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ON THE EXISTENCE OF GLOBAL VARIATIONAL PRINCIPLES*

By I. M. ANpeErsoN and T. Ducuamp

1. Introduction. In studying physical phenomena one frequently
encounters differential equations which arise from a variational principle,
i.e. the equations are the Euler-Lagrange equations obtained from the
fundamental (or action) integral of a problem in the calculus of variations.
Because solutions to the Euler-Lagrange equations determine the possible
extrema of the fundamental integral, the first step in the solution of a
given problem in the calculus of variations is to obtain the appropriate
Euler-Lagrange equations. This state of affairs suggests the so-called
inverse problem, viz. does a given differential equation arise from a
variational principle and, if so, what is the Lagrangian for that prin-
ciple? In addition to being of intrinsic interest, this problem is relevant
to the study of differential equations. For example, the existence of a
variational principle frequently leads to first integrals (via Noether’s
theorem) and solutions by quadrature, it guarantees the existence of a
well developed canonical formalism (see, e.g. Dedecker [9], Goldschmidt
and Sternburg [11], Hermann [14] and Rund [27]), and it has important
implications regarding the existence and bifurcation of solutions (Vain-
berg [33], Berger [7], Rabinowitz [25]). The inverse problem also has
applications in numerical analysis in view of the increasing popularity
of the so-called direct methods such as the finite element method (see,
e.g. Mitchell and Wait [22]). Finally, within the context of physical field
theories there is considerable interest in this problem because of the
belief that physically meaningful field equations should be Euler-
Lagrange equations.

In recent years various approaches to the inverse problem have
been taken by numerous authors, e.g. Ahner and Moose [1], Aldersley
[2], Anderson [3], Atherton and Homsy [6], Douglas [10], Havas [13],
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Horndeski [16], Lawruk and Tulczyjew [18], Olver and Shakibar [23],
Takens [29], Tonti [31, 32] and Vainberg [33], and the problem has
been completely solved in a purely local context. Takens [30] and Vino-
gradov [34] have also obtained important results with regard to the
global inverse problem which are generalized in this paper.

To be more specific, let us consider a submersion P 5 M over an
m-dimensional manifold M with n-dimensional fibers. We will denote
the bundle of k-jets of local sections of = by 7*:P¥* — M. Recall! that
for x € M the fiber (7%)~1(x) consists of equivalence classes of germs of
local sections of 7 at x; two sections s; and s, being equivalent if for
some (and therefore every) chart all partial derivatives of s; and s, up to
order k agree at x. Given a section s:U — P for U S M open, the k-jet
of s, written j*(s), is the section of P* over U whose value at a point
x € U is the equivalence class determined by s in the manner described
above. The canonical projection from k-jets to j-jets (where k = j = 0)
is designated by ;% :P* — PJ. Note that P® = P.

An adapted coordinate chart for P consists of an open set U < P
and diffeomorphisms ¢ and ¢ such that the diagram

U—2—R" X R"

%o

x(U) Rm™

commutes. The coordinate functions of ¢, and ¢ will be denoted by
(*) = (1, ¢2, ..., t"™) and (t*, x') = (¢, ¢2, ..., tm, x1, x2, ..., x")
respectively. The coordinate chart (U, ¢(, ¢) of P lifts to a coordinate
chart on the k-jet bundle P*. Indeed, if s is a section of 7 over U and
we set

si(t®) = xf o 5 0 ¢~ 1(t2)
and

; arst
X v -
Rt R A Ot®19E%2 « .. 9%

1 The elementary properties of jet bundles are discussed by Golubitsky and Guillemin
[12]) and Pommaret [24].
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for r =z 0 (with the understanding that xi, ..., = x! when r = 0), then
the coordinates of j*(s) are 2, x/, xal", e xialaz...ar where r < k and
1 <a <ay =< - < a < m For arbitrary values of oy, a3, ..., o,
we set X'y o) ..a. = *¥'(4 4y .a,}» Where {ajo -+ @, } indicates that the
indices are to occur in increasing order of magnitude.

In terms of this jet bundle formalism, a k-th order Lagrangian is a
smooth mapping from P* to the bundle A™(M)* of m forms on M such
that 7 = L - =/, where 7’ is the projection mapping =’ : A"(M)* — M.
For example, with respect to the aforementioned coordinate chart
(U, ¢, ¢), a first-order Lagrangian L : P! — Am(M)* assumes the form

L =Ly, xi, x dtV Ndt2 A -+ Adt™. 1.1
The Euler-Lagrange equation derived from L is
EL) =0, (1.2)
where E (L) is defined locally by?
EWL)=E;Ly)dx* Ndt! Adt? --- Adtm

and

pay— o d [ L
AEOTTT g dt> [axa’}

Here d/dt* formally denotes total differentiation with respect to ¢* so
that (1.2), when written out in detail, implies that

+

aL, 3L, 2L, 92L, .
— ; . X T X,
ax' at%ox Ox7 dx o oxg'ax,' )

dxi ANdt' Adt2 A - Adtm = 0.
Consequently a solution of (1.2) on U € M is a section s: U — P such that
E(L) - j%(s) = 0.

2The summation convention by which there is an implied summation over repeated
indices is in effect.
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Obviously, not all second-order differential equations on P are
Euler-Lagrange equations. However, if

T=0 1.4)
is a differential equation on P, where
T = T;@, xt, x5, Xop') dX/ A dt! NdEZ A -+ A dt™,

then (1.4) is locally an Euler-Lagrange equation if and only if T; satisfies?

3,°8T; = 3,7T;, (1.5a)

oT; aT; d
— = — -+ 2 BT, 1.5b
ax,/ ax,} + dtf (0,277} (1.50)

and

Of; _0T; _ _d [3T;7 . d _d
— = i - + aB 7. . )
ax/ ox! dt® [6xa’} dre  dB [8:24T;] (1.5¢)

Moreover, a Lagrangian L for which T = E(L) on U is given by

“rl
L= —-H xITi(e, Mxf, Ax )/, Xxuﬁf)dx]dtl AdE2A - Ndtm, (1.6)
0 .

These results extend to differential equations of any order (see Theorem
3.1) and hence, in a local context, solve the inverse problem. Since the
Lagrangian (1.6) (and its counterpart for equations of higher order, see
equation (3.2)) is only defined locally, there remains the problem of
identifying the obstructions to piecing these locally defined Lagrangians
together to obtain a globally defined Lagrangian which gives rise to (1.4)
everywhere on P.

Our analysis of the inverse problem is organized as follows. The
various sheaves and cochain complexes of sheaves to be used throughout
are introduced in section two. Naturally, these complexes involve the

3Here 3;%% = 3/3x48" if « = B and 3;*f = 1/2 3/0xq5" if & # B. This convention
eliminates the need to order the summations occurring in (1.5).
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Euler-Lagrange operator and they enable us to formulate precisely both
the local and the global inverse problems in the calculus of variations.
Similar resolutions have been introduced by Horndeski [15], Olver and
Shakibar [23], Takens [29, 30] and Vinogradov [34].

In section three the local inverse problem is discussed and what we
believe to be the most straightforward solution to date is given by adapting
the arguments of Atherton and Homsy [6], and Takens [29]. It is also
proved that if the differential equations (1.4) are quasi-linear (i.e., T is
linear in its second derivatives x,4'), then in place of the second order
Lagrangian (1.6) one can always explicitly find a first order Lagrangian,
i.e. a Lagrangian of the type (1.1), such that E(L) = T. This is a par-
ticularly significant result because both the theory and the applications
of the calculus of variations are, by and large, concerned with first order
variational principles. The proof of this result is based upon a somewhat
cumbersome, but nevertheless explicit, solution of a certain overdeter-
mined system of linear partial differential equations.

The main results of the paper are presented and proved in section
four, modulo the proof of exactness of a certain differential complex of
sheafs (J,*, D). To each globally defined k-th order differential operator
T which is locally the Euler-Lagrange operator associated to some k-th
order Lagrangian a well-defined cohomology class 6(T) € HmT1(P, R) is
obtained. It is shown that T is the FEuler-Lagrange operator associated
to a globally defined k-th order Lagrangian if and only if 6(T) = 0.
Thus, if Hm+1(P, R) = 0 then every differential equation on P which is
locally an Euler-Lagrange equation actually arises from a globally defined
Lagrangian. Should 7 fail to be the Euler-Lagrange operator of a k-th
order Lagrangian, then a natural question to pose is whether T is the
Euler-Lagrange operator of a global Lagrangian of order greater than k.
This question is answered in the negative by proving that if T is the
Euler-Lagrange operator of a globally defined Lagrangian of locally finite
order (i.e. the order may increase without bound as one moves from
point to point on P), then T is in fact the Euler-Lagrange operator of
a k-th order Lagrangian. Also, a map from closed (m + 1) forms on P
to locally variational operators on P is constructed which leads to the
realization of the obstruction 6(7) as an element of the (m + 1)st
deRham cohomology of P.

In section four we also consider another long-standing problem in
the calculus of variations, viz. the characterization of variationally trivial
Lagrangians, i.e. Lagrangians with identically vanishing Euler-Lagrange
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expressions. Recently, Horndeski [17] has shown that every such k-th
order Lagrangian is locally the total exterior derivative of an (m — 1)
form on P%~!, This result is substantially improved upon. Indeed, it is
shown that every k-th order Lagrangian

L =Lo(t*, x',xaf, ooy Xy gy 0 )t NDEEA - Adt™

with vanishing Euler-Lagrange expression is necessarily a polynomial of
degree no greater than m in the variables xialaz...ak and is locally the
total exterior derivative of a (m — 1) form on P*, Furthermore, it is
established that the obstructions to writing a variationally trivial La-
grangian as the total exterior derivative of a globally defined (m — 1)
form lie in H™(P, R). Examples of these results are provided in section
five.

The remainder of the paper is devoted to establishing the exactness
of the differential complexes (J,*, D) (k = 1, 2, ..., o) which were
used in section four. In section six a homotopy is constructed which
leads to the exactness of the particular complex (§.*, D). This solves
the inverse problem in the special case k = oo and therefore furnishes
an alternate proof of the main theorem of Takens [30]. For k < = a
similar homotopy is not available nor do the techniques of Takens apply.
To overcome these difficulties an explicit characterization of the sheaves
9,9 is presented in section seven and used in section eight, in conjunc-
tion with the homotopy of section six, to prove the exactness of (J.*, D).

2. Notation and preliminary results. As indicated in the intro-
duction, our treatment of the inverse problem of the calculus of varia-
tions will be based upon a C* submersion P > M. In this section we
develop the formalism necessary for the precise formulation and solution
of this problem.

Let C> denote the sheaf* of germs of real-valued C* functions
on P. The direct image sheaf under the projection wy*:P*¥ — P of the
sheaf Q4(P*) of germs of g-forms on P* will be denoted by 2,9. Spe-
cifically, if U < P is an open set, then

LU, ) = T'((xo*)~1(U), Q9(P*)).

4 Sheaves and sheaf cohomology theory are discussed by Bredon [8), Warner [35] and
Wells [36].
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Observe that the projection maps ;¥ : P¥ — P/ induce inclusions Q;9 C
0.9 for £ > j. A section w € I‘(U 2,9) is referred to as a g- form of
order k on U. Such a form will be called basic if in local coordinates
it is of the form

w = wg g, dI" NdEPLA - A dtPs,
where each W 6,6, € U, .9, i.e.

= o i i |
wﬁlﬂzu‘aq wﬂlﬁz...ﬁq(l‘ » XN Xty ey x’alaz_,,ak).

The sheaf of basic g-forms of order k& will be denoted by ®&,9.
There is a graded algebra map

lkaqu_] g G?)kq (21&)

for k = 1 and 0 = ¢ < m which is defined as follows. Given w €
I'(U, Q9,_;), then ¥, (w) € I'(U, ®,9) is the basic form of order £ whose
value at a point y € (wo*)~1(U) is

Wk (@) = T*(GE1(s)*(w)(x), (2.1b)

where x = wk(y) € M and s is a local section representing y, i.e.
j*(s) = y. This map is well-defined because j*~1(s)*(w) depends only
on the k-jet of s at x. We denote the image of Q2,9 under ¥; by J,? and
remark that there are inclusions

By_y S §u7 S By9. 2.2)

Finally, in local coordinates, i, is the algebra map generated by the
equations

wlf) =1
Vi (dt®) = dt*, and (2.3)
l//k(dxial...q,.) = xial---qlﬂdtﬁ’

where fis.a C* function on (wp*) "' (U)and 0 < j < k — 1.
Exterior differentiation of forms on P* induces an operation called
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total exterior differentiation on §,9. Specifically, if w = ¥, (&) is an
element of §,7, then we define

D:g, 4 = 1! (2.4a)
by setting
Dw = ¢, (d&), (2.4b)

where d denotes standard exterior differentiation on Q4(P*). From the
definition of ¥, and the fact that d commutes with the pullback maps
J*¥71(s)* and =*, it readily follows that y,(d®w) = y4(d&) whenever
Vi(w) = Y (@). Thus D is well-defined. Moreover, it is immediate from
the definition (2.4) that

(i) D is a differential in the sense that D - D = 0;
(ii) D o ¢ = Y o d; and (2.5)
(iii) D is the derivation generated by the equations

Df = [8af + x0if + x5, 0:%Lf
F oo X ey a 81 A, (2.62)

where f is a real-valued function on (w%)~!}(U), i.e.
F=rex xgfy oo Xy )
and
Ddt>) = 0. (2.6b)

In equation (2.6a) we have adopted the notation

af af
0, f = ——, 8;f = —
of ot Y axt
and
el eeep 1
poer af = rilr;! ! . of ,

k! axl{alaz"'“k}
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where r; denotes the number of occurrences of the integer / amongst
oy « -+ ai. Thus, for instance, it is easily verified that

928(x,J) = %a,.f(aaaaeﬁ + 8,56.%).

This definition of 9,%t%2""* ensures that the quantity 9;*1%2"""%f is
totally symmetric in the indices o;c; - -+ o and eliminates the need to
order the summations such as those occurring in (2.6a). It is convenient
to set

k .
Dof = 0uf + L gay o ad®1% %f @.7)
Jj=0 J

(with the understanding that 3,°1°2" "% = 3; when j = 0) so that (2.6a)
can be succintly rewritten as

Df = (D, f)dte.
Successive applications of the differential operator D, will be denoted by

Dyoy-ap = DayDay -+ Dy, . (2.8)

In view of the inclusions (2.2), the differential D is also defined on
®9. However, because of (2.6) the image of ®B;9 under D is not con-
tained in ®,7*! but rather in (B‘,{ii and consequently the sequence of
sheaves B0, B;!, B,2, ... together with the map D do not define a
differential complex. These, therefore, are not suitable for our purposes.
Our first major result shows that the sheaves §;7 are the maximal sub-
sheaves of B3;7 which together with the map D form a differential com-
plex. This is a key theorem not only because it clearly establishes the
significance of the sheaves g9 but also because it exhibits explicitly
their structure.

THEOREM 2.1. (i) For ¢ < m and k = 1 the sheaf $9 is charac-
terized by the property that Dw € ® 91! whenever w € 1, i.e.

gkq = {w € (quIDw € (qu+l}. (2.9)
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(ii) Fach w € T(U, $,9) can be represented uniquely in the form

—_ BleB . . .
0= X iia 81858, Dxp 7V A Dxg 2 A - -+ A Dxp’r
rts=q
AdtPYAdEP2 A - A diPs (2.10)
where B is the multi-index (8,!, 8,2, ..., 8,%7!) and

DxBVjv = xjvﬁvlﬂvz...;gvk—hldt".
The coefficients W,Bl‘,fz,j; 8,---8, are elements of T'(U, Q%_,) and are
skew-symmetric in the indices B, B, +-- By, skew-symmetric with
respect to transpositions of the multi-indices (B,, j,) and (B,,, j,) for all
1 < v < u < r and totally trace-free in the sense that the contraction of
any subscript B, with any superscript 3, € B, vanishes.

The proof of Theorem 2.1 requires a considerable effort and so to
avoid interrupting the continuity of the present section will be deferred
to section seven.

From (2.10) it is clear that §,9 is that subset of ®;? consisting of
forms which are polynomial in the variables x;,q,...q, Of degree no
greater than ¢ and such that this polynomial dependence on xialaz-“ak
may always be expressed in terms of Dx'y o). .0, = X'a 0y aq_ vt
In particular Theorem 2.1 leads to the conclusion that if w € ®,? for
g < mand Do = 0, then w is necessarily a polynomial in the variables
X'o, - oy Of degree less than or equal to q.

The requirement that the coefficients occurring in (2.10) be totally
trace-free is essential to the uniqueness of this representation. To illus-
trate this point, let

7 = Y (T, dxg A dt®) = T,,PDx4 A dte.

Then an elementary calculation shows that the vanishing of 7 is equiva-
lent to the equation

TB=L6 BT 7,
i m Je tiy

Hence 7 = 0 implies T}, = 0 only if T,,# is trace-free.
The representation (2.10) of w € ;7 will be referred to as the
canonical form of w. Given a form w in canonical form we can replace
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each differential Dx? o, DY dx’, yay-- oy, tOODtain aform & € Q9
which we shall designate as the canonical lift of w. The mapping which
sends w to its canonical lift & will be denoted by ¢, . Thus, ¢5: g7 —
Q9. _, and if w is given by (2.10), then

ajoag-

- BBy
$pw)= L WJ112 Jrﬂlﬂz By delj‘ /\de )2
rt+s=gq
Aves Ndxgr AdEPU AP A - NdiPs. @2.11)

From this equation and (2.3) it is clear that ¢; is the right-inverse of
l//k, i.e.

Vi o ¢9p(w) = w 2.12)

for all w € 7. However, it must be emphasized that for £ > 1 the lift
& = ¢4 (w) is not invariantly defined and is canonical only with respect
to a given coordinate chart U < P. For k = 1, this lift can be invariantly
defined and has many important properties which will not be discussed
in this paper.

Now let 3, C Q! be the sheaf of germs of (m + 1)-forms of
order k£ which in local coordinates are of the form

T = T;dx) Adt' Nd2 A -+ Adtm, (2.13)

where each T is a O-form of order k. We designate 3 as the sheaf of
germs of k-th order operators on P. A global section T € I'(P, 3;) de-
termines a differential equation of order k£ on P 5 M. Indeed, since T
can be treated as a fiber bundle map T:Pk — A™T1(P)* over the base
space P, a solution of the equation 7'= 0 on an open set U S M is a
section s € I'(U, P) with the property that T - j&(s) = 0. These defi-
nitions are natural generalizations of their classical counterparts because
in local coordinates the equation T = 0 is equivalent to the system of
equations

T;(e>, x', Xols ooes xlalaz“-ak) = 0.

Hence, a local solution consists of » smooth functions s' = si(¢%) for
which
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i k i
I} <ta’ si’ as L ] a s > = 0
ate 9% . .. %

for all (z>) € U.

We are now in a position to precisely formulate the inverse problem
of the calculus of variations. To begin, we designate B,™ as the sheaf of
germs of k-th order Lagrangians. Hence, if U is a coordinate neighbor-
hood on P a local k-th order Lagrangian L is a section in I'(U, ®&,™)
and, as such, assumes the form

L =Lydt! NdE2 A - Adtm, (2.14a)
where L is a smooth function
Lo = Lo(*, %', Xo,'s ++ s Xayaye--aq ) (2.14b)

In this sheaf-theoretic context the Euler-Lagrange operator is an
R-linear sheaf map

E: CBkm - 32/( ,
defined for each k = 1. Specifically, if L is the local section (2.14), then®
E(L) = E;(Lo)dx! Adt' Ndt2 A -+ Adt™, (2.15a)

where, in terms of the notation adopted earlier,

k
EjLo) = L (—1Y"'Dg ey, (81 " Lyo). (2.15b)

We will denote t[l;le image sheaf im(®;™ 5 3.:) by &y and the kernel
sheaf ker (B,™ = 3;) by K. We call X, the sheaf of germs of vari-
ationally trivial Lagrangians of order k. From the sheaves introduced
thus far we form the direct limit sheaves

®B.7 = lim B9, €o =1lim &y and XK, = lim X,
E > E

5For an invariant definition of the Euler-Lagrange operator E, see Takens [29].
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and name @™ the sheaf of germs of Lagrangians of locally finite order
and designate &, and X, in a similar manner. Let V;, the sheaf of
germs of locally variational operators of order k, denote the intersection
3¢ N &,. Note that

§.7 =1lim g7 = B,7 and YV, =I1mV, = &,.
K K

In terms of the above formalism the local inverse problem in the calculus
of variations is the problem of characterizing the sheaf of germs of locally
variational operators of order k, i.e. of determining those operators
T € 3; which belong to V. The global inverse problem is the problem
of characterizing those globally defined and locally variational operators
of order k which are the Euler-Lagrange operators associated to globally
defined k-th order Lagrangians, i.e. the global problem is to determine
when a differential operator T € I'(P, V) satisfies the equation T = E(L)
for some L € I'(P, ®B,™).

3. The local inverse problem. As mentioned in the introduction
the local inverse problem has received considerable attention recently.
The following theorem summarizes the main result in this area.

THEOREM 3.1. Let U be a coordinate neighborhood on P whose
image in R™*7 js a convex set containing the origin and let

T =T X', xo, s «or Xl oy q )X NAEL AN - A dt™

represent a local section T € T'(U, 3,). If T € T(U, V), then the n
functions T; satisfy the equations®

1N kel

oyt —
ajIZ sl'._
r

] (_l)r(;)Dax+l...araiala}..zxsas+l...a,ri (3.1)

identically for all 0 < s < k. Conversely, if (3.1) holds then T = E(L),
where L € I'(U, ®&,™) is defined by

el
L=— “ JT; )\x)d)\]dt’ ANdE2EA -+ Adgm (3.2)
0 -

6Here (;) =rl/(r — s)ls).
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and where T;(t, \x) symbolically indicates evaluation at the point
(% Mty Mgy ooy NXE

Proof. Let Y be any vector field on (7y2¢) ~1(U) which is of the form

al“z"""k)'

Y = Y0y et Yy a5 (3.3

where the coefficients y’ are smooth functions of the coordinates (¢%)
only and

. akyi
y""laz'"ak = OtO19t%2 « oo Jt%% '

Then the Lie derivatives of the Lagrangian

L =Lo(*, x', xa)s -y Xg 0y cq )t ANdE2 A -- o A dt™ (3.4)
and its Euler-Lagrange expression
EL) = E;j@*, x', xa0)s oy Xo 0y ap)AXI NdE NN - A di™

are given by

") .
LrL) = T Yoyuyera G120 Lo)dt! A de2 A <o A de?

and

2¢ . .
SYED) = L Yoyay.a 31 " E))dx! Ndt! NdEZA - A e,

r=

Since £y commutes with the operators 9,%1°2" "% and D, it follows that
£y commutes with the Euler-Lagrange operator, i.e.

E[LyW)] = Ly[EA)] (3.5)

Furthermore, setting V = V' (3/8¢%), where V2 is defined by



GLOBAL VARIATION PRINCIPLES 795

[4 r
Ve= Y Y (—1y*D

r=1 s=1

o Oy O[Ot
a1a2"'as—1[ai 192 s —1 Ag 4| rLO]

i
X y Ogq° " 0?

and expanding the total divergence D, V¢ yields the equation
Ly(L) = —i(Y) o EL) + D (V)dt! A - -+ A dt™, (3.6)

where i(Y) o E(L) denotes the interior evaluation of the (m + 1) form
E (L) with the vector field Y, i.e.

i(Y) o E(L) = (E;y))dt' AdE2 A -+ Adt™.
The Euler-Lagrange operator annihilates total derivatives (for a
proof of this generally, see Lovelock [20]) E;[D,(V*)] = 0 and conse-

quently the application of the Euler-Lagrange operator £ to (3.6) yields,
on account of (3.5), the equation

Ly[EWL)] = —E[i(Y) - EL)].
Therefore if a k-th order operator T' € I'(U, 3;) is the Euler-Lagrange
operator associated to a Lagrangian of the type (3.4), i.e. if T € T'(U, V),
then T necessarily satisfies

Ly(T) = —E[i(Y) - T] 3.7)

for all vector fields Y of the form (3.3). Written out in detail (3.7) becomes

[ nokad

yjoqotz- . .a,(aja]aT % T) = _Ei(yjri)' (3.8)

i

s=0
Equation (3.1) now follows directly from (3.8) by expanding the right-
hand side of this latter equation and equating the coefficients of y"al -
foreach0 < 5 < k.

To establish the converse we simply compute the Euler-Lagrange
expression of (3.2) and substitute from (3.1) as follows:
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1 k
ElL)= Hl [T,-(t, M) + A L (—1)[Dajay.- .0 (670,419 T 1, )\x)}
0 r=0

-d)\}dx"/\dtll\dtzA s Adtm

"l k
= H [Ti(t, M)+ N DXy
s=0 $

0

"k
| £ 0Dy a 1 no ]

cdXiNdtIANdEZA - AdEm

1r k
= {S [Ti(t, )\x) + A EO xjalaz-"a_‘(ajalaz“'a-‘ Tl)(t, )\x)‘]d)\}
0 $= -

cdxi NI ANdEEN - Adtm

11
{ S 4Tt )\x)d)\jdx" ANdELAEEA -+ Adtm
o dr

T.

. O

Observe that the Lagrangian (3.2) is of order k. This shows that
Ve = 3% N &y and so, in particular, there are inclusions V, S &y
c V.

Another aspect of the local inverse problem is that of characterizing
the image sheaf &,, € J,;. This is an as yet unsolved problem although
we have succeeded in solving it for what is probably the most interesting
case,’ viz., k = 1.

THEOREM 3.2. Let U be a coordinate neighborhood on P and let

T =T;(t, x',x,}, X0 )dx! NdtL ANdE2A - -+ Adt™

7Santilli [28] states this result, but his proof appears to be incorrect.
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represent a local section of T(U, 3,). Then T € T'(U, &,) if and only if
T; is linear in x g%, i.e.

T; = ApoB(®, xF, x,/)x ogF + A, (8%, x, %)) (3.9)

and satisfies (1.5).

Proof. That conditions (3.9) and (1.5) are necessary is relatively
easy to verify. To demonstrate that these conditions are also sufficient
we first note that equations (1.5) correspond to (3.1) with £ = 2. Hence
by Theorem 3.1 and equations (3.2) and (3.9) we can deduce that

T=EL), (3.10)
where L is a Lagrangian of the form
L = [AjB(te, x, x40)x,, S+ A, xf, x DIt AdEEA - Adem. (3.11)

Here A;*f and A are smooth functions on (mo!)~!1(U) and A;*# is sym-
metric in the indices 3. However, because the Euler-Lagrange expres-
sion associated with the second-order Lagrangian (3.11) is generally of
third order and because T is independent of x*,4, and is linear in x.g*,
equation (3.10) imposes certain restrictions on the Lagrangian (3.11).
Indeed, a straightforward calculation shows that

E(L) = [(8,~7Aj°‘ﬂ - ajVA,-"‘B)xj + (ak"aﬂAj"‘ﬁ - ak"ajﬁAi"‘V)xaﬁij"

oy
+ {terms linear in x ¢ }|dx’ A dt' A dt? A -+ A dt™

in which case the terms involving x/,4, and x,5/x,,* must vanish identi-
cally. This implies that A;*% must satisfy the partial differential equations

QI-VA,-"‘ﬁ + 6jﬁA,-7"‘ + 0j°‘A,~ﬂ7 = 6,-7Aj"‘3 + a,ﬁAjW + ai"‘AjBV (3.12)
and
k70, PAS + 9,78, A 0 + 8,78, %AFY + 8,79,%A 57

= 979,70, + 8,797 A,%6 + 9,998 A, + 3,53, (3.13)
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We shall show that (3.12) and (3.13) guarantee the existence of
smooth functions

VB = VB2, x1, x,}) (3.14a)
such that

A = 2 @=VP + 5,8V, (3.14b)

Then, in view of this result, (3.11) can be rewritten as
L=D/V)dt' Adt? A -+« Adtm + L,
where
L=1[A—03,Ve— (3;VOx,ildt' Adt2 A -+ A dt™
“belongs to I'(U, ®&™). Since E,(D,V*) =0,T = E(L) and therefore

T belongs to I'(U, &,) which establishes the sufficiency of (3.9) and (1.5).
To show that (3.12) and (3.13) imply (3.14) we start by defining

Ay = AT g 1 e, (3.15)
and
0% = 051 Tk, e x g T, (3.16)
where?
Agferon = gl . g w08 — K 3.17)
k+ 1

'[aiaail[al cee 9%— 1A, ak13+aﬂa ley |, 5%k~ 1A, ak](x]

te—1 te—1

8Square brackets and round parenthesis indicate skew-symmetrization and sym-
metrization respectively on the enclosed indices, e.g.

3iy 019,021 7,08 = % (3 %18:%2 — 3;,°28;,*1)A; 5.



GLOBAL VARIATION PRINCIPLES 799

and
gl — 2 k9, %29, %3 ... g, *A, Pl
iy iy k +1 [5) i3 i L1
t k= D l2g, % .. g, g, P, (3.18)

Note that A(o)i"‘ﬁ = A,*® and
Agy®®* =0 (3.19)

fork > m.
The key step in the derivation of (3.14) is to prove that

Aaﬁ(k.’.l)i = [xyj(a ’YAaﬁal ak) + Aaﬁal ]

iy Ly

X xal" L xak"‘ - ai(aaﬁ)(k+1), (320)

where

[¢3 1 o 03
307 41y = Py @3,%6° erpy + 3°0% w4 1))-

Since 06"‘1 oot is skew-symmetric in the indices fo; for2 < j < k + 1,

it is easﬂy seen that

ai(aoﬁ) (aaﬂ)a11k+"‘lk+lx2::;ll + efl;t?)al sy ]x . x ik’

we+1) = [0; o

in which case (3.20) will be established provided we can show that

Aaﬁ(k)’ — 057?)041" “kxalil e xak"k =90 (3.21)
and
B8 B (g B)
A gy = [x)9; AT — 9,°0; altkt:ﬁHlxzckill]
X g, e g . (3.22)

Ok
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To establish (3.21) we first observe that

(aB)ay- - i i
gl e, L,
— k+1 oy q « o p Ble [eyq « a , alB
= [k+2(ai‘ 13',2 2...aik kA; +ai1 13[2 2""9,',, kA, %)
k [o o o Bla [ . o alB
+ k+ 2 (9; 1ai2 .. aik kA,-l + 9; ‘61.2 2 ... aik kAi, )
Yoy | Xey (3.23)

Upon expanding the first and third terms on the right-hand side of
this equation, it is found that

ma. larg e, g %pBloy iy i
I 1

k+2 "7 “ %
= X _1*_ 2 [6i1["‘1 e aikak]Aiaﬁ _ kailﬂaizlaz Ve aikakAial]a]
ECRRRE (3.24)
and
ke gleig e g e, By iy 2y
k+2 70 T i ip Yoy Xay X g

k

=— K  ralg ey ulp o
(k + 1)k + 2) [9: %, i Ay

_ a’_ﬁal_llan . al{’,“k_—sAikakla

_ Baf o a oy o
+ (k —1)3;,°9,%29;% -+ 9, *A; *1]
X g (3.25)

Moreover, a simple application of (3.12) yields
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(8,706,120, "% + 8;,,1°2, *1 P, 1,
= [ai[alaizazlAila'B]xalilxaziz
or, motre generally,
3, P19, % ... g, %A, Ml 4 g, %gloag, 0 g wp B
[9;,°0;729;,73 - -+ 3, * A, i O 205,70 oer 9y A 1T

‘xa,il ces xakik = [ai["‘laizo‘z - 3',k°‘k]Ai1°‘ﬁ]xalil ees xakik' (3.26)
We now substitute (3.24)-(3.26) into (3.23). When the resulting equation
is taken in conjunction with (3.17), it readily follows that the left-hand
side of (3.21) becomes

k
k+2

[ail loy aikak]Aiaﬁ + ailﬁaizlaz .. aikakAialla

+ ailaaizlaZ e aikakAim]B _ ai[alaizaz . aikak]Ailaﬁ
— ai“aizlaz aikakAil"l]B _ aiBaizlaz aikakAixalla]

.xal"l xaki"-
Another application of (3.12) shows that this expression vanishes, as
required.
To obtain (3.22) we substitute from (3.17) and (3.18) to find that
the right-hand side of this equation is given by

a e agla aB k a o [a [T o )8
aikk:ll 0i, %2+ - 0, N <k+18,~k":11 970 e O AL
kt+1l. o) o oy 4 Blo
+ k+26i 0j e By R AT
+La aglay 4 0r g akp Blogi
k+27F T Ohy iy iy

~la- B)]xo‘lll e ‘x."gtk++11 ’
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in which (o« < B) denotes a term which differs from the previous term in
parenthesis merely by an interchange of the indices o and 3. Expansion
of the last four terms in this expression leads to

Javpabayrap o (agBlayrappy g+ ..oy &
[x“Y aJ A”l""k 9; 0’1""k+1 xak+1]x°‘1 Yoy

k+1

= {a?‘kﬂail log aikak]Aiaﬁ

k o a [ oy a8
- <k + 16"::11 9;70;, "t e BT A

1 .oy [a o] g Ba
+k+26" 9, l"'aik PARE!

k o [Dtl Ctz Ctk] BC(
——. N . vee g A k+1
T T DE T 2% Yend %Ay

_k oy (8, @ I
Tk + la" iy 0y ? v e By KA
— (= ﬁ)]xal"' AR 3.27)

However, by virtue of (3.13) it is found that

8 ] 8
[9,%9;,°8;,°% -+ 3, *IAf1k+1 4 9P, 109, %2 ... g, “kIpZIkt1]

i ikl = [—p. 15 log | aagsq]l s aB
Yo Xagy =1 a"l (9,-2 aik+1 A

[ 15 oB
— ailak+lai:+l-1 aizaz A aik"‘k Aia

+ (aik:-ll aiaaillm . a:};k_—ll Aikak]ﬁ

+ 9,49l

2 g A kB
’k+la’2 a’k A'l )

+ = By, - xki
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and therefore (3.27) can be rewritten as

JayaaBag-. Otk— (o ﬂ)al 01, K+ 1 . iy
[x'ya Au, -y 9;0; g+t x“k+1]x°‘1 Yoy

— [;30‘“13 leg ., aikaklAiaﬁ

k+ 1 ke
- = _’:_ i, "‘k+laE‘:.1Ha @ ... aik"‘klAi"‘ﬁ
<k 7000 e AR
- _': 20,79, HH10,% e "‘"]Af’;‘fl>
— (o~ 3)1%,” cexkt = Ay

This proves (3.22) and hence (3.20) is established.
It is now a relatively simple matter to derive (3.14) by using in-
duction on k. Let us suppose that for some fixed value of k

AP Gy = 3,9V, (3.28)

where Vﬁ(k.H) assumes the form

8 — yhB i
VErn = VLK 0 a2
and Vﬁ"‘1 AL is a smooth function of ¢%, x’ and x,/. Then (3.20), when

evaluated at %, x’ and \x,’ implies that

[he, B AP )%, &, hay) + AFE (%, 1, Ao, - o *

Ji Ji Ok

— a (C![Vﬂ)lll COg 4 (ta, xi’ )\xai)]xalil . xik+1 (3.29)

“lg+1 Xk +1’°
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where

g4l — 06«!1 W+ 4 Vﬁax O+ 0%+2 k42
dr+1 “frt1 Uht1ig+2 oy

Vi

Since the left-hand side of this equation may be re-expressed in the form

DM, Nl

Ji Qg ’

the validity of (3.28) with £k + 1 replaced by & follows from the inte-
gration of (3.29) with respect to A from 0 to 1. On account of (3.19),
(3.28) obviously holds for k = m and so, by induction on £,

AP gy = 3,VP .

Since A"‘ﬁ(o).' = A%, this proves (3.14) and so completes our proof of
Theorem 3.2, [

Theorem 3.2 shows that for second order quasi-linear equations,
the Lagrangian (3.2) can always be modified by a divergence D,V to
obtain an equivalent first order Lagrangian. Moreover if the Lagrangian
(3.2) assumes the form (3.11), then the proof of Theorem 3.2 gives rise
to an algorithm for determining the vector field V = V*(3/d¢%) from
A%, For example, in the special case m = 2, this algorithm yields the
formula

1
Ve = \ (VB + 0F )%, x', Ax /) dA,
Jo
where
1

Ve, = \ 085 (e, x', Ax,)dA,
J0

0%y = A;%%x4/,

and

2 o o i
904(2) = —3- [zah[BAj ly — aj [ﬁAh h]xﬁ"xyh
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4. The global inverse problem. The global inverse problem in the
calculus of variations is to identify those k-th order locally variational
operators T € T'(P, V,) which are globally variational in the sense that
T = E(L) for some k-th order Lagrangian L € I'(P, &,™). Since the
sheaf of k-th order Lagrangians ®,” is a fine sheaf, it is acyclic and
hence the long exact cohomology sequence obtained from the short
exact sequence

0—>3€k—>(§3k”’£’82k—>0

(recall that X, C ®,;™ and &, C 3y are the kernel and image sheafs
of the Euler-Lagrange operator E respectively) gives rise to the exact
sequence

0T %)~ [P &™) = TP &) > H'® K;) = 0.

Therefore the obstruction to writing 7 € I'(P, V) C I'(P, &,;) in the
form T = E(L) for L € I'(P, ®B,™) is the cohomology class 6(T) €
3P, K;), i.e. T is globally variationally if and only if §(7) = 0.
Consequently, the solution to the global inverse problem consists of

(i) relating H'(P, X,), the first cohomology of P with coefficients
in the sheaf X, to the classical (e.g. singular or de Rham)
cohomology of P, and

(ii) obtaining an effective method for the determination of the ob-
struction 6(7T').

To these ends we introduce the following complexes of sheaves on P.
Foreachk = 0,1, 2, ..., o, let (2;*, d) be the complex

0-R-°%015% ... 5qmSzmt -0, 4.1)

where Z,”t! = ker(Q,"*! 4 Q,"%?), and foreach k = 1, 2, ...,
let (J,*, D) denote the complex®

0-R~g°3 g2 ... g 8@ 5e,-0 (2

9That £ = D = 0 is a consequence of the fact that E annihilates total derivatives.
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Then the commutative diagram

0-R-0%_, 30, ,3...oqr ) —Legn,_ S z7% 50
Vi Vi 78 Vi Xk 4.3)

0> R- g g2 = g B @8 0,
where x, is the unique map making the diagram

om_ Szt S0

7% Xk
m_ E
B ——8y—0 4.4)

commute, defines a map of complexes y,:(Q¥.—, d) = (Ji*, D).
Clearly ¥, is such that the diagram of complexes

(Q*,d) = (%, d) = -+« = (Q*k—h d) = - = QL% d)

1l(’l \b2 \pk \pm
(§:%,D) = (§*,D) = -+ = (§*,D) = -+ = (§%,D) (4.5)
commutes.

The exactness of each complex (Q;*, d) is a well-known conse-
quence of the Poincaré lemma. It is also true that each complex (J.*, D)
is exact although in this instance the proof of exactness is long and
rather complicated. In fact, the second half of this paper is devoted
exclusively to establishing the exactness of (J,*, D). In section six we
establish the exactness of (J.*, D) = (B,*, D) by constructing a
Poincaré-like homotopy operator. Unfortunately, this homotopy does
not restrict to the subcomplex (§,*, D) and therefore does not provide
us with a proof of the exactness of the complex (J,*, D). Nevertheless,
the exactness of (J,*, D) still follows from the exactness of (8 ,*, D) by
virtue of the following theorem. This result is proved in section eight
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using the characterization of the sheafs J,9 (see Theorem 2.1) and the
technical machinery of section seven.

THEOREM 4.1. For!{ =z land q <= m — 1let 1 € B,9 and suppose
that Dr € B9, where 0 < k =< {. Then 1 € J,? and decomposes into
the form

T=1+ Dn,

where 1, € 937 (or o7 if k = 0) and 7, € §,97 1.

The exactness of the complex (.*, D) is now self-evident. Indeed,
ifwegi?forg =m—1andDw = 0orif w € B, and E(w) = 0,
then on account of the inclusion ;¢ C J.7 = ®B,7 and the exactness
of (B*, D) there is, for some { = 0, a form 7 ¢ (F?aﬂ_l such that
Dr=w. Iff <k then B2 ' € 7 Vandsor € g, 9. If £ = k, then
by Theorem 4.1 7 = 7, + D7, and so w = Dr,. In either case, the
D-closed form w is the total exterior derivative of a form in g7~ ! and
thus (J.*, D) is exact.

The main results of the paper will now follow effortlessly by applying
the following lemma in homological algebra to the sheaves (Q,*, d) and
(Ji*, D).

LeEmMMA 4.1.  Given a commutative diagram of sheaves on P

des™ D .
: 3

§—-0
d -0

1
T
0! Q
— D> 8§

0
()—-)R—»(‘BOLGIA... e*

0
0->R- D-2.9! ... (4.6)

with exact rows and with C* and D* fine, then

(i) in the commutative diagram
0 - I'(P, ker @) = I'(P, €*) > T(P, §) > H'(P,ker §) — 0
T T 7 T x 4.7)

0- TP, kerQ) » I'(P, D*) > T (P, 8) > H'(P, ker Q) = 0
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which arises from the long exact cohomology sequence associ-
ated to

0—>kerQ—>€S §$—-0

O—*kerQ—>3)s S — 0, (4.8)

the mapping 7y is an isomorphism.
(ii) H'(P, ker Q) = H**!(P, R) = H\(P, ker Q).
(iii) 7:T(P, §) = T'(P, 8)is surjective if :T'(P, C*) > I'(P, D) is
surjective.
Proof. Since C° and D° are acyclic the diagram (4.8) induces, via
the long exact cohomology sequence, the diagram with exact rows (4.7).

To show that 74 is an isomorphism and to make the identification
H'(P, ker Q) = H**'(P, R) let

. s+1
0> 8§84 @"-H;d—e————es'*'z - ...

and

0—-8 <4 :Ds-’rl ®s+2
be any injective resolutions of § and § (see Rotman [26], p. 42 or Bredon
[8], p. 30) and let d¢* =i » Q and dg® = i o Q. Then (C*, d) and
(D*, dgy) are acyclic resolutions of R and 7 extends to a map between
these resolutions which, by the abstract de Rham theorem, induces an
isomorphism in cohomology, i.e.

HYT(P, C*%)) = HI(T'(P, D¥)).

Moreover from (4.7) and the fact that

im{T'(P, 8) > T'(P, D)} = ker{['(P, D*+1) 22

: F(P, :Ds-’r2)}

it is found that
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T'P, 8)
im{T'(P, D*) - T'(P, 8)}

H'(P, ker Q) = imé = = H*TY(T'(P, D*)

and, in a like manner, that
H'(P, ker Q) = H*TI(I'(P, C%)).
This leads to the commutative diagram

HSTY (T (P, C%)) = H'(P, ker Q)

Yy

HTY(P, R) W -

HT\ (TP, D*) = HY(P, ker Q)

which proves (i) and (ii).

Finally, if 7:T'(P, C°) — T'(P, D) is surjective then a simple chase
through the diagram (4.7) shows that 7:T'(P, §) = I'(P, 8) is also
surjective. []

THEOREM 4.2. For a fixed value of k = 1, 2, ..., o, let T €
T'(P, &,;) be a k-th order, locally variational operator on P.

(i) The cohomology groups H L, Ki)and H m+1(p R) are isomor-
phic. Hence there is a well-defined cohomology class 6(T) € H m+li(p R)
such that T is the Euler-Lagrange operator of a k-th order Lagrangian
L eT(P, B,™)if and only if 6(T) = 0.

(ii) If T is the Euler-Lagrange operator corresponding to a Lagran-
gian of locally finite order, then a k-th order Lagrangian L' € T'(P, &,™)
can be found such that T = E(L").

(iii) Associated to each T € T'(P, &,;) there is a closed (im + 1)
form o on P* such that 8(T) = 0 if and only if the cohomology class
[w] € HER (P*) = HEL'(P), where H*4g(P) is the de Rham coho-
mology of P, vanishes. Specifically there is a commutative diagram

TP, Z,"*") HERL (PR ~ 0

W
Xk+1 X*k+1

TP, E($"41)) > H'(P, Kyyy) = 0 4.9)
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with X;+1 onto. Here E(§™¢+() 2 &y is the image of the sheaf §"x+1
under the Euler-Lagrange operator E and the top horizontal map in the
diagram (4.9) takes a closed form to its cohomology class.

Proof. Because the fiber of the projection mo':P' — P is con-
tractible we can identify H*(P', R) with H*(P, R) for any { = 1. Ac-
cordingly to establish (i) we simply apply Lemma 4.1 to the diagram (4.3).

To prove (ii) we apply Lemma 4.1 to the mapping of complexes
(see equation (4.5))

i:(gk*9 D) - ((goa*s D)

to obtain the diagram with exact rows

TP &™) 5T® 8,) > H'® XK,)— 0

i i | iy

T, ‘(Bw’") Erw' e )SH\®P %)~ 0. (4.10)

The result is now immediate since the assumption that T is the Euler-
Lagrange of a Lagrangian of locally finite order requires that i{(T) = E(L)
for L e I'(P, B,™). Hence 8(i(T)) = 0. From the commutativity of the
above diagram this implies that 6(7) = 0 which in turn implies that
T =FE(L’)forsome L’ € T'(P, B,™).

Finally to prove (iii) we invoke Lemma 4.1 once again, this time
with respect to the diagram

d

O_,R_,QkO__d_.__, _,ka__d_.zkm-H 0
Yi+1 Vi+i Xk+1
D D E
0-R->9% > 591 S E@"+1) > 0

and note that because ;4 : ;"™ = §™+, is onto and because ker y; 1,
is a fine sheaf that Y, 4, :T'(P, Q,™) = I'(P, §"¢+,) is also onto. [
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Remarks. (i) Because V, S &,;, the theorem applies to any k-th
order operator T € I'(P, 3;) which satisfies the conditions of Theorem
3.1. In particular, if T € I'(P, J,) is a second order quasi-linear operator
which satisfies (1.5), then by Theorems 3.2 and 4.2 (with £ = 1)
T = E(L) for a first order Lagrangian L € I'(P, ®,"™) if and only if
8(T) = 0.

(ii) By applying the map x;+, to forms w € Z;”*' for which [w]
is non-trivial it is easy to produce examples of operators of any order
which are locally variational but not globally variational. Thus the ob-
struction 6(7") does not in general vanish.

(iii) With £k = oo, Theorem 4.2 shows that the obstruction to
writing T = E(L) for L a Lagrangian of locally finite order is 6(T) €
HYP, X.) = H™ (P, R). This conclusion, which has been inde-
pendently obtained by Takens [30], follows directly from the exactness
of the complex (Jo.*, D) so that for the case k = oo the analysis pre-
sented in sections seven and eight is not required.

As discussed in the introduction we shall also treat the problem of
characterizing the kernel of the Euler-Lagrange operator. Due to the
results presented thus far it is a simple matter to obtain the definitive
solution to this problem.

THEOREM 4.3. (i) Let L € ®,™ be a variationally trivial Lagran-
gian, i.e. suppose that L is a k-th order Lagrangian and E(L) = 0.
Then L € §,™ and L = Dw for some w € §," .

(ii) Let L be globally defined k-th order Lagrangian which is vari-
ationally trivial. Then there is a well-defined cohomology class 56(L) €
H™(P, R)yand L = Dw for some w € T'(P, gk"'“) if and only if 6(L) = 0.

Proof. Part (i) is merely a restatement of the exactness of (§,*, D)
at B,™. Part (ii) follows from the application of Lemma 4.1 to the
commutative diagram

d d -
()—»R—»QOk_l —>Qlk_l > ... _’Q;cn—ll_d_'zmk—l 4 0
Vi Vi 173 Me

D i_D D

0-R~ g,° gk—-——...—»gkm—lﬂgck
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where A; is the unique map making the diagram

-1 d
Q;z"—ll—’zmk—l -0

Vi A

—1 D
gkm 1 35 :Kk —0
commute.

5. Illustrative examples. It is illuminating to apply the conclusions
of section four to a simple class of differential equations. Let T'* be the
{-torus, i.e. the product of the circle § 1 with itself ¢ times and let
M=T'XR" ' N=TXR" % andP=M X N, where0 < £ < m

and 0 < k < n. Refer to M with local coordinates ¢!, ¢2, ..., t” where
each of ¢!, #2, ..., ¢! denotes the standard polar coordinate on S! and
g 42 4m are cartesian coordinates on R” !, The differentials

dtl, di?, ..., dt™ are well-defined 1-forms on M although, of course,
t!, 2, ..., t' are not globally defined coordinates. Similar remarks
apply to the coordinates x!, x2, ..., x" on N. Now consider the differ-
ential equations on P determined by

T = (a;%x ' Tb;Pxp/+ c)dx' Ndt' NdEP A -+ Aat™, (5.1)

where a(-,-“ﬁ(=a!-,-ﬁ“), b,]-ﬁ and c¢; are constants. Then, according to
Theorem 3.2, T € I'(P, &,) if and only if

a,-j“‘ﬁ = aj,-“ﬁ and bi,'B = _bjiﬁ.
If we assume that these relations hold, then modulo a divergence (whose
existence is ensured by Theorem 3.2), the formula (3.2) gives rise to the
Lagrangian

L= <—;—a,-j B yxg’ — —;—bijﬁx"xﬁj - c,‘.7c">dt1 ANdEEA - AdE™. (5.2)

Since x!, x2, ..., x* are not globally defined coordinates, this Lagran-

gian is not globally defined unless £ = 0.
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To determine if (5.1) is obtainable from a global variational prin-
ciple it suffices to examine any (m + 1)-form w € I'(P, Z 1’"“) which is
such that x,(w) = T, where x, is the map of (4.4). If w is exact then by
Theorem 4.2 the obstruction 6(T') is trivial and thus T' = E(L) for some
L eT'(P, B,"). Conversely, if w is not exact then T cannot be derived
from any variational principle. To find a suitable candidate for w we
first observe that (5.2) can be rewritten in the canonical form

= ﬁeﬁaza_]...am(aﬁaﬁxa’ —_ bg'fﬁx’)DxJ A dt®? A dr®s
m — 1)}
AN /\dtam —_ C,‘xidtl /\dtZ/\ . /\dt"',

where €, 4,...q,, i the permutation symbol. Now let L be the canonical
lift of L, i.e.

7 — 1 o i i f o o
L= S — 1 e, @i Pxot = by x")dx! A de*> N\ dt®

A oo Adt®m — cxtdt! NdEEA oo A de™.
Then L = (L) which, on account of (4.4), implies that
x1(dl) = EGp (L) = T.
Consequently an appropriate choice of w is given by w = dL, i.e.

=—1 By i — b Bl A ded A di®
W= 2(m — 1)! 66012013'“(1,"(al:]' dxa by dx ) A dx" A dt 2
/\dt"‘3/\"'/\dt"‘m—c,-dx"/\dtl/\dtz/\---/\dt"',

From this result and our earlier remarks it is now clear that T = E(L)
for some L € T'(P, ®,™) if and only if each of the closed (m + 1)-forms

pe = biPdx  Ndx/ Ndt Ao AdBTI NG - A de™
and

bo = c(,-)dx(i) ANdEEAdEEA - Adt™
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(no summation on i) is exact. In particular, since
Hix' (P) = HiR (T,

it follows that a giobally defined variational principle must exist when-
everm+1>10+k

The structure of these global Lagrangians is quite distinct for dif-
ferent choices of P. For instance, in the case of the particular differen-
tial equations determined by

Tqy = @' + 2% — Ddx' Adt + (& — 2")dx? A de

(where ¢t = ¢! and %' = x,) and

To = (xp' + %32 — Ddx! Adt! Adi? + (xpp? — x1")dx? A dt! A di?,

we have listed various possibilities in Tables 1 and 2. Note that
Ty = xl[—;—dfc‘ Adx' + —;—dsﬂ A dx? — dx! Adx* + dx! A dt]
and

Top) = xa E dxy! Adx! Adi? + % dxy? A dx! A dt?

— dx' Adx? Ade? + dx! Adi' A dtz].
Each one of the Lagrangians found in these tables has been obtained as
the image under ¥ of a globally defined m-form », such that
Xl(dll(,')) = T(,'), i=1,2.
6. The exactness of the complex (®.*, D). In this section the
direct limit complex (®,*, D), which was introduced in section four as

the differential complex

0~R~&®3%3a . '3...2@."5¢, -0,
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TABLE 1. Global Lagrangians for T'y,.

M N HX(P) L

t x! x?

R R R 0 )2 + 126E?)? + 21x? + x!
R st R 0 L!)? + 12)? + #lx? — !

st R st Eh? + 12?)? — x12? + x!

None, dx! A dx? is not exact

E
@
2

= ® =W

s! st R None, dx! A dt is not exact

TABLE 2. Global Lagrangians for 7).

M N H3(P) L

R R R R 0 axitea! + Yax 2602 + x 162 + xt

st R st gt R Yaxilxy! + Yaxy2xp2 + 120, 1x92 — t2x5 1542

— 2,1
R st st g1 R None, dx! A dx? A df? is not exact

st st sl R R None, dx! A dt! A dt? is not exact

is shown to be exact. As mentioned in section four this result suffices for

the identification of the obstruction to finding globally defined Lagran-

gians of locally finite order and, in addition, is the first step towards

establishing the more general result concerning the exactness of (§,*, D).
To begin, it is necessary to introduce maps

hy:®ed > B!
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and
hm+l:8oo - (Boom

as follows. Let w € I'(U, B,9) represent an element of B,7. Then with
respect to the coordinates (¢, x') on U, w assumes the form

© = Wyayea, E% X X, s o, X g )T NI A e A dt

and h,(w) is given by

k r _ R
he@ = L L (=1 <:>/<’ tm ")ac'ﬁs...ﬁ,_lz)m...‘,s_1

N
11
: \ 3P Pr=170, )2, Ax)dX (6.1a)
J0
forl = g <mand

1
By (E@) = — | x(E )E A\x)d\. (6.1b)
J0

In equation (6.12) w, is the (¢ — 1) form

=

+1,, - .
w, = §1 (—1y Loy TN < dETUN LA < dt

Jj=

and (6 i Brm1vgy 4 Xt Ax) symbolically indicates evaluation at the point

@, )\xal', .. Ax’alaz ) € (r*)"H(U). For example, when
k= 2 (6.1a) reduces to
1 !
hq(w) = mxl jo (3,-70)7)(1.‘, )\.X?)d)\

2 2
+ | ———x, D
[m—q+2x°‘ (m—gq+1)m—gq+2) ]

S|
: \ (3w, )&, Ax)d\. 6.2)
Jo
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Because (D, f) € 63°k+1 whenever f € ®,°, it is easily verified that
hy(w) € T(U, ® - 1) and hence A ¢(w) determines an element of ®,7~ 1

LemMma 6.1. The maps h, define a homotopy operator for the
complex (B, *, D) in the sense that

D (w)) + by (Dw) = @ — wy (6.32)
forw e (U, B, and1l < g =m — 1and
Dy (@) t by (E) = 0 — w (6.3b)
for w € T'(U, B,™), where w, is the g-form

wy = w q(t"‘, 0,0, ...,00dt*y Adt*2 A -+ Adt%.

oy

Proof. To derive (6.3), we express the individual terms on the left-
hand sides in terms of the operators

1
X5 (@) =x'g .5 Dg.... \(a Bi-Bro)t, Ax)dX\,

1
Y(r_s)(w) = xiﬁs"'ﬁr—l"Dﬁl"‘ﬁs—l \0 (aiﬁl'”ﬁr—ﬂdt“ A wy)(t, Ax)dA,

and
'1
Z(r,s)(w) = xlﬁs"'ﬁr—lDﬁl"'ﬁs—la 0

(a’,ﬁl"'ﬁr—ﬂdt“ A wy)(t, Ax)dA.

Since D is a derivation, the first term on the left-hand side of (6.3a)
becomes

r=1 s=1

D(hq(w))Z E E (— 1)S+1< >/< p>[(Dxi65~--ﬁ,_1)Dﬁruﬁs_]
1
+xiﬁs"'5r—1DDﬁ1'--ﬁ ] ‘ (8; BiBr—17, @ Ax)dA

k+1 r
=X L (- 1)s+1<s>/<’t1’>[y(,,s) + Zipl(), (6.4)

r=1 s=1
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where p = g — m. Note that we have taken advantage of the fact that
31.5132"'51:70,7 =0
to increase the upper limit of summation on r from k to k£ + 1.
With regard to the second term occurring on the left-hand side of
(6.3a) we first observe that
(Dw), = D, w — D, (dt* A w,y)
and

dt® A v, = qo.

Secondly, on account of the definitions of 3,°1" #~17 and D, it is found
that

3’.31"'ﬁr—17D0 = Dgalﬁl“'ﬁr—w + (aiﬁlmﬁ'_”xjal )3].011"'%—1

Y

= Daaiﬁlmﬁ,—w + l [5073i61-~-ﬁ,_1
r

r—1
+ X 605./‘6,.61'"ﬁ.f—wfim“'ﬁr—l]
J=1 .

and
(D,8,51 Br=17 W)z, Ax) = D,[(8,°1 P17 w)(t, Ax)].

Consequently, a long but nevertheless straight-forward calculation leads
us to conclude that

_kEl R r\[{r+p—1\;
hq+1(Dw) = El sEl (—1) +l<s / X Bs"'ﬁr—lDﬁl"‘ﬁs—l

s

"1
% j [,51 817D — 8,51 Br=17D (dt* A w,)](t, Ax)d\
0
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_ kg-:l zr: (_1)s+1<r>/<" +p— 1>
r=1 s=1 S s

r+p—1 r—s)
{X(r.s) + Xm0 T T Y-

s—1)
r

- Z(rvs) - Z(r—l,s—l)}(a’)- (6.5)

On adding (6.4) to (6.5) it is found that

D(q(@) + k41 (Do)

> [(—1)s+1<’>/<’+” - 1>X
r=1 s=1 s s (rs)
+ (=1t +p — 1)<:>/r<’ +’; B 1>X(,_1,S_I)W(w)
+ r
+ 5L {(—1)S+‘<’>/<’+p>y(,,s)
r=1 s=1 S S
— (_1)s+1(r _ S)<r>/r<r +P - 1>Y(,—15)}(w)
s s s
+1 r
VE Bl O
r=1 s=1 )
— (_1)s+1<:>/<r +1; — 1>Z(,'s)

— (_1)s+1(s _ 1)<:>/r<r +1; - 1>Z(,._1's_1)

It remains to simplify this equation. From the terms involving
X(—15—1), we extract those with s = 1 and replace the summations on
and s by ones on » + 1 and s + 1 respectively. This yields

(w). (6.6)
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k+1

E é ( 1)s+1(r +p - 1)< >/ <r +’; o 1>X(r—l,s—1)

r=1 s=1

k

+
=L

1

”)::1 (1)@ + Q)<: 11 >/( + 1)<s " >X(rs) + E X(rO)

On substituting this result into (6.6), it is not difficult to see that the
terms in (6.6) containing the operator X simplify to

k
E Xeolw) = \ — [w(, M)]dN = @ — wg.

In a similar manner it follows that the terms involving the operators
Y and Z vanish. Thus (6.6) implies (6.3a) as required.

To establish (6.3b), we first observe that with ¢ = m, dt® A w, =
6, “w in which case it is easy to deduce that

Y9 =X¢s—1y and Z; ;) = X4,

Consequently, (6.4) (with ¢ = m) gives rise to

k+1 r
D, (w)) = r):x 521 (1 X1y + Xy lw)
k+ k+1

1
= E (— 1)r+1)((rr)(""’)-+_ E X(r-O)(w)

= _hm+l(E(w)) + W T Wy

which immediately leads to'° (6.3b). [

For future reference we remark that if w € ;7 then from Theorem
2.1 (ii) and equation (6.2) it is easily seen that hy(w) € 51"_1. It is also
immediate from (6.2) that hg(w) = 0 whenever w € By7.

With Lemma 6.1 at our disposal, the exactness of (®B.*, D) is
readily established.

10Equation (6.3b) was first derived by Horndeski [17].
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TueoreM 6.1. The complex (B ¥, D) is exact.

Proof. To prove the exactness of (8, *, D) at ®.0, let U be a
coordinate neighborhood of P. Suppose that f € I'(U, (Bko) represent a
closed element of ®,.°. Then, from (2.6) it follows that

aaf+ xaiaif+ et xiulaz---akaaialazn.akf: 0

identically. Sinpe f is independent of xialaz...aka, it follows that the
coefficient of x'y, ,,.. o, o Must vanish, i.e.

92102 "% f = ),

Thus f is independent of xicxla2~-'ak' This in turn implies that the co-
efficient of x"(,‘ ay- -y o MIUSE vanish, i.e.

8,%1% -1 f = (,

By continuing in this manner it follows that f is constant on U. This
proves that (B *, D) is exact at ®LL.

To establish exactness at B, for 1 < ¢ < m, assume that  is
D closed g-form (or, if ¢ = m, that E(w) = 0). Then by Lemma 6.1
w — wg is exact. Moreover since w is closed, wy can be considered as a
closed g-form on n(U) € M. By the Poincaré lemma for forms on M,
wg = dv for v a (g — 1) form on «(U). By considering » as an element
of I'(U, B,97") we see that wy = D in which case o = D(h,(w) + »).
This proves exactness at B ,.7.

Finally, the exactness of (B *, D) at &, follows from the definition
of §,. O

7. A characterization of the sheafs J,?. In section two we ob-
served that if w is a basic form of order k, then Dw is in general a basic
form of order £ + 1 and, for this reason, it is not possible to obtain a
differential complex from the sequence of basic forms B,°%, B;!, ..., B"
unless k£ = oo. However for £k = 1 subsheaves §,7 C ®,7 were con-
structed in such a way that the sequence

0-R-g°3g,'3 ... 8gm18gm"5g, -0 (7.1)
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is a differential complex, which we denoted by (J.*, D). Consequently,
the elements of §,9 enjoy the property that the differential operator D
does not increase their order, i.e. Dw € Sk"“ whenever w € J9. In this
section we shall prove Theorem 2.1 which states that this property of
the sheaves g9 completely characterizes them. Specifically, we show
that if w is a basic g form of order k and Dw is also of order &, then
w € i, ie.

J?={we® Dwe®II}, (7.2

for all ¢ < m. In the process of proving this result we shall obtain the
local canonical representation (see Theorem 2.1 (ii)) for the elements of
J+9 and, in addition, develop the technical results needed in section
eight to prove the exactness of the complex (J,*, D).

Our derivation of this characterization of the sheaves §,? is based
upon the observation that if w € ®,9, then the condition Dw € ®;9*!
imposes certain symmetry relations upon the components of the repeated
partial derivatives of w with respect to the variables x’, yay- oy - Quantities
with closely related symmetry properties have repeatedly arisen in the
study of certain differential invariants of Riemannian manifolds and in
problems pertaining to the classification of physical field theories of the
type encountered in general relativity. Indeed, the analysis required to
obtain the aforementioned characterization of the sheaves ;7 codifies
and generalizes a wide variety of results already in the literature (see,
e.g. Anderson [5], Horndeski [15], Lovelock [19]). Consequently, we
anticipate that the results of the present section will be of independent
interest and accordingly we begin this section with a self-contained
treatment of these symmetry conditions.

To begin, let S* be the vector space of symmetric k-forms over a
real m-dimensional vector space E. An element T € S* is a real valued
multi-linear map on E¥ = E X E X -.- X E which is symmetric in all
of its arguments. Let 7(X) denote the value of T on the k-tuple of vectors
X =X X ., X), where X ¢ E. Then, as is well-known T is com-
pletely determined by the values 7(X) as X ranges over the space E.

Now let X denote the set of f-tuples of positive integers considered
as a subset of the Z-module Z' =Z X Z X --- X Z. For

K=k ky ..., k)X,
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let

sk=shh@sh® ... ® sk (7.3)
Then an element T € $¥ is a multi-linear map on E*1t%2t -tk which
is symmetric in its first k; arguments, its next k, arguments and so on.

We extend our notational conventions by writing

TXL: X% .. xYH

in place of
TXL XY, L xL XX X, XN X, L XD,
k, times k, times k, times.

where X' € E. Notice that we have used a comma to separate the argu-
ments of T pertaining to each factor $* of SX and a semi-colon to sepa-
rate the arguments pertaining to the different factors of S%. Thus, for
example, if T € § 23 we can write

TX'; x%) = rx', x'; x%, X2, x%)
and also

rx:h x')=rx* x5 x' x xh.
Once again, the values of TXY X% .. X")for all X', X2, ..., X*
uniquely determine the multi-linear map T.

We shall frequently need to manipulate the arguments of T € §%
which pertain to a particular factor of S, say S*. Whenever this need
arises we shall designate those arguments by a k;-tuple of vectors

Y=,y . ., vh

and write

V0. SRS GRS €5 GRS ¢
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or alternatively
TXY . xTL YL Y2, L, YR xS LX)
for the value

T, XY, .., XY L XL XL L X Y VY, L, Y
Xi+1)Xi+1’ -.-yXi+1; "';Xe’Xi’ ""XF)'
1

Finally, with respect to a basis e’, e, ..., e" of E a multilinear
map T € S¥ has components

12 ky,. 1.2 k 1,2 k
Torten? oy laglay?e - vop®2. - ala?e o

which are totally symmetric in the indices o,'e;? -+ ;% for each
i=1,2, ..., In the future we shall avoid this profusion of indices by
letting capital latin letters A, B, C ... represent multi-indices and by
extending the summation convention to these indices in the obvious
fashion. Specifically, if we set 4; = (o;!, o/, ..., o;%i) then

2

1.2 ky,.1 k 1.2 ky
TA1A2"‘AV = ror'a? e loylay? %2 adal - a

and

TXLG XY 5 XD =Tha A, 1X, % Xy, (7.4)
where XA =X X2 X! ks and X' = X e*. We shall also have
occasion to write A for the multl index (a, s al:’, . ok, it being

understood that A, is the null index whenever k; = 1.

If A denotes an arbitrary multi-index, then Sym, and Alt, will
indicate the process of the total symmetrization and skew-symmetrization
over the indices of A respectively, e.g.

Symee T = 5 (T + T%)

and

Alt 5 T = —21‘— (T8 — TP=),
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A multilinear map T € SX is said to possess the symmetry property
P, if for every set {X', X%, ..., X'} of vectors in E and for every k;-tuple
Y of the form

Y=&xLXx!, ..., XL, X% x2 . ,xE L xL X XY,

where there are p; occurrences of X and py + py+ -+ + p, = k;
with p; = 0 (that is, X’ does not appear in Y'), the equation

TXL X XLy, xtL s xD) =0 (7.5)

holds. Equivalently, T has property P; if for any partition B;, B, -+ B,
of the multi index A;, the components 741424 of T satisfy the equation

14y A1 By By ByAiry Ay =
(7.6)

A
Symy, g, )Sym, g,y +* - Symes, g,y T

Let
UX = {T € $%| T has property P;, i = 1,2, ..., £}. (7.7)

Then UX is a real finite dimensional vector subspace of % and what
Sollows is a careful analysis of the structure of this space.

To better understand the nature of the symmetry property P; it is
helpful to examine the condition (7.5) in two special cases. Firstly, when
each k; = 1, (7.5) becomes

TXL X2 XL x x5 x) =0,

for j # i Clearly, this requires that T be skew-symmetric in its /th and
Jth arguments. Thus T has property P; if and only if T is an alternating
tensor in which case UX = AYE), the space of alternating ¢ forms on E.
In this particular example, it follows that for ¢ > m U¥X is the zero
vector space while for £ < m UX is isomorphic to A” (E). The analysis
of this section leads to a natural generalization of this case.

Secondly, let T € $22 and suppose that T has property P;. Then,
in view of (7.6), the components T*%1%27172 of T must satisfy

ToB182v17v2 4 ThaeBiviva 4 T1Brovivy =
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and

ToB1827v172 4+ Trabibrevt 4 TriBibavre =

In this relatively simple example, it is possible to analyze these sym-
metries directly. In fact, by using these equations repeatedly, together
with the fact that 7%%1%27172 js symmetric in the indices 8,8, and v;7,
it is found that'!

Sym(ﬁ1 B5) Sym(w1 ) 5:51’1 Y1 7782772
= Sym(ﬁl 8,) Sym(yl vy [To81827172 4 TvieB2b1m2 4 Thiv1Bzams

— Thiedamimv2 — rbiBrory — TeviBBima)

= %— TB1827172 % Tomiv2Pify,

In this equation we interchange the pair of indices 8;5; with the pair
Y172 to obtain a second equation which, when taken in conjunction
with the original one, leads to

T*B1827172 = Syms, ,) Symm‘n)saﬁlhﬁzvz, (7.8)

where

THY

SoB1718272 = —3% 581 (11 TTeB2vvy 4 TTEY2YB2),

If m =2, then 63" = 0 and so T vanishes. If m > 2, then (7.8) is
equivalent to

TX;Y, Y2, 2)=8SX Y, 2, Y; Z), (7.9)

where S € A3E) ® S! ® S! is the multi-linear map with components
S®tmbav2 Thus, for m > 2 every multi-linear map T € SN2 with

1 5,'11',22% is the generalized Kronecker delta. (See, e.g., Lovelock and Rund [21]).
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property P, can be represented in the form (7.9). Again, these conclu-
sions will all be generalized in the sequel.

Recall that $X = §*%1 ® S¥2 @ --- ® S* and that m is the
dimension of the underlying vector space E. Our first theorem treats the
case where { > m.

THEOREM 7.1. If { > m, then
UX = {T ¢ SX|T has property P;,i = 1, 2, ..., {}

is the zero vector space.

Proof. Let T ¢ UX and let X!, X2, ..., X' be an arbitrary col-
lection of vectors in E. Since £ > m, these vectors cannot be independent
and so, for some 2 < i < ¢, X' is a linear combination of the vectors
x\Lx? ..., x By virtue of the multi-linearity of 7, TXL X% ...:X9
can be expressed as a linear combination of expressions of the form
T(Yl; X’z; el f’., el 5("’) where Y is some k;-tuple of vectors con-
structed from X!, X2, ..., X1, Since T € UX, T enjoys the symmetry
property P; and therefore each such expression vanishes. This proves
that T(X'; X%, ...; X') = Oand hence T = 0. [

To describe the structure of the vector space UX for { < m it is
necessary to begin with a number of preliminary definitions and remarks.
Recall that A* denotes the vector space of alternating k-forms on E.
The process of skew-symmetrization then gives rise to a map

Alt: (® E*) ® SK — A% @ SK

defined by
[AR(DIY!, Y2, ..., Y5 X5 X% .. X0
= % L sgnoT(Y°W, yo@ _ | y®,X1.X2 XY, (7.10)
. GGSk
where S, is the permutation group on {1, 2, ..., k}. Next, denote by '

the inclusion map from (®F E*) ® SX into (! E*) @ $Ke,
wheree; = (0, ..., 1, ...). Specifically, 7' is defined by
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(DI, Y2, ..., YRS XS XY X
=T, Y2, .., Y X XL TR XTS L XY, (71D
where T € (®* E*) ® S and Y7 is the k;-tuple
Y=, X, X, ..., X (7.12)
For a given {-tuple of positive integers K = (ky, k3, ..., k;), let
K =K —e —e,— -+ — e, and let V¥ be the vector subspace of

A ® SK~ defined by

VE={SeA'®@SX |Altex' o V=0forall
i=1,2, ..., ¢suchthatk; = 2}. (7.13)

Observe that if S belongs to A’ @ SX7, Alt o 7' o S € A" @ S~
and hence the condition Alt ¢ 7* - § = 0 implies that

L s(re®, y@  y® xt  5xThy®h L Xx)=0,

9€S o4t

(7.14a)
where Y7 is the k;-tuple (7.12). If we designate the components of S by
SP1By - BpAr Ay Ay yhere A, is the multi-index (o, o, ..., %),
then the condition of (7.13) is also equivalent to

Altg s......800:2) ShiByBeA Ay Al = 0, (7.14b)

Finally, if S € VE we define ¥(S) € SX to be the multi-linear map
with components

[¥(S)A142 Ar=Sym, Symy, - - Sym, S’ addidAr - (715)

Alternatively, since ¥(S) is uniquely determined by the values [¥(S)]-
X' X2, ...; X"), the map ¥(S) is also defined by

TEIX X% 3 xH=8sxLXx2, ..., x5x5 X% .. 5X5. (7.16a)

Now in view of (7.15) it is easily seen that
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RO SIS D €5 GEHNND O
==L s, .. xTLy XXX X

YL Y2 .,y yitt YRk xttL LX), (7.16b)

where Y is the k;-tuple Yl v?, ..., Y%). Consequently, if we now
take Y to be any k;-tuple consisting of the vectors X Ux2 .., xi—1
X1 ..., X' then the right-hand side of this last equation vanishes by
virtue of the fact that § € A* ® §X and is therefore skew-symmetric in
its first £ arguments. This proves that ¥(S) has symmetry property P;
foreachi =1, 2, ..., ¢ and so ¥ defines a mapping from VX into UX.

The following theorem constitutes the main technical result of this
section.

THEOREM 7.2. The mapping ¥:VX — U¥X is a vector space iso-
morphism.

In particular, ¥ is surjective so that given a map T € U¥, there
exists a map § € VX such that ¥(§) = T. When taken in conjunction
with equation (7.15) and Theorem 7.1 this remark yields the following
corollary.

COROLLARY. Let T4142 At represent the components of a multi-
linear map T € S which enjoys the symmetry property P; for each
i=1,2,...,0¢

() If ¢ < m, then T*142 At can be expressed uniquely in the form

TAA - Ar = Sym, Symy, -+ Symy So'ealaddidy A (7, 17)

where §P182BeAV A2 A¢ penresent the components of a multi-linear
map S € A' ® SX~ which satisfy (7.14) for alli = 1, 2, ..., { such that
k; = 2.

(i) If ¢ > m then T4142 4t yanishes.

Because of the lengthy nature of the proof of Theorem 7.2 it is
advisable to briefly outline the main steps of our argument. To this end,
let T € SX and define ®(7T) to be the multi-linear map

PT)=Altealeoa’le.c. oqgloT
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Clearly ®(T) ¢ A! ® SX and, in view of (7.10) and (7.11), we have that

[@OIYL, Y2, ..., Y5 X5 X% .. 5 XD
1
= E UGES‘, SgnUT(Ylo(l); Yza(z); sy Y"a((,)) (7.18)

where Y} is the k;-tuple of vectors Y;/ = (Y7, X', X ..., XY. Further-
more, the components of ®(T') are given by

1aal.igul "AN A,
[®(T)]or 22w A4y A = Alto 10,0, arh) TA142 Ay
Now in view of the relations

Altomio Alt e/ = Alt e wf o 7/ = —Alt o 1/ o o' for i # j
and

Alto 7l o 7l =

it is readily established that Alt « 7' « & = 0. Thus, on account of
(7.13), @ restricts to a map &:UX - VX,

The proof of Theorem 7.2 can now be described in terms of two
main steps. Step one, which encompasses Lemmas 7.1-7.4, consists of
showing that the map ®:UX — VX is injective. This implies that
dim UX < dim VX and consequently any injective mapping from
V& to UX is necessarily an isomorphism. Accordingly step two, which
encompasses Lemmas 7.5-7.7, is to prove that ¥ is an injection.

Step one. In order to establish the injectivity of ¢, we introduce
maps

aij:SK — gKtei—e

for j # i by setting

e/ (DIX X% . XY =TX,. . XTLHX5XTS 05X, (7.19)
where T € SX and X' is the k,-tuple

X=X, X, ..., XY (7.20)
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Explicitly, o,/ (T) is the multi-linear map with components

: 1.2 kji+1 1.2 ki—1
[aiJ(T)]Al'“AJ"IaJ' oot A Aol e et T A4

ki+1 12 ki—1
= Sym(a,l w2 o kit TAl"‘Aj“‘Ai*l"‘j T ot T A Ay (7.21)
A AR

or equivalently
EL09) 0. ST CaliD SN CRINND C/ALD CLLINNE.

kjt1

— 1 1, S 4t TR 74 | r—1 r+1
e U AC CTRPND SRS RIS SO (AL NP

7

) SARTD CARTINND CRLTIS <0 GNP G

) CP GATIED O ) (7.22)

Observe that if p,, p;, ..., p, are non-negative integers such that
prt+pyt+ -+ p,=k;and p; = 0, then

[(e:')71 e (@22 0 oo o (@HPUDNXTY; . s XL XY L5 X

=TX .. XTL Yy, XL LX),
where Y is the k;-tuple of vectors consisting of p, occurrences of the
vector X”. In view of (7.5), this clearly demonstrates that T has property
P; if and only if

(a;)P1 o (a;2)P2 0 -+ o (o;)PUT) = 0 (7.23)

for all py, ps, ..., P as above. In particular, if o/ (T) = 0 for each
value of j, then T necessarily has property P;. Finally we extend the
definition of o, to the mapping

af (& E® ® SK - (& E*) ® sK+oe
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defined, in analogy with (7.19), by
[e/ (DY, Y2, ..., Y5 X5 X% .., XD
=T, Y? ..., Y Xy, XL XXX
NS UD. AL ¢ ) (7.24)
Our first lemma relates the kernel of the maps «;/ to those multi-
linear maps in UX.

LemMa 7.1. Let T € SX. If for fixed i and all j # i
a/(T) = 0,

then T € UX. In particular, if k; = 1 and T has property P;, then
T e UX.

Proof. To prove that T € U¥, we must show that T has property
P, for each h = 1, 2, ..., £. We have already noted that o,/(T) = 0
implies that T has property P; and so it remains to consider the case
where 2 # 1.

To this end let p(, p,, ..., p, be any nonnegative integers such
that p; + po + -+ + p;, = k, and p, = 0 and let Y be the k,-tuple
of vectors which contains p, entries of the vector X" for 1 = r < £
Then to prove that T has property P, we must show that

TXY,; . oxP Ly, xhtL XD =0. (7.25)
Since a,~" (T) = 0 by hypothesis, it follows from (7.22) that

k,+1
El Ty .o xiL yt y?2 Lyt yrt L YRt xRt

r=

Lo XLy XU XL L XX L x) =0,
In this equation set

(L, y? ..., Ym)y=y and Y&t =Xx!
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to arrive at the equation
(p; + DTXY; .. XLy, xS XY

P . N
+ I p,TX' .. X"7Y Y/ xhtt o xitL
=
_/!;éi.h

in;Xi+1; LaXhH =0, (7.26)

where Y/ is the k,-tuple obtained from Y by increasing the number of
occurrences of X’ in ¥ by 1 and by decreasing the number of occurrences
of X/ in Y by 1. Here X;' is the k;-tuple (7.20). However, in view of
(7.19) and the fact that «;/(T) = 0 it follows that
T(Xl .Xh—l. Yj.xh-H. .Xi-l.X_i.Xi+1. .X(’)
3 0 s I LR ] 3 .,’ y
= [o /(DX .. XS v xM x5 XD
=0
in which case (7.26) simplifies to (7.25), as required. [
We continue by establishing various commutation relationships

between the maps «;/ and 7'
LeMMA 7.2. The maps o and = satisfy the following relations:
(i) af o af = o o af provided k; = 2; (7.27)
(ii) 7/’ o af = af o w/° provided j # j' (7.28)
and provided k; = 2 ifj' = i; and

i_ 1 . (7.29)

) . k;
Joqd = —d i o g
(iii) e K + 1 o o 7l + %

J

Proof. Parts (i) and (ii) are self-evident. To establish part (iii),
first let 7 € SX. Then (x/ - aif)(T) belongs to E* & SK~¢ and, on
account of (7.11) and (7.22), is given by
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(77 o e YDNY; X5 X% .. 5 XD

= [/ (DX .. s X7 Y, XY, D P CALTINY &)

k.
— J 1. . yJj—1. j xi j. xitl. . yi—1,
kj+1T(X,...,X Y, X, XS, X0 X XL
X/, x5 X L XL XTTL XD
+ 1 TXY: . X XLy XX L XEXTL XD
kj+1 b 3 3 3 » ’ b » b

k; o
= [ (o o w/XT) +

1 k.+17r"(T)}(Y;X1;X2; S X0,
J J

T e (®*E*) ® SX then in view of (7.24) the foregoing calculation can
obviously be repeated without modification to conclude that

[#/ o /(DY Y2, ..., Y%, V; X5 X% .. X0)

ik
= 1oz,J°7rJ(T)+

K+ ”i(T)]
J i

1
ki +1
(YL v? ..., Yh v XL X% o XY,
This proves part (iii). [

Our next result establishes the injectivity of ® on a certain subspace
of X,

LEmMA 7.3. The maps ® and o satisfy:
@) ker(a;/ o ®) = ker(® o o) (7.30)
provided k; = 2; and

(ii) ker® N ( nk kera;/) = 0, (7.31)
=R
where ﬂkj =k; kerc; indicates the intersection of all kera, for which

J#landkj Zki.
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Proof. To prove part (i), we invoke (7.28), (7.29) and the fact that
Alt o 7 o 7 = 0 to find that

a,-jo(1>=oz,-joAlto7reo7r"—lo cevoql
:A1t°7l'e°"'°7rj+1°aij°1rj°"'°7rl
k; i+1 ; ' 1
=TT Altorxlo oo p/Ml o piogfo i o g
J
+ 1 Altowlo oo g/l o glaqio it o gt
ki +1
k; , . kj .
= Alte'o oo o qf = Do ;)
ki +1 ! ki +1 :

This clearly implies that
ker(c;/ o ®) = ker(® ° o).

To prove (ii) let 7' € ker® N (Ny, 2, kera,;’). Then by virtue of
(7.18) with ¥/ = X/, T satisfies ‘

g sgnaT(Xla(l); Xza(z); ceey Xya(())) = 0, (7.32)
€0y

where X ji is the k;-tuple (7.20). By using the fact that 7" also belongs to
the kernel of o/ for j # i and k; = k; we will show that

sgnoTX )5 X% -+ 3 X)) = c(@TX; X% .5 XY, (7.33)

where ¢(0) is a positive number depending on the choice of the permuta-
tion o. The substitution of (7.33) into (7.32) then yields

TXY; X% ..5,X)=0
which establishes (ii).

We prove (7.33) as follows. Since o;/(T) = 0 for all j # i such that
k; = k; we may infer from (7.29) that
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() o wI)T) = f 2(T) (7.34)

J

for all j # i such that k; = k;. The derivation of (7.33) consists of
systematically using (7.34) to undo the effects of the permutation ¢ on
the arguments of 7. To begin, let

ki, = kj, z -+ 2k,

represent the components k;, k,, ..., k;, of K, written in decreasing
order. Let j; = o(i;) and let us suppose that j; # i;. Thenk; = k; in
which case we can use (7.34) to arrive at

TX ' oy; -3 X605 03 X005 0003 X )
= TX s - X X0, L X XU X X G X )
= [, t o mIDIX U X gy 05 X5 5 XIS X )

= %[ril(T)](X”(jl);Xlo(l); RS CTIES 'GP ...;X"o(p))
1

—1 ; . )

= ?I— T(Xla(l); . .;X l"(.f]); .o .;X"l; . ';Xla(l’))'

41

If welety = o (i, j{), where (i;, j;) denotes the transposition which
interchanges i, with j, then the result of the foregoing calculation can be

expressed as
1 . Y2 . . y?!
sgno - T(X o(l)? X o(2)3 + o3 X a(l’))

sgny
= i T(Xl,y(l); Xz,y(z); ey Xe,y(y)). (735)
J

If, contrary to our original supposition, j; = i,, then let y = ¢ and
(7.35) remains valid, apart from the multiplicative constant 1/k;, .

In either case, j, is now a fixed point of v, i.e. j; = ¥(j,). We now
repeat this argument with j, in place of j,. Either j, is a fixed point of
v or it is not. If it is, let 1 = y and proceed to the integer j;. If it is not
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let j, = 4(i;). Then i, # j, and moreover i, # j; since j; # j, and j,
is a fixed point of y. Thus k;, = k;, and we can repeat the calculation
leading to (7.35) to deduce that

sgnr

1 x2 . .yt y— 1 y2 . Lyt
sgnoT (X 51); X“52)5 -+ 5 X o)) = ko k. TX 70y X525 -5 X ),
Jr " i

where 7 = vy ° (i3, j,). In either case, both j; and j, are fixed points of 7.
By continuing in this manner we arrive at (7.33) which proves (ii). [

LEmMMA 7.4. The map ®:UX — VX is injective.

Proof. Fix integers fand M = {and set

¢
X ={K =(ky, ..., k)| k;are positive integers and El k; = M}.

Define a partial ordering on X as follows. If K = (k{, ..., k;) and

J=(j1s ..+, Js) belong to X, let X = J if K = J or if, when the com-

ponents of K and J are written in decreasing order, say

kizk,z- - zk,

and

Jhy ZJny Z 00 Z
kil = jhl’ kiz - th’ ey kip—-l == jhp——l but ki{’ > j,,p.for some
p = 1,2, ..., L. The relation = determines a partial ordering on the

set X and it is easily seen that the {-tuples
KP=e¢e +ey+ -+ M—0+1De,+ - +e

are the maximal elements of X.

Since X is a finite set, the validity of the lemma can be established by

(i) proving its validity for each K ™ and

(ii) proving its validity for some fixed K, assuming the validity of
the lemma for all K’ > K.

The validity of (i) follows directly from Lemma 7.3. Indeed, if
T € UK then T has property P; for eachi = 1, 2, ..., ¢ which in this
situation implies that o;/(T) = 0 for all j # i such that k; = k;. Conse-
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quently if ®(7) = 0, we may conclude immediately from (7.31) that
T =0.

To prove (ii), let T be a multi-linear map belonging to UX for
which ®(T) = 0. Now fix integers i/ and j such that i # j and k; = k;
and let P = (py, pas ..., py) be any f-tuple of nonnegative integers
such that |P| = p; + po+ -+ + py < k; — 1 and p; = 0. We claim
that the map

T® = (;1)P1 o (@;2)P2 0 - o ()Pt o o (T)
vanishes, i.e.
T® = 0. (7.36)

To establish (7.36), we shall employ a second induction argument,
this time on |P|. If |P| = k; — 1, then in view of (7.23) T = 0
because T € UX and consequently enjoys property P;.

Now let us suppose that (7.36) is valid for all {-tuples P =
(p1> p2s --., py) such that |P| = p + 1 and proceed to prove (7.36)
for any f-tuple P such that |P| = p. Let T = T®). The induction
hypothesis implies that «;*(T) = 0 for all £ # i. By appealing to Lemma
7.1, we can now conclude that 7 € UX', where K’ = ki’ ky'y oo k),
ky' = ky + ppforh # i h # j k/ =k;— p— land k;’ =
k; + p; + 1. Since k; = k;, it follows that K’ > K. Since ®(T) =20
we can invoke (7.30) to conclude that ®(7) = 0 and thus, by the original
induction hypothesis stated in (ii), deduce that T = 0. This proves
(7.36).

Finally, with P = (0, 0, ..., 0), (7.36) becomes a/(T) = 0. Since
this equation holds for all i # j such that k; = k;, we may invoke
(7.31) once more to conclude that T = 0. This proves the lemma. [J

Step two. To establish the injectivity of ¥ we first define, for each
integer j between 1 and ¢, maps

Bj:Ar ® SK _,Ar—l ® SK+ef
by the equations
BN, Y2 Ly xh X% LG XY

=85, Y? ...,y L xi; x\, x?% ..., XY, (1.3D)
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where S € A” ® SK. Since A” ® $K C S’?, where K is the (r + £)-tuple
K=@,1,...,1,k,ky, ..., k,) we may treat § as a multi-linear
map belonging to X in which case a comparison of (7.37) with (7.19)
shows that 8/(S) = a,’+f(S). Thus, in view of (7.22), 8/(S) is given
explicitly by

BISNYY, Y2, ...,y LxY . xiTh 20 22, ZR L x0T XY

ki+1

=./§1 k1

J

SYLy? ...,y Lzhxt x0T

zZy, ..., zi7Y it Zkt L xdt XY, (7.38)

Next, for 1 < s = £ let (j;, j2, --., J;) be an s-tuple of distinct
integers between 1 and ¢ and define

@tjljZ'”jS:Ar ® SK — A% ®At ® SK_ejl—ejZ_.“_ejx,

whereu =r + 5 — ¢, by

[@ /2 (Y, Y2, ..., Y2, 22, ., Z5 X XY L XD

= -1.[1? ZFS' sgnoS(YU(l), Y’a(Z)’ ey Ya(r_t)y Zl’ Zz’ e Zt;
. 0€S,

XoW, go@, . go)y (7.39)

where X°@ is the k;-tuple defined by X°@ = (y°r—*) xi x' ..., X%
ifi € {j1, ja» -+-» Js} and X°@ = (X!, X%, ... X’) otherwise. For ex-
ample, if § € A% ® §%%? then

[®,2®NY, Y2, Y3, v4 ZY X1 X2 X3)

= —41'— GZS SgIIOS(YG(l)’ Ya(Z), Zl; Xl; Yo(3)’ XZ; Ya(4), X3)
! oeSy
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and

(2, PN, Y2, Y3, Y4 24, 25 XY X2 X)
— __1_ T Sgnas(Ya(l)’ Zl, ZZ; Yo(2), Xl; Ya(3)’ XZ; Y0(4),X3).
4! O'ES4

Also, observe that whent = 0,s = fand j; = ifori = 1,2, ..., I,
(7.39) becomes

[0 (N, Y2, ..., Y H X X% L5 XD

_ 1
-+ 0! er

r+¢

YU(Z), ey Ya(r); Xla(r+1);

X425 -5 X' gpin)s (7.40)
where X;’ is the k;-tuple X,/ = (Y7, X, X%, ..., X"). Once again,
because A” ® SX c S, we may treat § as an element of S X in which
case a comparison of (7.18) and (7.40) shows that the maps

(I,OIZ---F:Ar ® SK _,Ar-H’ ® SK—
and
CDZSK _,Ar+l’® SK_
agree on the subspace A" ® SK ie.

®y121(S) = @(S) (7.41)

forallS§ e A" ® SX.
The commutation relations between the maps 8/ and ®,71/2 "% are
given in the next lemma.

LEMMA 7.5. The maps 3/ and /192" Vs satisfy:

0 12 g0 = pI o @I (7.42)
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ifj€{Jji,J2» -+ Js}; and

a s o g ki i
(ii) (I)t./112~-._]s ° 6.1 = k, 1 BJ ° (I,Jtl_’{% s
Jte
+%—¢t1 dimtdi+1 s (7.43)

ifj = jiforsomel <i <s.
Proof. To establish (f), we must prove that
(@712 "% o BIX(S) = (B7 o & T TFNS) (7.44)
for each § € A” ® SX. To this end we may assume, without loss in

generality, that (j;, j,, -.., js) = (1, 2, ..., s) because (7.42) can
always be recast into the form

(@, BINS) = (B« ®2,7°XS) (7.45)

by a simple rearrangement of the arguments X', X2, ..., X' of S. We
now calculate using equations (7.37) and (7.39):

(@12 o g/)SIY, Y2, ..., y* 1,2, 22, ..., 2 X5 X% L 5 XY

1 , .
= J a(l) yoa(2) ar—t—1) 71 72 t.
(u_l)!aeszu—lsgn(,[ﬁ (S)](Y Y ""’Y VANV ARV AR

Xlo(r—t); ‘e .;Xsa(u_l);Xs+l; .. ;XP)

= ——-—(u __1_ DI E.SE SgIlOS(YU(l)’ YG(Z), e, Ya(r—t—l),Zl,ZZ’ .. .,Zt,Xj;
P oCa,—

) VI NI CHNINND CALIUIED CHINED © |
= (@5 (ONY, Y3, ...,y Lz 22, ., 2 XX XL XY
= [87 8,3 (ONY, ¥, ..., v 2,22, L, Z5 X X LX),

This proves (7.45).
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The derivation of (7.43) (with (j;, j2, -+, Js) = (1, 2, ..., 8)) is
similar. We use (7.38) in place of (7.37) to compute as follows:

[®,12 o gUSNYL, Y2, ..., Yy 20,22, L Z5 XX XD

= oDl L el OO, Y, L YT 22, L 2
P 065,

1 . .Y/ . . .
X o(r—t)s <+« ’on(r—t+j—1)1 e rXsa(u—l)i

x5t X9

k.
-1 J o(1) yo(2) or—t—=1) 71 72
(u—l)!oeg_lsgn"{kﬁﬂ” YO, YT ZL 22

.yl . ) . .
Zt,X‘],X ar—1)> + + "Xja(r'—t'l'j'—l)’ ey
D CINND CALITUIN. O

1

T+

S(YU(I)’ Ya(2), e Ya(r—t—l),Zl,ZZ,
AR CAa Al CYINNED. ¢F

. .;X’,(u_l);X”l; .. .;X")}

k;

RS

@3, (XY, .. y* 1z Z2 2 XXX LX)

—1)Jjtt . .
+gl}’_lji_l_[q)t,...,_l,‘,ﬂ...s(s)]
J

V4R A Y AN A A9 ¢ CIEED ¢ |

kj —1\Jtt
= Jo @l DT tmpt1es ]
[kj+16 2O T &)

(YLY? ..,y hzhz2 25X XX,

as required. [
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Now define, again for distinct integers J = (j;, ja, - .., js) between
1 and ¢, maps ¥7: VK - 4175 @ sE7 et b by

\IIJ —- \11111st = sgn;y.le ° 6/2 0 +se 0 Bjs,

where y € §; is the permutation which puts the tuple (j,, j2, ..., j;) in
increasing order. If S € VX then in view of (7.37), /172 Ys(8) is given by

(Y2 @y, Y2, .., Y xh X% 5 X
=sgny - S(Y', Y2, ..., YO X0 X2, Xs,
X' x5 X, (7.46)

From this equation and from (7.16) it now follows that for any permuta-
tion (§,, j,, ..., j;) the equation

Ytz de = (7.47)

holds. Note also that ¥ is just the identity map on VX whens = 0.
With the next lemma at our disposal it will be easy to establish the
injectivity of ¥ and hence complete the proof of Theorem 7.2,

LEMMA 7.6. Forall 0 < s < fand S € VX, the maps ¢ and
\I//]ls /S satiﬂ"/fy

(B o THi2 sy $) = 0. (7.48)
Proof. It will suffice to show that for all § € VX
@, 172 Ue(§) = 0 (7.49)

whenever ¢ — ¢t = 1. To see this first note that since ® = ®,'% "' we
have the equation

(@ o W2 ds)(§) = (§p12 ' o B o flo -on o BXS).
Now repeatedly apply the commutation relations of Lemma 7.5 to

the right-hand side of this equation and observe that each time ®,/1/2" "%
is commuted with 8/ the result is an expression in which either the
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tuple (ji, ja, - -, Js) is decreased in length by 1 or in which the value
of the parameter ¢ is increased by 1. Since s < { it thus follows that
(® o ¥/142is)(S) can be expressed as some linear combination of terms
of the form 81 o 8f2 o ... o 8% o @ /172" "ig(S), where ¢ — ¢t = 1. Due
to (7.49), each of these terms vanish and hence (¢ o ¥/1/2 Us)(§) = 0,
as required.

To prove (7.49), we may assume with no loss in generality that
Uiy J2s - Js) = (1,2, ..., ) so that (7.49) becomes simply

®,125(8) = 0. (7.50)
Note that since S € VX, we have by (7.14), that
(Alt o w! o XY, Y2, ..., YL X X%, .. XY)

- —(—f—-—*'l—T;r SE SgIlUS(YU(l), Ya(Z), e, Ya(l’); YU(H.]),
P 0€Spyy

xUxt o xh x5 XY

—o. (7.51)

Our proof of (7.49) proceeds by induction on z. When ¢t = 0, it
follows from (7.39) that

[®'29(NYY, Y2, ..., YHE XL X2 L5 XD

1
=——— ¥ sgno-S(Y°W,y@ . yo0,ytth xl x1 X
(E + Q)! UGSy+q sg ? (
Xzo(y.f.z); . .;qu([+q);Xq+l; . ;X[)
=1 ) sna-{—-—l—-— Y sgn
€+ D! oesiy, B0 L@+ D ey, B

sgny ,S(Yo('v(l)), Y"(7(2)), e, Ya(v(f)); Yo(v(l’+1)),

XLXY L XS X 5 5 X e

D, CARE ...;X")}
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_ 1
TR

L sgno- {(Alt oxlof)

Se+q

(Yo, yo@  yottD X1 X2 i e

X403 XTTY -'-:Xf)}
=0.

This proves (7.50) (and hence (7.49)) for ¢t = 0.

Let us now fix the value of ¢+ and assume that (7.49) is valid for ¢
replaced by ¢ — 1. Since § € V¥ is skew-symmetric in its first £ argu-
ments, it is readily deduced from (7.51) that

TE oS, Ly, Y, L e 2 22, L 2
=t

y/,x\,xt, .. x X% .0 XD
+ )5 (—1iterg(yt, 2, L Yyt v i it 7t
j=1
ZixUx', L L XN X L XD =0
or equivalently
1 _
— T sgny SO YDy gzl o720 7Y
=0 yesy_,4y gy - 5
yreeh o xtxt L XL X XD
(=1t v | 2 =+, y(D) @) 1)
= S LSy Y?E Lyt L v v 7D,
@ — D1 o, 807 St
zo xt xt XL X% 5 XD (7.52)
From the definition of ®,'? S we have
(@2 @Y, Y2, ..., Y, 2, 22, L 25 XS X L 5 XD

1

= WFs=or SE sgno - S(Y°, yo@  yet o zl z2 . Zt%
L (3

t+s—t

Yoot xt xt XX

. . +1, . x!
...,Xsa(g_,+s),Xs ' ...,X)
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eI R s
(£+s—t)l 0€sl’+s“t g (e_—t+1)! ‘YES(’—H'I

- sgny S(Y"(Y(l», Yar(w(Z))’ ey Ya(v(l’*t)),
AN RN LD GUARLELD
X XN X s e
X X1 .;X*)}.
We now substitute into this last equation from (7.52) to obtain
B 3110 £ RS SV AN LAY ALD. (D RN ¢

I Gt M (el e VRS

c= 1 =
. . —-——-—i——— . a(l) yo(2) alt—t+1)
sgny { (e_l_ §— t)! UESE_S_, sgno S(Y , Y s eens Y y

ZY(I)’Z'Y(Z)’ .. _’Zv(t'-l);z'y(t)’

1 . .
XLXY XX ey

X s XY "';Xf)}

_ =T -+ 1
B (t—~(1)! ) ygtsgnﬂ@?—; ey}

TS0 SRS GtV AN AN AAUVALD D SR
Xtx%o. XY

Qur induction hypothesis implies that ¢,21',"J(S } = 0 and consequently
each term in this last equality vanishes. This proves that &, *(§) = 0
and completes our derivation of (7.49). U

Lemma 7.7. The map ¥ : VX = UX is injective.
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Proof. Let A, be the set of s-tuples J = (j,, j3, .-, j,) such that
the components j; are distinct integers between 1 and {. To prove that
ker¥ = 0, it will suffice to show that foreach0 < s < ¢ — 1

N (ker¥’) c ,Q (ker¥’). (7.53)

Jed )

To see that this is sufficient observe that M., 0 (ker¥’) = ker (identity
map on VE) = 0 and that, on account of (7.47), ket¥ = N TeA, ker¥”’.
Hence, there is the inclusion ker¥ & Njey, (ker¥’) = 0.

To prove (7.53), let § € VX be a multi-linear map belonging to
Niea,,, (ker¥’), i.e. suppose

Bio 20 .ot 0 Bis+1(S§) =0 (7.53)

for all J = (jl,jz, . .,js+1) EAS+1. For a fixed s-tuple_(jl,jz, .. "js)
€A let T=310B20...08/5(S). ThenT € A" ® §K teitent e
and, because of the preceding equation, 8/(T) = Oforeachj=1,2, ...,¢
ie.

(YL v?, ...,y xi. xt.x% .., X)) =0.

When this result is taken in conjunction with the fact that T is skew-
symmettic in its first £ — s arguments, it follows that T has property
P,_,. Therefore by Lemma 7.1, T belongs to UX, where K is the
(2¢ — s)tuple 1, ..., 1, ky, k3, ..., k), where k; = k; if i €
{j1s» J2s -+, Jo} and k; = k; — 1 otherwise. By Lemma 7.6, ®(T) = 0
which in turn implies, in view of Lemma 7.4, that T = 0, i.e.

B o Bi20 ... 0 BIs(S) =0,

for each fixed but arbitrary s-tuple (j;, j,, ..., j;) € A,. This shows
thatS € ker¥’ for each J € 4 s Which establishes (7.53). [

This completes our proof of Theorem 7.2 and consequently we can
now return to the problem of characterizing the sheafs §; 9.

Let w € B;79. The dual of w, denoted by *w, is an alternating
m-q tensor defined in local coordinates by

(* @)™ °"=“!—e°‘1 o8y quBI'”ﬁq’
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where 1" "%P1""f4 is the permutation symbol and r + g = m. As is
well-known, this formula may be inverted to yield

1 o
© = 7 [eay. a8y 8, (KNP A <o A ditPa (7.54)

Let K be the f-tuple consisting of » 1’s and £ — r k’s, i.e. K =
a, ..., 1, k ..., k) and let 741 4¢ denote the components of the
(¢ — r)th partial derivative of *w with respect to xial. cayy 1€ let

Ay Ay — A, Aty .. a A apla,l

TA142 Ay = ai,ﬁ’ .aiH;Z a"r (* w)™ ] (7.55)

for fixed values of i,+{, i,+3, ..., ;. (Recall that A; is the multi-index
{o;! -+ afi} and that in the present situation k; = 1 for / < r and

k; =kfori > rsothatA; = a/lfori <r.)

Lemma 7.8. Let w € B9 for some g < m and let T be defined by
(7.55). If Dw € ®, 9", then T has property P; for eachi = 1,2, ..., L.

Proof. If w € T(U, B,9), then in local coordinates
Dw = [an+lelBZ"'Bq + x,Bq+,(ainlBZ"'Bq)
+oeee T+ x,al"'akﬁq+1(aial-”akwﬁlﬂz'“ﬂq)]
AP A2 A oo A dEPat,

If Dw € T(U, (Bk"“), then the last term in this equation must vanish
identically in which case a simple calculation shows that * w must satisfy

Sym a,-"‘l'""‘k[(*w)"‘ll"‘zl”'“rl] =0.
(og,...ap,al)

From this equation and the fact that ()i’ el g totally skew-
symmetric in the indices oy !, ..., ,! it now follows that T has property
P,. Since k; = 1, we appeal to Lemma 7.1 to conclude that T has
property P; for eachi. [

We are at last in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Let 8,7 = {w € ®;7|Dw € B, 91!}, We
have already remarked that §,7 & ®,7 and hence part of the theorem
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will follow automatically if we prove that each w € T'(U, ®.9) is of the
form (2.10). Let T4142' A4t be defined as in (7.55). Then by Lemma
7.8, TA1 At has property P; for eachi = 1, 2, ..., { in which case we
may apply part (ii) of the corollary to Theorem 7.2 to conclude that

oot o gkl ] = 0
for all £ > m. Consequently (*w) is a polynomial in the variables
X'a,ay---o Of degree no greater than m — r = g and can therefore be
uniquely expressed in the form

(*w)allazl...arl —_ (*w)AlAz"‘Ar

m
E T4 Az Ay Ay Arty Ay
UL

cexgle (7.56)

cxl1 iy .
X7A,41% Ay ¢

Here each coefficient is independent of xia,az. car 1€

enjoys property P; for each i = 1, 2, ..., #; and is symmetric with
respect to the interchange of the multi-indices {A4,, i,} and {A4,, i, } for
alr+1st<u=<l

We now use formula (7.17) in (7.56) and then substitute (7.56) into
(7.54) to arrive at

LS|
— Locg dal y e aplAr e A’
w= X €x cal o1 LS D SRR e | 4
t=r [ rl ot g S i ]
LS N S R ' W7 v2... Yq 7.57
XA XD e xgtd Nt Adt™. (7.57)

147 Ay . . ; .
Here each coefficient Sf“+ j 4¢ is independent of X'g, .. qp s satis-
1

fies (7.14); is skew-symmetric in the indices o', ..., a,' and skew-
symmetric with respect to the interchange of the multi-indices {4,’, i,},
{4,/ ,i,} forallr + 1 =t < u < {. The symmetrizations Symy, _ ,
SymAr 40+ e Symy, occurrlng in (7.17) are implicit in (7.57) on account

of the symmetrles of x,{++'l, xf.;++22, s Xt
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Let

Ay Ay fls! 9192 0pA Ay

by BB T g1 €oroy--0pBy 8D ity iy

where s = m — (. Then by virtue of various elementary properties of
the permutation symbol and the generalized Kronecker delta (see Love-
lock and Rund [21], p. 109), it is found that

€ 1 . ayl- o‘rlo‘lr+l'"D‘FIA’r-f'l"'Al’l
aptra Yy vy gy
=1 € 1 50‘1 o la 1r+1"'afls‘?x”z"'f'eA'rH'"Af’
gt 01"2 L]
_ ! el a8

8, §1 0e4’r+1""4e'

§
Is] Y172, €oy v 0y8y- 'r+1 iy
Is!

r! "‘lr+1"'°‘t’131"'ﬂsWA_lH-l",'At”
! S [RATIN N )

in which case (7.57) can be rewritten in the form

+1 1 1 1 8
w = E i,;fl '131 B f;r+1 e xAP’th"‘ LA e AdE*C A dtPi
A eeo AdtPm—t,
Since xialaz -y dt*1 = Dx"m2 s relabeling multi-indices and the

index of summation in this last equatlon leads directly to (2.10). Finally,
the various properties of W, oy ., ﬂx .s, enunciated in the statement of
Theorem 2.1 follow dlrectly from the aforementioned properties of
A ,",’Lll RRKaTE . This completes the proof of Theorem 2.1. [

8. Proof of Theorem 4.1. Our analysis of the global inverse prob-
lem in the calculus of variations will now be completed by proving
Theorem 4.1. Since this theorem is a purely local result, it suffices to
establish it with respect to some fixed, but arbitrary, coordinate neigh-
borhood U C P. Hence, in this section all sheaves are over the set U.
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Let ¢, x/, x"al, cey xialaz...ak be the adapted coordinate functions on
(mo®¥)~W(U) c P*. With respect to this coordinate chart and for integers
r = 0ands = 0 with g = r + s let Q" be the sheaf generated by the
g-forms obtained from the wedge product of r factors of dxialaz. ..a, and

k
s factors of dt®. Thus if w € I'(U, Q,™*), then w is necessarily of the form

AAod . . .
W= Wil alay o, @XaTAdX, TN o Ndxg ' A dEM

At A - A, 8.1)

where the coefficient of w, viz. Wﬁ};?:}"{:’az. ..o, belongs to T'(U, Q,% and
is skew-symmetric in the indices o, 3, ..., @, and skew-symmetric in
the multi-indices (4, i), ..., (4,, 7,). Note that if, in addition, the
coefficient of w is totally trace-free as in the context of Theorem 2.1, then
by that theorem!? y/(w) = 0 if and only if w = 0.

As an immediate consequence of Theorem 2.1, we have the following

lemma.

LEMMA 8.1.  The sheafs §,7 admit the direct sum decomposition

7= @ 4" 8.2)

r+s=q
where

I = Q).

Note that the decomposition (8.2) is not an invariant one in the
sense that it is not preserved under a change of coordinates.
Now observe that if 7 € T'(U, g,"°) is given by

AA, A . . .
T = Till,'z.z. ~i,a,’a2~--aSDxA,” A DxA2'2 A A DxAr" A dt™
Adt*2 A - Adt%

12Throughout this section y = Y.
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then D7 assumes the form

1. a AjAy- A i) AjAy A ,
DT - l:atﬁ (Tiliz”'ir"‘lr"‘Z"'as) + _“‘axi (TiliZ"'iralr“Z"'as)xﬁl
+ ...+ _ 9 (T{h,Az'j‘Ar )x
Bx'.;g By B iyiyecipayaye o/ BBy BB
182 By -

cdtP NDxgVADxg, 2N <o Ndxg P AdEUADEEA - A s,

Consequently, if we define a differential operator a:I'(U, 2,"°) —
I‘(U, ri+1,S) by

6 AIAZ'“Ar X . ]
=157 ii ; J i i
) I: BxBj (W'IIZ""ro‘lo‘z"'U‘s)- de AdxAll /\dxA22

Ao Ndxg P AT NDEEA - A dES,

where w € T'(U, Q,"*) is given by (8.1), then the last term in the above
expression for D7 is precisely ¥ (37), where 7 is the canonical lift of 7
(see equation (2.11)). Thus for each 7 € T'(U, §,")

D7 = y(37) + %, 8.3

where 7% € T(U, §;"**1). Clearly, 3> = 0 and the subsheafs I'(U, 2;%¢),
T(U, Q1%), T(U, Q29), ..., together with the map d constitute a dif-
ferential complex (I'(U, Q,*<), 3). This complex is exact by virtue of a
Poincaré-type homotopy and will be very important in the sequel. Again,
we emphasize that 8 is a locally defined operator which does not admit a
global or an invariant definition.

Now observe that if w € T'(U, $,9), then on account of Lemma 8.1,
w can be expressed uniquely in the form w = L',—y w,, where each
w, €T, 9,"97"), w, # 0 and r < q. Furthermore, Dw is a polynomial
in the variables x!,, (ay- -y, and it is easily seen that the highest occurring
power of these variables is contained in the expression Dw, and equals
¥(3&,), where &, is the canonical lift of w,. Hence, if Dw € T'(U, ®%*]
then Dw must be independent of the variables xialaz...ak and therefore
Y(0&,) = 0. We record this simple observation for future use as

LEMMA 8.2. Let w = L',y w,, where w, € T'(U, $;"*7"). If
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Dw e T'(U, (thll), then Y(3(&,)) = 0, where &, is the canonical lift
of w,, i.e., & = ¢(w,).

While the coefficient of @, is in the trace-free form dictated by
Theorem 2.1, 3(&,) cannot in general be put in this form and so we
cannot infer from the equation Y (3(&,)) = 0 that 3(®,) = 0. The
proper analysis of the equation ¥(d(&,)) = 0 is a somewhat lengthy
and technical procedure and therefore, so as not to interrupt the con-
tinuity of the present discussion, we shall first state the results of this
analysis as Lemma 8.3 and then immediately use this lemma to prove
Theorem 4.1.

LEMMA 83. Forr =2 1,s =20,k =2z0andr +s =m — 1, let
n € I'(U, Q,"°) and suppose that y(3(n)) = 0. Then n is d-exact, modulo
a form in the kernel of V.

Specifically, there are forms 7 € T'(U, Q") and, for s = 1 and
k=1,p2% *%-1¢I'(U, Qk'"l's'—l)such that

(i) if boths = land k = 1, then

n = 31 + p1%2 k-1 dy! A di® (8.4a)

Qg ap oy
or
(ii) if either s = O or k = 0, then
n = 971. (8.4b)

It is convenient to reformulate Theorem 4.1 as follows.

THEOREM 8.1. Fork =landl1 <qg<m — 1,let w € T(U, ®,9)
and suppose that Dw € T'(U, B7), where 0 < { < k. Then v belongs to
I'(U, $,?) and admits a decomposition

w=w + D7 (8.5)
where w' € T(U, $9) for £ > 0, o’ € T(U, ®By?) for £ = 0 and

re U, 977 H).

Proof. Ifwel'(U B, 7)issuchthat Dw e T'(U, B7) € I'(U, B,7)
then, in view of Theorem 2.1, w belongs to I'(U, J,7). Accordingly, we
can henceforth assume that w € I'(U, §,9). Furthermore, it suffices to
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establish the decomposition (8.5) for the particular case where f =k — 1,
since the more general result follows from a simple induction argument.

To establish the validity of this particular case it is necessary to
treat the case k = 1 separately. When k = 1, the hypothesis Dw € &7
implies that 4, (D(w)) = 0, where h, is the homotopy (6.1a), while the
assumption that w € g,7 implies that A, (w) € §,7 ~!, Consequently
equation (6.3a) becomes

w = wy + D(hy(w)), (8.6)

where wq is defined by (6.3c). Clearly w; belongs to 3,7 and hence we
can arrive at (8.5) by setting w’ = wg and 7 = h,(w) in (8.6).

Now let us prove the theorem true for a fixed value of £ = 2. Let
w € T'(U, §;7) and suppose that Dw € I'(U, B9,_,). Because of Lemma
8.1, w can be expressed in the form

w= Er: Wy 8.7)

where each w, € T'(U, §;"77"), w, # 0 and r < g. To show that w de-
composes into the form (8.5), we use induction on 7.

When r = 0 we find that w € T'(U, $,%7) = I'(U, B9,_,) in which
case the validity of (8.5) follows from Theorem 2.1.

Consequently, let us now fix the value of r = 1 and assume that
the theorem is true for each w € I'(U, J,?) which can be expressed in
the form w = L] w,, where w, € I'(U, g;*97%). If w is now given by
(8.7) and Dw € T'(U, ®7,_,), then we can invoke Lemma 8.2 to deduce
that ¢(3(&,)) = 0, where &, = ¢(w,) € T'(U, Q;27"). Sincel <=r < g
and k£ = 2, Lemma 8.3 can be applied to &, to conclude that

&, = 37 + pM1%2 " %—1 A dx’ A dt%k, (8.8)

oo ¥

where 7 € T'(U, Q%_?""). (If r = g, the second term is not present).
On account of (8.3) and the fact that dx",,,1 A dt% lies in the

oy o

kernel of ¢, the application of y to (8.8) gives rise to the equation

w, = D1 — 7%, (8.9)
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where 7 = ¥(7) € T (U, 9,97 ") and 7* € (U, g/~ 197 "*1). To complete
the proof of Theorem 8.1 we substitute (8.9) into (8.7) and apply the
induction hypothesis on 7 to the form L/} w, — 7. 0O

We now turn to the proof of Lemma 8.3. If n € T'(U, 2;"°), then
an € T'(U, 9, 11*) and so the first step in the analysis of the equation
¥ (dn) = 0 is to classify those elements of I'(U, Qk"“") which lie in the
kernel of y. To proceed in this direction we shall need the following
lemma which is formulated in the multi-linear algebra context devel-

oped in section seven. In this lemma K = (ky, k,, ..., k;) is an
{-tuple of positive integers, I denotes an (f + 1 — g)-tuple of integers
(il? iz, ey ig+1_q) such that 1 < il < iz < 00 K< iy+1_q < f, EI indi-

cates the process of summation over all such tuples and

where k; = k; — 1ifi € {i;, i, ..., ip41—,} and k; = k; otherwise.

LEMMA 8.4. Let Ve APT9 ® SX, where 1 < q =< ( and suppose
that

VYl Y2, ..., YP XN X2 X X X% ;XD =0 (8.10)

Sforallintegers1 < ji < j, < --- < j, </

(i) If ¢ + p < m, then there exists a collection of multi-linear
maps Vi) € AP @ K such that

vy, Y2 ..., yrte xl x% XY
= %: V(I)(Yl, Yz, ey Yp+q,Xi’,Xi2, ceey
Xivi—q; X1, X2 . XY). (8.11)

(ii) If £ + p = m, then V vanishes.

Proof. Assume thatf{ + p < m. Given (f + 1 — g)-tuple I define
its complement to be the (g — 1)-tuple J = (jy, j2, -, Jg—1), where
1 <ji<jy< -+ <jg—1=fand

{jl’jZ’ ""jq—l} U {il’in “'riH-l—q} = {1’2’ “"f}'
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For each such tuple I define a multi-linear map T;, € SX', where K’ is
the (¢ + p + D-tuple (1, 1, ..., L, k', ky's ..., k), k' =k; + 1if
j € {jl,jz, . '!jk—l} and kj, - kj otherwise, by setting

Toy(YL; Y% 5 YPrL X X% 5 XY

=VLY? ..., YPtLxh X X X X2 L XD, (8.12)

By (8.10) and the fact that V is skew-symmetric in its first p + ¢
arguments, it follows that T';) has property Py. By Lemma 7.1 and
Theorem 7.2, there is a W) € A™P*! @ SX such that

To(Yh; Y2 o yeth xh x2; L XY
= WYL Y2, yPr o x X2 XS X5 X LG XD, (8.13)

On account of (8.12) and (8.13) and the fact that W, is skew-symmetric
in its first £ + p + 1 arguments, it follows that

Wo (YL, Y2, ..., YyPt X0 X0z, Xda-1 X0 X2, L, X,
XLx% XY =sgn()- V(YL Y2, ..., YPTL X/ X2, XIem1y
xtLx% ..., XxhH, (8.14)
where (i, ja, ..., Jg—1) is the complement of (iy, i3, ..., ip+1—4)
and sgn(l) is the sign of the permutation determined by the f-tuple
UsJ2s -0 dg=15 81 D25+ fep1-g)-
Now define V € 4719 ® 5¥ by
10 S SRS ZaL TP ¢ GRS ¢
=V, Y3 ..., vPtxh x XY
- );sgn(l)- WYL, Y2 .. YPHe X0 X L Xk,

xXLx% o XY, (8.15)
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Then, on account of (8.14), it is easily seen that
vy, y?, ., yrtUxi xn o X X5 X2 XD =0 (8.16)

for all integers 1 < j; < j, < -+ < j,—y = {. With this result at our
disposal it is a straightforward matter to arrive at (8.11) by induction
on g, with p + g constant.

When ¢ = 1, (8.16) states that V = 0 in which case (8.11) follows
directly from (8.15). Now assume that the lemma is valid for g replaced
by ¢ — 1. Equation (8.16) implies that V satisfies the hypothesis of the
lemma (with g replaced by ¢ — 1) and thus we can infer from the in-
duction hypothesis the existence of multi-linear maps V(,-l igeoo iy €
APT2 @ §57%% wheret = ¢ + 2 — g, such that

10 4D SRS 2oLl &I CNND ©
- L Virige i Y2, YPY X X Xy
I<iy<iy<---<i, <t (yaige. . oidy)
xL x50,

If for I = (iy, iy, ..., ipr1—y) we define Uy, € AP ® §K by

Ugn(Yh, Y2, ... yHetl xt x2 XY

? ~
= E V(il

i =ipti—g

YL Y2 L ytet xi X X LX)

Vigae oy
then this equation for V becomes
10 49 SRS 2L ID &P IS ¢
= )1: Up(Y!, Y2, ..., YPHe X0 X2, . Xiti-g;
S UD CIIND ¢) (8.17)
Since the right-hand side of this equation is in the form of the right-hand
side of (8.11) we can combine (8.15) with (8.17) to obtain (8.11). This

completes our inductive proof of (8.11).
Finally, if £ + p = m then the above argument can be repeated to
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conclude that V = 0, provided we use Theorem 7.1 in place of Theorem
7.2 to conclude that T\yy = 0. [l

In the particular case where ¢ = £, equation (8.11) reduces to the

form

0 4 SRS 220D &P CINND ¢
i .
= .El 1710 470 SRR 2o D D CNND &)
J:

where each V(;) € AP*"*!1 ® §%7¢. In coordinates this proves that if
the components of V satisfy the equation

Sym Sym --- Sym VAifrBpaay - cadidy Ay = (8.18)
Ayp,a) (43,a7) (Ag,ay)

then these components can be expressed in the form

¢
AAy- A J4.A,. A -A
v n A = L osym V(G AT T (8.19)
=1 (&)

where A; = (o', o2, ..., ;%) and 4 = (o;%, &, ..., o).
Note that the components of V are skew-symmetric in the indices
ap, o, ..., apte and that the components of each V;, are skew-
symmetric in the indices ooy, ..., ap.Hajl. It is now a relatively
simple matter to characterize those sections of T'(U, 2,"*) which lie in
the kernel of ¢.

LEmMMA 8.5. Forr = landr + s < m, let w € T'(U, Q."*) and
suppose that y(w) = 0.

(i) If s = 1 and k = 1, then there exists an indexed collection of
Jorms ij e (U, Qk’_l"_l)such that

w=p Ndxpg’ Ndt®. (8.20)

(ii) If either s = Qor k = 0, then v = 0.

Proof. Assumek = 1. Let w be given in local coordinates by
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1Ay . . .
w = Wﬁ,z '011012 dxAl'l/\dxAZ’l/\ .. /\dxAr"
ANdt* TV Adt®2 A -+« A dt%
and define the components of *w by

11720 v A Ay A, _ 1 Y1720 VeB1By By A Ag A,
[*w ]1,:2 5 € igiy-r i BBy B2

where t = m — s. Since
A . . . o
‘//(w) W:ql,z z " ﬁlﬁl ﬁsx'lAlalx’ZAzaz s x"Ara’dt"‘l Adt*2 A -+ ANdtor

AdtPI AP A - A dtPs

— 1 vimvpagaia8i6y BWA1A2

— iy iy
p! € ity 0,818y B Ayen® Ay
..yl +1 +2 O
X4y X €y imya 10y ooy PN AETPEIA o AdEm,
§___ Yiv2 7p0‘1°‘2 oAy Ay A, iy iy iy
p| [ ]1112 X Alalx Ajay * " X A,a,

. 67172""Yp(7p+10p+2"'0mdtap+l Adtopr2 A oo Adtm,
where p + r = ¢, it readily follows that y(w) = 0 if and only if the com-
ponents of *w satisfy the equation

Sym Sym .- Sym [%w]]2 e didrd o (g 9y)

A,ap) (Ay,00) (A,,0,)

Consequently, if we identify the components of [*w] with a multi-
linear map V € AP*" @ §®%---8) then this map satisfies (8.18) (with
= r) and hence the hypothesis of Lemma 8.4. If s > 0, thenr + p < m
and so, on account this lemma, the components of *w can be expressed
in the form (8.19), i.e.

AjAy---A, 4 r a;lA(Ay A7 A
[roli2 5 = T sym ViR B A AT (8.2
j=1 @A
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where the components of each V{;y belong to I'(U, Qko) and are totally
skew-symmetric in the indices vy, v,, ..., 'y,qfl. Equation (8.20) can
now be derived from (8.22) in precisely the same way that (7.58) was
derived from (7.57). If s = 0, then Lemma 8.4 asserts that *w = 0 and
therefore w itself vanishes. If £ = 0, then v = ¥; which, by Theorem 2.1
is injective when restricted to Q™. O

Therefore if n satisfies the hypothesis of Lemma 8.3, i.e., if y(d9) = 0,
then on account of Lemma 8.5, there exist (assuming that s = 1 and
k = 1) forms p;? such that

an = ij A dxgg' A dt®.
Since 8> = 0, the forms p,»B necessarily satisfy the equation
3p;%) N dxgg’ NdtP =0

and hence the next step in the proof of Lemma 8.3 is to derive the
implications of this equation.

To this end, let K = (ky, k5, ..., k;) be an {-tuple of non-negative
integers and define A, | to be the space of multi-linear maps from E!X!,
where |K| = ky + ky + --+ + ky, to T(U, Q,"°) which are symmetric
in their first k; arguments, their next k, arguments and so on. Thus,
if w € AKX, , then in terms of the multi-index notation described at the
beginning of section seven,

WX X% LX) =t A, X P X,
where each component wAiAr A belongs to I'(U, 2,"%), i.e.,

Ay Ay — yAiAs - AB By
w ! WJIJZ"'-/rﬁlﬁZ'”ﬁ

s.Brdel".‘
ANdxp, 2 p - Ndxg P NdtPI A AP - At (8.23)
Note that when each k; = 0, AX, _ is simply I'(U, Q,"*), i.e.,
AY =T, 9,").

Now forr = 1, s = 1 and k = 1 it is necessary to introduce a
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certain subspace of AX,, to be denoted by ©%,,. This subspace con-
sists of maps w € A%, ; which are of the form

¢
oXL X% . XY= z)=:1 p(,)(Xl;XZ; o XD AKX Y

+ 05X X% XY Ndxgg' AdtP,  (8.24)

where each p,) € Afs__e{ (assuming that k, = 1) and where ij =
p;P182°Be=1 determines an indexed collection of maps p; belonging to
NEED by

r—i,s—

pj(Xl;Xz; D G =ij(X1;X2; XD X't

As a matter of convenience we shall let 6% be the zero subspace of
A, o. When K is the zero-tuple, AX, , = I'(U, Q,"*) and therefore

aor.s = {w eI, ri.s”w = ij A deﬁj A dtB,
where p;® e T'(U, @,/ 7171}, (8.25)

Consequently, Lemma 8.5 can be reformulated as follows: For r = 1,
k=landr + s < mlet w € T'(U, Q). If w belong to the kernel of ¥,
then w € 0°, .

LEMMA 86. Letr =2 2,s =2 1land{ +r + s <m + 1. Let
P € Afs__ef fort =1,2, ..., and let ij represent an indexed collection
of maps belonging to AX,_ 1,s—1- If these maps satisfy the equation

¢
Elp(,)(xl;x% G XDAX ) + o, B X L X Y Adxggd AdEP =0,

t‘_‘
(8.26)

then each p,) € Gfs__ef and each p; € 6(,1211‘;1)1 , where

pi (XL X% L X = 0 B XY L XY Xt

Proof. The proof of this lemma closely parallels that of Lemma 8.5.



862 I. M. ANDERSON AND T. DUCHAMP

Indeed, by repeating the kind of calculation that led to (8.21) it is
possible to show that (8.26) is equivalent to

14,454, A .-.B 1 ¢
E Sym [*P(t)]]llj? Yu+r% 2° 1818, r +_r_ E (_1)t+r
t=1

u ,BIAA~-~AB~-B_B B, _

.ng [*PJ ]71721’ TJ':H"”J}I 2 o1 t—184+1 =0, (8.27)
t

where u = m — (r + s) and where [*P(,]... and [*PjB]'.:'. represent

the components of the duals of p(,) and ij , viz.

vz 7u+r+1A Ay A AyB By B,
(%P1, sy

— 1 67172"‘7u+r+13132"'ﬂs—1PA1A_2j"Ag""ArBle"‘Br
(s — 1! (®)j1j2 - B1Ba - Bs—y

and

[%P;B Y1Y2  Yutr+1A 1Ay ApB By By
J1J20 =1

= ;eﬂn Yutr+181827 By 1PBeA 1Ay A By By
(s — 1! Jivjy - Jr—18182-Bs—

Equation (8.27) can be written more succinctly with a slight change of
notation. Specifically, if for fixed values of the indices j,, j;, ..., j, we
define

v Yutrr1A1Ay A Apy,
@)

(| AAs A, A
Y1Y2" 'Y
[*P(t)] 172 utr+1421432 t t+r

ift =1, 2,

—(_1)t+r+4’[* t]‘n’Yz Vurrt1A1Az  ApApr A A Aty
r Je—elit  Je—o—1Ji—rr1 by

L fe=¢+1,¢+2,...,0+r (8.28)
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then (8.27) becomes

t+r 1 e AL
L Sym Vi Tt Arde Al Any — o (8.29)
=1 4,

From this equation it is possible to obtain a single equation involving
only one of the maps V. For the sake of simplicity, let us isolate the
last one, viz. V(y1,. To accomplish this we symmetrize on the indices
{Yu—r+14j» Aj} forj = 1,2, ..., £ + r — 1 in equation (8.29). (Note
that this step requires that { — 1 < u, an inequality which holds by
virtue of the assumption that { + r + s < m + 1.) Since each V, is
skew-symmetric in its first #« + » + 1 indices, the first { + r — 1 terms
in (8.29) are eliminated. This results in the equation

Sym Sym - Sym Sym
Oy—e+2:41) (y—e43.42) GutrArer—1) Aptr

1 .
VIV2 Vutr® p4rA1AY A, 1A,
“V+n =0.

This shows that V(.,, when thought of as a multi-linear map be-
longing to A*1"*! ® SX, where K is the (¢ + r)-tuple (ky, k3, ..., k¢, k.
..., k. k — 1), satisfies the hypothesis of Lemma 8.4 withp =u — { + 1,
g = { + r and f replaced by £ + r. Provided s > 1, then on account of this
lemma (in particular, equation (8.19)), V(,,) can be expressed in the form

i+r 1 ’
AAy A Y1Y2  Yutr+10 AgAgy Al A
V7172 Tu+r+14142 t+r — El W(t; 2 utr+1% 41492 t l’+r’

(t+r)
t:

where W,  represents the components of a multi-linear map belonging
toA* "2 ® § E—e: Due to (8.28) this leads to an expression for [*PjB ]
from which it is possible to conclude that p; € G(ﬁf;_”l . Whens =1,
Lemma 8.4 implies that V(;,,, = 0 and hence ij =0,1i.e.,p; € Gﬁlff;”.

A similar argument also shows that p, € Gfs__e{ . O

LEMMA 8.7. Letw € ©X,  wherer 22,s 2 landt+r+s < m.
If 3w = 0, ther w = dp where p € GK,_I,S.

Proof. Since w € 6K, , it may be expressed in the form
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4
WX X% XD = Eop@ X XD A A de)

+ 08X X% . XY Adxgg Adef, (8.30)
where each p(,) € A, s— °t and each pj € AiK fs 1- Since dw = 0, it follows
that

4
L @)X X% 5 XY A XS Ade) + @pPXX Y X L5 XD
t=
Adxgg’ A dtP =0,

from which we deduce, by Lemma 8.6 that (3p(,) € e’,‘jf ‘1 and
(30;) € 6K

The proof now proceeds by induction on s. When s = 1, the fore-
going analysis implies that dp,) = 0 and dp; = 0. On account of the
exactness of the complex (C'(U, Q,* 9, 3) we can now conclude that
P = 0p(y and p; = dp;, where p(,) € A, tpandp o € A, ;’,fo” (Note
that this latter conclusion is false if » < 2.) Hence equation (8.30) can
be rewritten as

¢

o' X% L5 XD = B (@)X X L X A (Xl de%)
t=
+ (35,3)(X1;X2; XD A deﬂ-f A dt?
l’ u
= a[ 231 PoXh X% 5 XD A (X, de®)
1=

+ (XY X% 5 X Adxgy’ A deP |,

Since the expression enclosed in brackets defines an element of GK,_I,I
this proves the lemma for s = 1.

We now establish the lemma for a fixed value of s = 2 by assuming
its validity for s replaced by s — 1. By virtue of this assumption and
the remarks made at the beginning of the proof we can deduce that

e = by I0; = Ip;
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where p(, € Gfs_f{ and p; € 6(,1.(:{‘;_1)1. From these equations we obtain

the relations
P =Pyt Oxp and p; =p; + dx;,

where x,) € AKX 1s—pand x; € A(,Iff,s__l)l. These now yield, on substitution

into (8.30), the equation
oXh X% XY =l (X XY LX)
+ 9,(X1 X% . XY, (8.31)

where
3 " ?
m&Xh x4 X0 = P XX X% 5 XD A X de)

+ xPXY X255 XY Adxgg A dtf

and
d ‘, U
X X% XD = B XX LX) A (K de)
=

+ 5 XY X2 L. XY Ndxgg A dEP.

Note that 7, € 6X,_ 1.5+ Since w is d-closed, it follows from (8.31)
that 5, is d-closed and therefore n, = 973, where %3 is derived from 7,
via the standard Poincaré homotopy restricted to the variables x"l,,l aye g e
However, because oy, € O5,% and 5; € 611 it is not difficult to
conclude from the homotopy formula for 7 that ;3 € ©%,_, . Therefore
w = 97, where 7 = 7; + 53 belongs to ©X,_, ;. This completes our

induction proof. []

Proof of Lemma 8.3. Let us first assume that s = 1 and k = 1.
Letn € I'(U, Q,™°) and suppose that y(d9) = 0. Since 9y € I'(U, Qk’+1")
we can apply Lemma (8.5) (with r replaced by r + 1) to conclude that
dn is of the form 3y = p;® A dxpg’ A dt® where p;® € T(U, @;"*7!). In
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view of (8.24) this proves that dn € ©',;;,. We now apply Lemma 8.7
to the d-closed form 97 to deduce that dn = dp, where p € 90,_1,5, i.e.

an = 3(p;® A dxgg’ A dt®)

where pf’ € I'(U, Q,”~'*71). From this equation and the exactness of
the differential 9, it now follows that

n = ar + pJB A deBJ A dtﬂ,

as required.

If either s = 0 or k¥ = 0 then by Lemma 8.5 the equation y/(39) = 0
implies that 9 = 0 which in turn implies that 7 = d7. This completes
the proof of Lemma 8.3. [J

Remark added July 26, 1980.

At the time of writing the following papers which deal with the inverse problem were
unknown to us.

Dedecker, P., On applications of homological algebra to calculus of variations and math-
ematical physics. Proceedings of the IV International Colloquium on Dif-
ferential Geometry, Santiago de Compostella, 1978, pp. 285-294.

Lychagin, V. V., Contact geometry and non-linear second-order differential equations,
Russian Math. Surveys, 34 (1979), pp. 149-180.

Santilli, R. M., Foundations of Theoretical Mechanics I: The Inverse Problem in New-
tonian Mechanics, Springer-Verlag, New York (1978).

Telega, J. J., On variational formulations for non-linear, non-potential operators, J. Inst.
Math. Applics, 24 (1979), pp. 175-195.

Tulczyjew, W. M., The Lagrange differential, Bull. Acad. Polon. Sc. Ser. Sc. Math.,
Astron., Phys., 24 (1976), pp. 1089-1096.

Tulezyjew, W. M., The Lagrange complex, Bull. Soc. Math. France 105 (1977), pp.
419-431.

Tulczyjew’s work provides another solution to the global inverse problem for dif-
ferential operators defined on the infinite jet bundle of P.

UNIVERSITY OF UTAH AND UTAH STATE UNIVERSITY
UNIVERSITY OF UTAH AND UNIVERSITY OF WASHINGTON
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