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ON THE EXISTENCE OF INVARIANT MEASURES FOR

PIECEWISE MONOTONIC TRANSFORMATIONS(l)

BY

A. LASOTA AND JAMES A. YORKE

ABSTRACT.    A class of piecewise continuous, piecewise  C    transforma-

tions on the interval [O, l] is shown to have absolutely continuous invariant

measures.

1. Introduction.   The purpose of this note is to prove the existence of abso-

lutely continuous invariant measures for a class of point-transformations of the

unit interval [0, l] into itself.   Our main result is Theorem 1 which generalizes

some previous results of A.   Renyi [5], A. O. Gel fond [2], W. Parry [4] and A.

Lasota [3].  It gives, also, a positive answer to a conjecture of S. Ulam [7, p. 74],

Theorem 1 is stated for a piecewise monotonie function with a finite number of

discontinuities but it can be easily extended to some piecewise monotonie func-

tions with infinite number of discontinuities.

Our method is different from the methods of the above mentioned authors.

Firstly we explore the fact that the Frobenius-Perron operator corresponding to

the point-transformation under consideration has the property of sometimes shrink-

ing the variation of the function.  Secondly to prove the existence of invariant

measures we use the abstract ergodic theorem which enables us to make our

proofs constructive.   The advantage of this method is that we do not require that

our mappings be local homeomorphisms nor that they generate an exact endomor-

phism in the sense of Rohlin [6], a property that has been the typical requirement

for previous work.   §4 describes some extensions, including an extension to

higher dimensions.

2. Existence theorem.  Denote by (Lj, || ||) the space of all integrable

functions defined on the interval [0, 1],  Lebesgue measure on [0, l] will be

denoted by m.  Let t: [0, l] —» [0, l] be a measurable nonsingular transformation.
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482 A. LASOTA AND J. A. YORKE

"Nonsingularity" means that m(r~1ÍA)) = 0 whenever 772(A) = 0 for a measurable

set A.  Given r we define the Frobenius-Perron operator Pf: L. —» L,  by the

formula

dx ^"'([o.*])

It is well known that the operator PT is linear and continuous and satisfies the

following conditions:

(a) PT is positive: / > 0 =» PTf > 0;

(b) PT preserves integrals

i\Prfdm = i\fdm,      feLy

(c) PTn= P" (rn denotes the nth iterate of r);

(d) PJ = / if and only if the measure dp. = fdm is invariant under r, that is

p(r-1(A)) = fi(A) fot each measurable A.

A transformation   r: [0,  l] —»7? will be called piecewise C , if there exists

a partition 0 = «n<a1<...<a=l of the unit interval such that for each integer

¿ (¿ = 1,..., p) the restriction í\ of r to the open interval (a,-_i. a¿) is a C

function which can be extended to the closed interval [a._., a-] as a C    function.

7" need not be continuous at the points a..

Theorem 1.- Let r: [0, 1] —► [0, l] be a piecewise C2 function such that

inf \r I > 1.   Then for any f e Lj the sequence

1 "-1

n  Z    Pkri
n fe=0

is convergent in norm to a function f* e Ly   The limit function has the following

properties:

(1) />0=»/*>0.

(2) fl/*dm = flfdm.
(3) PTf*= /* and consequently the measure du*= f*dm is invariant under r.

(4) The function f* is of bounded variation; moreover, there exists a con-

stant c independent of the choice of initial f such that the variation of the limit-

ing f* satisfies the inequalityi2)

V /*<*!/!•

(2) Here and in what follows the symbol Vf/* as well as \fr     rf denote the varition

of / over the closed interval [a, b].
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We point out in Theorem 3 that it is sufficient to assume just that some

iterate of r satisfy the derivative condition.

Proof.  Write s = inf|r'| and choose a number N such that sN > 2.  It is

easy to see that the function <f> = r    is piecewise C .  Denote by b0, ••• ,bg

the corresponding partition for <f>.  Writing tp\ for the corresponding C   functions

we have

(5) \<p'.ix)\ >sN,       xe [b{_ j, b.], i - 1, ••., q.

Computing the Frobenius-Perron operator for rA we obtain

(6) P^fix) = ¿ fítff.ix))o.íx)xiix)
iml

where ifr. = rp"  , o.ix) = |t/r'¿(x)| and Xi ls tne characteristic function of the

interval Ji = <f>ii[bi_l, t>¿]).   From (5) it follows that

(7) Wiix)\<s'N,      xe]., iml,...,?.

By its very definition the operator P^ is defined as a mapping from Lj into Lj

but the formula (6) enables us to consider Pj, as a map from the space of func-

tions defined on [0, l] into itself.

Let / be a given function of bounded variation over [0, l].   From (6) and

(7) it follows that

GO V PJ < ¿   V (/ o *>, + s-N ¿ (|/(6,.. .)| + \fíb)\).
0 z=l    J. <=1

In order to evaluate the first sum we write

v(/o^v,= f, w°Wl
J. Ji

I

i i

<K  f,   |/o^>¿¿m + s-N   f   |¿/.^|

where K = maxla^/minío^.).   Changing the variables we obtain

(9) V(/oWa.<KÍ;     |/|¿«+S-Nf;     \df\.
J. Jbi-l *i-l

In order to evaluate the second term in (8) we write

bi

(10) l/te^l + WIS   V   /+20-.
bi-l
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where a*¿ = inf !|/(x)|: x e [b^y b¡]].  On the other hand we have an obvious

inequality

ai) di<h~lLi \f\dn
jbi-\

where h = min;(&¿ - è^j).   From (10), (11) it follows that

(12) £(|/to,-i)| + l/(»PI)<  V / + 2¿-1||/||.
i=l o

Applying (12) and (9) to (8) we obtain  \j\ P^f < a\f\\ + ß V¿/ where a = (K+2ÍT1)

and" ß = 2s~N < 1.

Now, for the same function /, let us write fk = P*/.  Since P^ = P^ we have

1 1 1

V /Nfe<*llW-i)ll + 0 V W_n< «11/11+0 V /N(à_„
o o o

and consequently

1

(13) Hm sup   V fNk < a(l - ß) '1 \\f \\.
fc-OO 0

The last inequality and the condition ||/fc|| < ||/|| (which follows from (a) and (b))

prove that the set C = 5/^^i^o *s relatively compact in Ly   Since {/¿.¿lo c

Ufc=ToPfe' tae whole sequence \fkYj°=0 is relatively compact, too.   By Mazur's

theorem the same is true for the sequence

(14) H*l
The set of functions of bounded variation is dense in L.,  We have proved that for

any such function / the sequence (14) is relatively compact.  Therefore, we are

in a position to use the Kakutani-Yosida Theorem (see [1, VIII.5.3]) which says

that for any f e L^ the sequence (14) converges strongly to a function /* which

is invariant under Pf.   From (a) and (b) it follows that /* satisfies (1) and (2).

Therefore it remains only to prove (4).  Since the operator PT is given by a

formula analogous to (6) it is easy to derive the inequality y J P^ <c. Vn/ +

c211/11 w"k some constants Cj and c2.   This and (13) imply the inequality

1

lim sup VP*/<^II/II

(with a positive constant c) which is valid for any / with bounded variation.   Con-

sequently for any such / we have also
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tsup   W- Ï PrV)<c||/l|.
^      0   \n   k=i       j

lim
k

Writing Q = limn(l/n)2^-1P* and using Helly's theorem we have  V¿Q/<

c 11/11, for / of bounded variation.   The operator Q is linear and contractive.   We

may therefore apply Helly's theorem once more to extend this inequality for the

closure of the set of functions of bounded variation, that is to all of Lj.   This

finishes the proof.

3. A counterexample.  Now we shall show that our assumption inf |r | > 1 is

essential.   Consider the transformation

!x/il-x)    fot0<x<y2,

2x - 1 for V2 < x < 1

for which the assumption |y (x)| > 1 is violated only at x = 0.  We are going to

prove that for any / e L1 the sequence P" f converges in measure to zero.

Therefore the equation P„/ = / has only the trivial solution and there is no abso-

lutely continuous nontrivial measure invariant under y.

The proof will be given in a few steps.  First we prove that for fQ = 1 the

sequence gnix) = xfnix), where fn = Pyf0, converges to a constant cn.  Then

using the condition ||/n|| = 1 we derive easily that cQ = 0, and consequently

/   -* 0.  Finally by an approximation argument we may extend this result to an

arbitrary sequence P™/ with / e Lj.

The Frobenius-Perron operator Py may be written in the form

Thus for gn we have the following recursive formula:

By an induction argument it is easy to check that g   > 0 for each n.   Therefore

all the functions gn ate positive and increasing.  According to (15) we have

*»+i(1)-^*BOÔ + Hgf,(i) <g„(D.

This proves the existence of a limit limngn(l)  = cn. Write z0 = 1 and z, +1 =

zfe/(l + zk).   According to (15) we obtain

g»+i(z^ " ÎT^ «A+P + T7Tk *«G + t)-

Fix k and suppose that limngn(x) = CQ fot zk<x<l. (This is certainly true for

k = 0.)  Since zk<1Á+1A^i¿, we obtain at the limit as n —» oo
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1 2
Cn = -- lim e iz,   , ) + -- C..

0     1 +zk  „   6»   *+l      1 +zk    0

Thus limf2gn(z^+1) = CQ:  Since gn ate increasing, this proves that lim„g (*)

= CQ uniformly for all x e [zk+1, l].   Therefore by an induction argument it fol-

lows that limngn(x) = CQ in any interval [zfc, l] and consequently, since lim^z^

= 0, we have limngn(x) = CQ  for all  0 < x < 1.  Hence,   limjix) = cQ/x.   We

claim that  c 0 = 0.  If not there would exist e > 0 such that /¿ c0/xdx > 1 and

lim f1/ íx)dx= f1 —dx>l
n   J(   " J(    x

which is impossible since \\f \\ = 1 for each 72.  It can be easily proved by induc-

tion that each of the functions /   is decreasing.   Thus the convergence of /   to

zero is uniform on any interval [e, 1] with e > 0.

Now let / be an arbitrary function.  We may write / = /    — /" where /   =

max(0, /) and /" = max(0, - /).  Given f > 0 consider a constant r such that

¡lir-r)+dm + flQif+-r)+dm<(.

We have

fl \P«f\ dm = jl P*f*d» + ¡I P"yr dm

< 2 j1 Pnyrdm + fl Pn(/+ - r)dm + fl Pnir - r)dm

<2r f1 P^,ldm + (.

Since P'Ll converges on [f, l] uniformly to zero we have

lim J1 |P£/| ¿772 = 0 forf>0

which proves that the sequence Pyf converges in measure to zero.

4. Final remarks.  Now we want to discuss some extensions of our method to

other transformations.   First of all we may prove an analogue of Theorem 1 for

piecewise C2 transformations with a countable number of pieces.

Let r;: A. —» [0, l] be a countable sequence of C2 functions where Af. is a

sequence of closed intervals such that 2¿ 777(Af) = 1, mi[0, l] - U^.) = 0. The

function t defined by the condition

Áx) = r .ix),      x e interior of A;,

will be called countably piecewise C2.  Note that the values of r on the set

[0, l]\UíintA¿ are arbitrary.
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Theorem 2.   Let r be a countably piecewise C2 function such that

(16) inf |r'(x)| > 2,      sup |r"(x)| < oo,

(17) r.(A.) = [0, l]     except for a finite number of intervals.

Then for each f e Lj the sequence U/nfS^Z^ P*/ is convergent in norm to a func-

tion f* which satisfies conditions (1), (2), (3) and (4).

The proof of Theorem 2 is basically the same as the proof of Theorem 1.

Thus it can be omitted.  Let us only note that the condition (17) is essential.  In

fact it is easy to construct a countably piecewise linear function with the slope

r   > 3 such that inf£SXS i-fT(x) - x is a positive number for each e in (0, 1/2).

(The graph of r lies over the diagonal.)  It can be proved by elementary calcula-

tion that for any such function r and / € L j,  P^/ —» 0 in measure as « —» oo.

A close look at the proof of Theorem 1 shows that we have used only the

fact that suplir") | > 2.   Therefore, in fact, we have proved the following result.

Theorem 3.   Let r: [0, l] —♦ [0, l] be a piecewise C2 function such that

inf|(r"°)'| > 1 for a positive integer nQ.   Then for any f e Ll the sequence

il/n) £^~ 0 P~f is convergent in norm to a function f* which satisfies conditions

(1), (2) and (3).   //, in addition, inf |r'| > 0 then condition (4) is also satisfied.

Observe that in our counterexample the function y has the property that

iy") x=0 = 0 for each n.  This is because the point (0, y(0)) lies on the diagonal.

Our techniques can be easily used to obtain new proofs of known results in

higher dimensions.   See [8], [9], [10] for such results.   In this case r: M —» M is

assumed C1 on a compact manifold M and the variation of a C1 function / is

defined as fM\gtadfim)\dm.   Hence in this case we do not allow discontinuitiei

in r, or more generally if / is C1 on M\dM, we must make assumptions on t

guaranteeing Pfif) is C1 on M\dM.   The techniques in [8], [9], [10] are quite

different from the "bounded variation" approach of this paper.

The study of the functions t described arose while investigating the design

of more durable high speed oil well drilling bits.  The invariant measure fix)dx

describes the distribution of impacts on the surface of the bit.   The durability and

efficiency of the tool depends strongly on /.   The first author is part of a team

that has obtained patents in Poland for superior bits by slightly altering the bit

shape to one with a better impact distribution /.
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