental by (1). From (i) it follows that, for each ac %, 0 is 2 weak
clugter point of (F)2°,, hence also 0 is & weak cluster point of (y7).,. I

TarorEM 2. Suppose that dens X = x> », and X has a weakly com-
pactly generated quotient whose density character 18 ». Then X admils o fun-
damental bounded biorthogonal system.

Proof. From Lemma 2 it follows that X admits a bounded biortho-
gonal system (@, fieo,ney With [#3]4(fi)7 dense in X and, letting
T: X - X[f07 denote the quotient map, 0 is a weak cluster point of
(Tad)e., for each ae 2. Lot (¥, )we be dense in the unit ball of (f7)T and,
for each ae x, define

w;fb w1, R m;;""a";lh-l‘l for o = ]., 2, reey
0= fi
O = Jur 00 for n = 2,38, ..,

Then. (', g?) is a bounded biorthogonal system. We complete the
proof by showing that (wj)t = {0}.

‘Buppose o*e (w)+. Then for oach eex and = =1,2,..., o (y,)
= g* () —a* (@%,,), honce by the boundedness of (z7), 2"e(y)"
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= (X[(f57)". But the nfor ecach aex, a*(a}) = &*(x) = &*(#§) = ... and,
since (Twgpfr., has 0 as a weak cluster point, we have o™ (22)L. Thus
#* = 0 by the denseness of [22]+(f97. W ‘

Remark 3. Of eourse it is a particular case of the theorems that
every reflexive Banach space admits a fundamental bounded biorthogonal
system. It follows by duality that every reflexive space also admits a total
bounded biorthogonal system. A more general result than this latter one
follows easily from a recent argument of Singer’s: a trivial modification,
of Binger’s proof of Theorem 1 in [11] shows that the Banach space Z
admits a bounded total biorthogonal system of cardinality dens Z = x > x,
provided Z has a subspace ¥ with dens ¥ = » and ¥ admits a total,
fundamental, bounded biorthogonal system. Now if Z contains a weakly
compactly generated subspace X with dens X = %, then such a subspace ¥
exists. Indeed, letting {P.: a<Cx} be a “long sequence” of projections
on X satisfying (a), (b), and (¢) of the proof of Lemma 2 above; selecting
unit vectors y,e [Py, ~—P,]X; and setting ¥ = [y,]; we have that the
functionals (y;) on ¥* biorthogonal to (y,) are total over ¥ amd [}
L [Py —P, £ 2.

Remark 4, Since m(») (the space of bounded scalar valued funections
on the infinite cardinal ») has a quotient isomorphic to a Hilbert space
of orthogonal dimension 2* {cf. [7], p. 203), m(x) admits 2 fundamental
bounded biorthogonal system., Obviously m(x) also admits a total bounded
biorthogonal system; however, m(x) does not admit a total, fundamental
biorthogonal system [57].

Remark 5. The fact that the construction in Theorem 2 produces
fundamental biorthogonal gystems (z,, «) with X /(z})T weakly compactly
generatec‘l is not purely accidental: the, argument of [8] shows that if
(2,, #%) is & fundamental biorthogonal system for a Grothendisck space X
(1e, weak® convergent sequences in X* are weakly convergent) then
[#}] — and, consequently, also X H@l)T — is reflexive. Thus if X is a Grot-
hendieck space, the following are equivalent: (a) X admits a fundamental
bounded biorthogonal gystem; (b) X admits a fundamental biorthogonal
system; (¢) X has a reflexive quotient with density chavacter dens X,

ProprmyM. Does every Bamach space have a (bouwnded) Jundamental
biorthogonal system ?
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