ON THE EXISTENCE OF KÄHLER METRICS OF CONSTANT SCALAR CURVATURE

Kenji Tsuboi

(Received February 7, 2008, revised December 17, 2008)

Abstract

For certain compact complex Fano manifolds M with reductive Lie algebras of holomorphic vector fields, we determine the analytic subvariety of the second cohomology group of M consisting of Kähler classes whose Bando-Calabi-Futaki character vanishes. Then a Kähler class contains a Kähler metric of constant scalar curvature if and only if the Kähler class is contained in the analytic subvariety. On examination of the analytic subvariety, it is shown that M admits infinitely many nonhomothetic Kähler classes containing Kähler metrics of constant scalar curvature but does not admit any Kähler-Einstein metric.

1. Introduction. The question of whether a manifold admits a Riemannian metric of constant scalar curvature or not is a classical problem. For any real closed manifold M of dimension greater than two, Kazdan and Warner [10] proved that M admits at least a Riemannian metric of negative constant scalar curvature. On the other hand, there exists an obstruction to the existence of Kähler metrics of constant scalar curvature. Indeed, let M be an m-dimensional compact complex manifold. Denote by Aut (M) the complex Lie group consisting of all biholomorphic automorphisms of M and by $\mathfrak{h}(M)$ its Lie algebra consisting of all holomorphic vector fields on M. The Lie algebra $\mathfrak{h}(M)$ is called reductive if $\mathfrak{h}(M)$ is the complexification of the Lie algebra of a compact subgroup of Aut (M). In [14], Matsushima proved that $\mathfrak{h}(M)$ is the complexification of the real Lie algebra consisting of all infinitesimal isometries of M, and hence $\mathfrak{h}(M)$ is reductive, if M admits a Kähler-Einstein metric. Generalizing the result of Matsushima, Lichnerowicz proved in [12], [13] that $\mathfrak{h}(M)$ must satisfy a certain condition if M admits a Kähler metric of constant scalar curvature. (For details see also [11, Theorem 6.1].) When M is a compact simply connected Kähler manifold, the condition of Lichnerowicz is equivalent to that of Matsushima. For example, the one point blow-up of $\boldsymbol{C} \boldsymbol{P}^{2}$ does not satisfy the condition (see [5, p. 100]) and hence does not admit any Kähler metric of constant scalar curvature. Thus the problem to solve is whether M with reductive $\mathfrak{h}(M)$ admits a Kähler metric of constant scalar curvature or not.

Generalizing the result of Futaki [3], Bando [1], Calabi [2] and Futaki [4] give an obstruction to the existence of a Kähler metric of constant scalar curvature whose Kähler form is contained in some particular Kähler class. Let Ω be a Kähler class, $\omega \in \Omega$ a Kähler form and s_{ω} the scalar curvature of ω. Let $c_{1}(M) \in H^{2}(M ; \boldsymbol{Z})$ be the first Chern class of M and

[^0]set
$$
\mu_{\Omega}=\frac{\left(\Omega^{m-1} \cup c_{1}(M)\right)[M]}{\Omega^{m}[M]},
$$
where [M] denotes the fundamental cycle of M. Then there exists uniquely a smooth function h_{ω} up to constant such that
$$
s_{\omega}-m \mu_{\Omega}=\Delta_{\omega} h_{\omega},
$$
and the integral
$$
f_{\Omega}(X)=\int_{M} X h_{\omega} \omega^{m}
$$
is defined for $X \in \mathfrak{h}(M)$. This integral $f_{\Omega}(X)$ is independent of the choice of Kähler forms $\omega \in \Omega$. Moreover, $f_{\Omega}: \mathfrak{h}(M) \rightarrow \boldsymbol{C}$ is a Lie algebra character and f_{Ω} vanishes if Ω contains a Kähler metric of constant scalar curvature. The character f_{Ω} is called the Bando-CalabiFutaki character or the Futaki invariant.

When Ω is a Hodge class and a holomorphic line bundle L with $c_{1}(L)=\Omega$ admits a lifting of the Ω-preserving action of a subgroup G of $\operatorname{Aut}(M)$, in [16] Nakagawa gives a lifting of the Lie algebra character f_{Ω} to a group character $G \rightarrow \boldsymbol{C} /\left(\boldsymbol{Z}+\mu_{\Omega} \boldsymbol{Z}\right)$ by using the results in [17] and [6].

Assume that there exists an inclusion $\iota: \mathrm{U}(1) \rightarrow \operatorname{Aut}(M)$ and that Ω is equal to the first Chern class of a holomorphic $\mathrm{U}(1)$-line bundle L over M. For any integer $p \geq 2$ let Y denote the element $2 \pi \sqrt{-1}$ of the Lie algebra of $U(1)$ and set

$$
\begin{equation*}
X=\iota_{*} Y \in \mathfrak{h}(M), \quad X_{p}=\frac{1}{p} X \in \mathfrak{h}(M), \quad g_{p}=\exp X_{p} \in \operatorname{Aut}(M) . \tag{1}
\end{equation*}
$$

Then the order of g_{p} is p. We assume that the next assumption is satisfied. (See Assumption 2.2 and Lemma 2.3 in [7].)

Assumption 1.1. Assume that the fixed point set of g_{p}^{k} for $1 \leq k \leq p-1$ is independent of k and that the connected components N_{1}, \ldots, N_{n} of the fixed point set, which are compact complex submanifolds of M, have cell decompositions with no codimension one cells.

Let α_{p} denote the primitive p-th root of unity defined by

$$
\alpha_{p}=e^{2 \pi \sqrt{-1} / p}
$$

hereafter. Suppose that g_{p}^{k} acts on $\left.K_{M}^{-1}\right|_{N_{i}}$ via multiplication by $\alpha_{p}^{k r_{i}}$ and acts on $\left.L\right|_{N_{i}}$ via multiplication by $\alpha_{p}^{k \kappa_{i}}$. Suppose moreover that the normal bundle $\nu\left(N_{i}, M\right)$ is decomposed into the direct sum of subbundles

$$
\nu\left(N_{i}, M\right)=\bigoplus_{j} \nu\left(N_{i}, \theta_{j}\right),
$$

where g_{p}^{k} acts on $\nu\left(N_{i}, \theta_{j}\right)$ via multiplication by $e^{\sqrt{-1} \theta_{j}}$. Then a cohomology class $\Phi\left(\nu\left(N_{i}, M\right)\right)$ is defined by

$$
\Phi\left(\nu\left(N_{i}, M\right)\right)=\prod_{j} \prod_{k=1}^{R_{j}} \frac{1}{1-e^{-x_{k}-\sqrt{-1} \theta_{j}}} \in H^{*}\left(N_{i} ; \boldsymbol{C}\right) \quad\left(R_{j}=\operatorname{rank}_{\boldsymbol{C}}\left(\nu\left(N_{i}, \theta_{j}\right)\right)\right)
$$

where $\prod_{k}\left(1+x_{k}\right)$ is equal to the total Chern class of $v\left(N_{i}, \theta_{j}\right)$. For $1 \leq k \leq p-1$, $\varepsilon=-1,0,+1$ and an integer ζ, we define numbers $T_{i}(k, \varepsilon, \zeta)$ and $S_{\varepsilon}(\zeta)$ by

$$
\begin{gathered}
T_{i}(k, \varepsilon, \zeta)=\frac{1}{1-\alpha_{p}^{k}}\left(\alpha_{p}^{k\left(-\varepsilon r_{i}+\zeta \kappa_{i}\right)} e^{-\varepsilon c_{1}\left(K_{M}^{-1} \mid N_{i}\right)+\zeta c_{1}\left(L \mid N_{i}\right)}-1\right)^{m+1} \operatorname{Td}\left(T N_{i}\right) \Phi\left(\nu\left(N_{i}, M\right)\right)\left[N_{i}\right] \\
S_{\varepsilon}(\zeta)=\frac{1}{p} \sum_{i=1}^{n} \sum_{k=1}^{p-1} T_{i}(k, \varepsilon, \zeta),
\end{gathered}
$$

where $\operatorname{Td}\left(T N_{i}\right)$ is the Todd class of $T N_{i}$. Then $F_{L}\left(g_{p}\right)$ is defined by

$$
\begin{aligned}
F_{L}\left(g_{p}\right)= & (m+1) \sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left(S_{-1}(m-2 i)-S_{+1}(m-2 i)\right) \\
& -m \mu_{\Omega} \sum_{i=0}^{m+1}(-1)^{i}\binom{m+1}{i} S_{0}(m+1-2 i)
\end{aligned}
$$

The lifting of the character f_{Ω} given by Nakagawa is expressed by a Simons character of a certain foliation. In [7], we gives a localization formula for the Simons character under Assumption 1.1. The next theorem follows from [16, Theorem 4.7] and [7, Theorem 2.5].

THEOREM 1.2. There exists a non-zero constant $A(m, n)$ determined only by m, n such that $F_{L}\left(g_{p}\right) \equiv A(m, n) f_{\Omega}\left(X_{p}\right)\left(\bmod \boldsymbol{Z}+\mu_{\Omega} \boldsymbol{Z}\right)$.
2. Main result. For $m, n \geq 1$, let H_{m}, H_{n} be the hyperplane bundles over the complex projective spaces $\boldsymbol{C} \boldsymbol{P}^{m}, \boldsymbol{C} \boldsymbol{P}^{n}$ respectively, and

$$
\pi_{1}: H_{m} \rightarrow \boldsymbol{C} \boldsymbol{P}^{m}, \quad \pi_{2}: H_{n} \rightarrow \boldsymbol{C} \boldsymbol{P}^{n}
$$

their projections. Let $E=\pi_{1}^{*} H_{m} \oplus \pi_{2}^{*} H_{n}$ be the rank 2 vector bundle over $\boldsymbol{C} \boldsymbol{P}^{m} \times \boldsymbol{C} \boldsymbol{P}^{n}$. Let M be the total space of the projective bundle of E and J_{M} the tautological bundle of M. Then M is an ($m+n+1$)-dimensional simply-connected compact Kähler manifold and the same argument as in [3, Proposition 3.1] shows that M is a Fano manifold (see also [5, Proposition 4.2.1]) and the identity component of $\operatorname{Aut}(M)$ coincides with the factor group $(\mathrm{GL}(m+1, \boldsymbol{C}) \times \operatorname{GL}(n+1, \boldsymbol{C})) / \boldsymbol{C}^{*}$, where \boldsymbol{C}^{*} is the center of $\mathrm{GL}(m+n+2, \boldsymbol{C})$. Hence the Lie algebra $\mathfrak{h}(M)$ is isomorphic to

$$
\{(A, B) \in \mathfrak{g l}(m+1, \boldsymbol{C}) \oplus \mathfrak{g l}(n+1, \boldsymbol{C}) ; \operatorname{Tr} A+\operatorname{Tr} B=0\}
$$

which satisfies the condition of Matsushima.
Applying the Gysin exact sequence to the fibration

$$
F=\boldsymbol{C} \boldsymbol{P}^{1} \rightarrow M \xrightarrow{p} B=\boldsymbol{C} \boldsymbol{P}^{m} \times \boldsymbol{C} \boldsymbol{P}^{n},
$$

we have the split exact sequence

$$
\begin{aligned}
& H^{-1}(B ; \boldsymbol{Z})=0 \rightarrow H^{2}(B ; \boldsymbol{Z}) \simeq H^{2}\left(\boldsymbol{C} \boldsymbol{P}^{m} ; \boldsymbol{Z}\right) \oplus H^{2}\left(\boldsymbol{C} \boldsymbol{P}^{n} ; \boldsymbol{Z}\right) \\
& \quad \xrightarrow{p^{*}} H^{2}(M ; \boldsymbol{Z}) \xrightarrow{f} H^{0}(B ; \boldsymbol{Z}) \simeq \boldsymbol{Z} \rightarrow H^{3}(B ; \boldsymbol{Z})=0,
\end{aligned}
$$

where f is the integration along the fiber. Then H_{m}, H_{n} are naturally regarded as vector bundles over $\boldsymbol{C} \boldsymbol{P}^{m} \times \boldsymbol{C} \boldsymbol{P}^{n}$, and since $f\left(c_{1}\left(J_{M}^{*}\right)\right)=1$, it follows that

$$
H^{2}(M ; \boldsymbol{Z})=\{\lambda \tilde{u}+\mu \tilde{v}+v \tilde{w} ; \lambda, \mu, v \in \boldsymbol{Z}\} \simeq \boldsymbol{Z}^{3},
$$

where $\tilde{u}=c_{1}\left(p^{*} H_{m}\right), \tilde{v}=c_{1}\left(p^{*} H_{n}\right)$ and $\tilde{w}=c_{1}\left(J_{M}^{*}\right)$.
REMARK 2.1. Let \hat{u}, \hat{v} be the first Chern forms of H_{m}, H_{n}, respectively. Then $x \hat{u}+y \hat{v}$ is a Kähler form on $\boldsymbol{C} \boldsymbol{P}^{m} \times \boldsymbol{C} \boldsymbol{P}^{n}$ for $x, y>0$, and hence $x \tilde{u}+y \tilde{v}+z \tilde{w}$ is a Kähler class of M for $x, y>0$ and sufficiently small $z>0$. Therefore the set of Kähler classes of M is contained in the subset $\{x \tilde{u}+y \tilde{v}+z \tilde{w} ; x, y, z>0\}$ of $H^{2}(M ; \boldsymbol{R}) \simeq \boldsymbol{R}^{3}$.

Now, let $F(x, y, z)$ be an integral homogeneous polynomial of degree $m+n+4$ defined by

$$
F(x, y, z)=-(m(m+2) y z+n(n+2) x z+2 x y) g(x, y, z)+x y z h(x, y, z),
$$

where

$$
\begin{aligned}
g(x, y, z)= & \sum_{s=0}^{m+n} \sum_{q=0}^{m}\binom{m+n+2}{s}\binom{s}{m-q}\binom{m+n-s}{q}(-1)^{m+n+s+q+1} \\
& \left((x-z)^{m-q} y^{n+q+2}-x^{m-q}(y-z)^{n+q+2}\right), \\
h(x, y, z)= & \sum_{s=0}^{m+n} \sum_{q=0}^{m}\binom{m+n+2}{s}\binom{s}{m-q}\binom{m+n-s}{q}(-1)^{m+n+s+q+1} \\
& \left(\begin{array}{c}
\{(m+n+2-s)+(n+2)(s-m+q)\}(x-z)^{m-q} y^{n+q+1} \\
+m(m-q)(x-z)^{m-q-1} y^{n+q+2} \\
+\{(m+n+2-s)-n(s-m+q)\} x^{m-q}(y-z)^{n+q+1} \\
-(m+2)(m-q) x^{m-q-1}(y-z)^{n+q+2}
\end{array}\right) .
\end{aligned}
$$

For example, if $(m, n)=(1,2)$, we have

$$
\begin{aligned}
F(x, y, z)= & 120 x^{2} y^{3} z^{2}-420 x^{2} y^{2} z^{3}+390 x^{2} y z^{4}-120 x^{2} z^{5}+60 x y^{4} z^{2}-90 x y^{3} z^{3} \\
& +150 x y^{2} z^{4}-99 x y z^{5}+24 x z^{6}-90 y^{4} z^{3}+90 y^{3} z^{4}-45 y^{2} z^{5}+9 y z^{6}
\end{aligned}
$$

Our main result is the next theorem.
THEOREM 2.2. The character f_{Ω} for $\Omega=x \tilde{u}+y \tilde{v}+z \tilde{w}$ vanishes if and only if $F(x, y, z)=0$. Hence the open subset of $H^{2}(M ; \boldsymbol{R}) \simeq \boldsymbol{R}^{3}$ defined by $F(x, y, z) \neq 0$ does not contain any Kähler metric of constant scalar curvature. (See Remark 3.2.)

REMARK 2.3. The group $\operatorname{Aut}(M)$ contains an $(m+n+1)$-dimensional algebraic torus. Hence M is toric and the character can be calculated also by the formula of Nakagawa [15].
3. Proof of the Theorem. Let $q \in M, q_{m} \in p^{*} H_{m}, q_{n} \in p^{*} H_{n}$ and $q_{J} \in J_{M}^{*}$ be points. Then the point q and the set $\left(q_{m}, q_{n}, q_{J}\right)$ are expressed as follows:

$$
\begin{aligned}
q & =\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),\left(\eta_{0}, \eta_{1}\right)\right] \\
& =\left[\left(a z_{0}, \ldots, a z_{m}\right),\left(b w_{0}, \ldots, b w_{n}\right),\left(c a \eta_{0}, c b \eta_{1}\right)\right] \\
\left(q_{m}, q_{n}, q_{J}\right)= & {\left[\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),\left(\eta_{0}, \eta_{1}\right)\right], h_{m}, h_{n}, \xi\right] } \\
& =\left[\left[\left(a z_{0}, \ldots, a z_{m}\right),\left(b w_{0}, \ldots, b w_{n}\right),\left(c a \eta_{0}, c b \eta_{1}\right)\right], a h_{m}, b h_{n}, c \xi\right]
\end{aligned}
$$

for $a, b, c \in C^{*}$.
REMARK 3.1. Since f_{Ω} vanishes on $[\mathfrak{h}(M), \mathfrak{h}(M)]$ and $\mathfrak{h}(M) /[\mathfrak{h}(M), \mathfrak{h}(M)]$ is represented by the vector field along the fiber $\boldsymbol{C} \boldsymbol{P}^{1}$, the character f_{Ω} vanishes if and only if $f_{\Omega}(X)=0$ for the vector field X along the fiber.

Now we assume that p is an odd prime number hereafter. Then an action of $\boldsymbol{Z}_{p}=\left\langle g_{p}\right\rangle \subset$ $(\mathrm{GL}(m+1, \boldsymbol{C}) \times \operatorname{GL}(n+1, \boldsymbol{C})) / \boldsymbol{C}^{*}$ on M is defined by

$$
\begin{align*}
& g_{p} \cdot\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),\left(\eta_{0}, \eta_{1}\right)\right] \\
& \quad=\left[\left(z_{0}, \ldots, z_{m}\right),\left(\alpha_{p} w_{0}, \ldots, \alpha_{p} w_{n}\right),\left(\eta_{0}, \eta_{1}\right)\right] \tag{2}
\end{align*}
$$

This action naturally extends to an inclusion $\iota: \mathrm{U}(1) \rightarrow \operatorname{Aut}(M)$, which defines vector fields $X, X_{p} \in \mathfrak{h}(M)$ along the fiber as in (1) and we have $g_{p}=\exp \left(X_{p}\right)$. The fixed point set of g_{p}^{k} has the following two connected components

$$
N_{1}=\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),(1,0)\right], \quad N_{2}=\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),(0,1)\right]
$$

for $1 \leq k \leq p-1$, which are isomorphic to $\boldsymbol{C} \boldsymbol{P}^{m} \times \boldsymbol{C} \boldsymbol{P}^{n}$ and have cell decompositions with no codimension one cells. Let $v\left(N_{i}, M\right)$ be the normal bundle of $N_{i}(i=1,2)$ in M. Then, since

$$
\begin{aligned}
& {\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),(1, \tau)\right]=\left[\left(a z_{0}, \ldots, a z_{m}\right),\left(b w_{0}, \ldots, b w_{n}\right),\left(1, a^{-1} b \tau\right)\right]} \\
& g_{p} \cdot\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),(1, \tau)\right]=\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),\left(1, \alpha_{p}^{-1} \tau\right)\right]
\end{aligned}
$$

we have

$$
v\left(N_{1}, M\right) \simeq H_{m}^{-1} \otimes H_{n}, \quad g_{p}\left|v\left(N_{1}, M\right)=g_{p}\right|\left(\left.K_{M}^{-1}\right|_{N_{1}}\right)=\alpha_{p}^{-1}
$$

The same argument shows that

$$
v\left(N_{2}, M\right) \simeq H_{m} \otimes H_{n}^{-1}, \quad g_{p}\left|v\left(N_{2}, M\right)=g_{p}\right|\left(\left.K_{M}^{-1}\right|_{N_{2}}\right)=\alpha_{p}
$$

Hence it follows from the equality $c_{1}\left(\left.K_{M}^{-1}\right|_{N_{i}}\right)=\left.c_{1}(M)\right|_{N_{i}}=c_{1}\left(T N_{i}\right)+c_{1}\left(\nu\left(N_{i}, M\right)\right)$ that

$$
\begin{gathered}
c_{1}\left(v\left(N_{1}, M\right)\right)=-u+v, \quad c_{1}\left(v\left(N_{2}, M\right)\right)=u-v \\
c_{1}\left(\left.K_{M}^{-1}\right|_{N_{1}}\right)=m u+(n+2) v, \quad c_{1}\left(\left.K_{M}^{-1}\right|_{N_{2}}\right)=(m+2) u+n v
\end{gathered}
$$

where $u=c_{1}\left(H_{m}\right), v=c_{1}\left(H_{n}\right)$. It is obvious that $\left.\tilde{u}\right|_{N_{i}}=u,\left.\tilde{v}\right|_{N_{i}}=v$ for $i=1$, 2. Also, since

$$
\begin{aligned}
& {\left[\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),(1,0)\right], \xi\right]} \\
& \quad=\left[\left[\left(a z_{0}, \ldots, a z_{m}\right),\left(b w_{0}, \ldots, b w_{n}\right),(1,0)\right], a^{-1} \xi\right]
\end{aligned}
$$

it follows that $\left.\tilde{w}\right|_{N_{1}}=-u$. The same argument shows that $\left.\tilde{w}\right|_{N_{2}}=-v$. Using the equalities above, we see that

$$
c_{1}(M)=(m+2) \tilde{u}+(n+2) \tilde{v}+2 \tilde{w},
$$

and hence for $\Omega=x \tilde{u}+y \tilde{v}+z \tilde{w}$ it follows that

$$
\begin{equation*}
\mu_{\Omega}=\frac{m(m+2) y z+n(n+2) x z+2 x y}{(m+n+1) x y z} . \tag{3}
\end{equation*}
$$

Let λ, μ, v be integers. Then $\Omega=\lambda \tilde{u}+\mu \tilde{v}+v \tilde{w}$ coincides with the first Chern class of the complex line bundle L defined by

$$
L=p^{*} H_{m}^{\lambda} \otimes p^{*} H_{n}^{\mu} \otimes\left(J_{M}^{*}\right)^{\nu}
$$

The action (2) lifts to actions on $p^{*} H_{m}, p^{*} H_{n}, J_{M}^{*}$ as follows:

$$
\begin{aligned}
& g_{p} \cdot\left[\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),\left(\eta_{0}, \eta_{1}\right)\right], h_{m}, h_{n}, \xi\right] \\
& \quad=\left[\left[\left(z_{0}, \ldots, z_{m}\right),\left(\alpha_{p} w_{0}, \ldots, \alpha_{p} w_{n}\right),\left(\eta_{0}, \eta_{1}\right)\right], h_{m}, h_{n}, \xi\right] .
\end{aligned}
$$

This action defines a lift of the action (2) to L and we can show that

$$
\begin{gathered}
g_{p}\left|\left(\left.p^{*} H_{m}\right|_{N_{i}}\right)=1, \quad g_{p}\right|\left(\left.p^{*} H_{n}\right|_{N_{i}}\right)=\alpha_{p}^{-1} \quad(i=1,2) \\
g_{p}\left|\left(\left.J_{M}^{*}\right|_{N_{1}}\right)=1, \quad g_{p}\right|\left(\left.J_{M}^{*}\right|_{N_{2}}\right)=\alpha_{p},
\end{gathered}
$$

and hence that

$$
\begin{equation*}
g_{p}\left|\left(\left.L\right|_{N_{1}}\right)=\alpha_{p}^{-\mu}, \quad g_{p}\right|\left(\left.L\right|_{N_{2}}\right)=\alpha_{p}^{-\mu+\nu} . \tag{4}
\end{equation*}
$$

Using the results above, we have

$$
\begin{aligned}
T_{i}(k, \varepsilon, \zeta)= & u^{m} v^{n} \text {-coeff. of } \\
& \frac{1}{1-\alpha_{p}^{k}}\left(\alpha_{p}^{k(-\varepsilon r+\zeta \kappa)} e^{-\varepsilon(a u+b v)+\zeta(\rho u+\tau v)}-1\right)^{m+n+2} \\
& \left(\frac{u}{1-e^{-u}}\right)^{m+1}\left(\frac{v}{1-e^{-v}}\right)^{n+1} \frac{1}{1-\alpha_{p}^{-k \delta} e^{-\delta(u-v)}},
\end{aligned}
$$

where $r, \kappa, a, b, \rho, \tau, \delta$ are numbers determined by i as follows:

	r	κ	a	b	ρ	τ	δ
$i=1$	-1	$-\mu$	m	$n+2$	$\lambda-v$	μ	-1
$i=2$	1	$-\mu+v$	$m+2$	n	λ	$\mu-v$	1

Then, using the substitution $x=e^{u}-1, y=e^{v}-1$, we have

$$
\begin{aligned}
T_{i}(k, \varepsilon, \zeta)= & u^{-1} v^{-1} \text {-coeff. of } \\
& \frac{1}{1-\alpha_{p}^{k}}\left(\alpha_{p}^{k(-\varepsilon r+\zeta \kappa)} e^{u(\zeta \rho-\varepsilon a)} e^{v(\zeta \tau-\varepsilon b)}-1\right)^{m+n+2} \\
& \left(\frac{e^{u}}{e^{u}-1}\right)^{m+1}\left(\frac{e^{v}}{e^{v}-1}\right)^{n+1} \frac{1}{1-\alpha_{p}^{-k \delta} e^{-\delta u} e^{\delta v}} \\
= & \left(\frac{1}{2 \pi i}\right)^{2} \oint_{C(u)} \oint_{C(v)} \frac{1}{1-\alpha_{p}^{k}}\left(\alpha_{p}^{k(-\varepsilon r+\zeta \kappa)} e^{u(\zeta \rho-\varepsilon a)} e^{v(\zeta \tau-\varepsilon b)}-1\right)^{m+n+2} \\
& \frac{\left(e^{u}\right)^{m}}{\left(e^{u}-1\right)^{m+1}} \frac{\left(e^{v}\right)^{n}}{\left(e^{v}-1\right)^{n+1}} \frac{1}{1-\alpha_{p}^{-k \delta} e^{-\delta u} e^{\delta v}} e^{u} e^{v} d v d u
\end{aligned}
$$

(where $C(u), C(v)$ are sufficiently small counterclockwise loops around the origin)

$$
\begin{aligned}
=\left(\frac{1}{2 \pi i}\right)^{2} \oint_{C(x)} \oint_{C(y)} & \frac{1}{1-\alpha_{p}^{k}}\left(\alpha_{p}^{k(-\varepsilon r+\zeta \kappa)}(1+x)^{\zeta \rho-\varepsilon a}(1+y)^{\zeta \tau-\varepsilon b}-1\right)^{m+n+2} \\
& \frac{(1+x)^{m}}{x^{m+1}} \frac{(1+y)^{n}}{y^{n+1}} \frac{1}{1-\alpha_{p}^{-k \delta}(1+x)^{-\delta}(1+y)^{\delta}} d y d x
\end{aligned}
$$

(where $C(x), C(y)$ are sufficiently small counterclockwise loops around the origin).
Here we set $\beta=\zeta \rho-\varepsilon a, \gamma=\zeta \tau-\varepsilon b$ and

$$
\begin{gathered}
\Phi=(1+x)^{-\delta}(1+y)^{\delta}-1=-\delta x+\delta y+Q(x, y), \\
\Psi=(1+x)^{\beta}(1+y)^{\gamma}-1=\beta x+\gamma y+R(x, y),
\end{gathered}
$$

where the total degrees of $Q(x, y), R(x, y)$ are greater than 1 . Then we have
$T_{i}(k, \varepsilon, \zeta)$
$=x^{m} y^{n}$-coeff. of
$\frac{1}{1-\alpha_{p}^{k}}\left(\alpha_{p}^{k(\zeta \kappa-\varepsilon r)}-1+\alpha_{p}^{k(\zeta \kappa-\varepsilon r)} \Psi\right)^{m+n+2}(1+x)^{m}(1+y)^{n}\left(1-\alpha_{p}^{-k \delta}-\alpha_{p}^{-k \delta} \Phi\right)^{-1}$
$=x^{m} y^{n}$-coeff. of

$$
\begin{aligned}
\frac{1}{1-\alpha_{p}^{k}} & \sum_{s=0}^{m+n}\binom{m+n+2}{s}\left(\alpha_{p}^{k(\zeta \kappa-\varepsilon r)}-1\right)^{m+n+2-s} \alpha_{p}^{k s(\zeta \kappa-\varepsilon r)} \Psi^{s}(1+x)^{m}(1+y)^{n} \\
& \sum_{j=0}^{m+n} \frac{\alpha_{p}^{-k j \delta} \Phi^{j}}{\left(1-\alpha_{p}^{-k \delta}\right)^{j+1}}
\end{aligned}
$$

$=x^{m} y^{n}$-coeff. of

$$
\sum_{s=0}^{m+n} \sum_{j=0}^{m+n-s}\binom{m+n+2}{s}(-1) \Lambda_{j}\left(\alpha_{p}^{k}\right)(1+x)^{m}(1+y)^{n} \Phi^{j} \Psi^{s}
$$

where $\Lambda_{j}(t)$ is an element of $\boldsymbol{Z}\left[t, t^{-1}\right]$ defined by

$$
\Lambda_{j}(t)=\frac{t^{s(\zeta \kappa-\varepsilon r)+\delta}\left(t^{\zeta \kappa-\varepsilon r}-1\right)^{m+n+2-s}}{(t-1)\left(t^{\delta}-1\right)^{j+1}}
$$

Here, since

$$
\sum_{k=1}^{p-1} \alpha_{p}^{k l} \equiv-1 \quad(\bmod p)
$$

for any integer l, we have

$$
\begin{aligned}
(-1) \sum_{k=1}^{p-1} \Lambda_{j}\left(\alpha_{p}^{k}\right) & \equiv \Lambda_{j}(1) \quad(\bmod p) \\
& =\left\{\begin{array}{cl}
0 & \text { if } j<m+n-s \\
\delta^{m+n-s+1}(\zeta \kappa-\varepsilon r)^{m+n+2-s} & \text { if } j=m+n-s
\end{array}\right.
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& \sum_{k=1}^{p-1} T_{i}(k, \varepsilon, \zeta) \\
& \quad \equiv x^{m} y^{n} \text {-coeff. of } \\
& \quad \sum_{s=0}^{m+n}\binom{m+n+2}{s} \delta^{m+n-s+1}(\zeta \kappa-\varepsilon r)^{m+n+2-s}(-\delta(x-y))^{m+n-s}(\beta x+\gamma y)^{s} \\
& =x^{m} y^{n} \text {-coeff. of } \quad(\bmod p) \\
& \sum_{s=0}^{m+n}\binom{m+n+2}{s} \delta^{m+n-s+1}(\zeta \kappa-\varepsilon r)^{m+n+2-s}(-\delta)^{m+n-s} \\
& \\
& \sum_{h=0}^{s}\binom{s}{h} \beta^{h} x^{h} \gamma^{s-h} y^{s-h} \sum_{q=0}^{m}\binom{m+n-s}{q} x^{q}(-y)^{m+n-s-q} \\
& = \\
& \sum_{s=0}^{m+n} \sum_{q=0}^{m}\binom{m+n+2}{s}\binom{s}{m-q}\binom{m+n-s}{q}(-1)^{q} \\
& \delta(\kappa \zeta-r \varepsilon)^{m+n+2-s}(\rho \zeta-a \varepsilon)^{m-q}(\tau \zeta-b \varepsilon)^{s-m+q}
\end{aligned}
$$

and hence it follows that

$$
\begin{aligned}
& S_{\varepsilon}(\zeta) \equiv \frac{1}{p} \sum_{s=0}^{m+n} \sum_{q=0}^{m}\binom{m+n+2}{s}\binom{s}{m-q}\binom{m+n-s}{q}(-1)^{q} \\
& \binom{(-1)^{m+n+s+1}(\mu \zeta-\varepsilon)^{m+n+2-s}((\lambda-\nu) \zeta-m \varepsilon)^{m-q}(\mu \zeta-(n+2) \varepsilon)^{s-m+q}}{+((-\mu+\nu) \zeta-\varepsilon)^{m+n+2-s}(\lambda \zeta-(m+2) \varepsilon)^{m-q}((\mu-\nu) \zeta-n \varepsilon)^{s-m+q}}
\end{aligned}
$$

$(\bmod \boldsymbol{Z})$

$$
=\frac{1}{p} g(\lambda, \mu, \nu) \zeta^{m+n+2}-\varepsilon \frac{1}{p} h(\lambda, \mu, v) \zeta^{m+n+1}+\varphi(\zeta),
$$

where the degree of $\varphi(\zeta)$ is less than $m+n+1$.
Here for $f(x)=(\sinh x)^{k}$ we have

$$
f(x)=\frac{1}{2^{k}} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} e^{(k-2 i) x}, \quad f(x)=x^{k}+\frac{k}{6} x^{k+2}+\text { higher order terms }
$$

and hence it follows that

$$
2^{k} f^{(l)}(0)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-2 i)^{l}=\left\{\begin{array}{cl}
0 & \text { if } 0 \leq l<k \text { or } l=k+1 \\
2^{k} k! & \text { if } l=k
\end{array}\right.
$$

Therefore it follows from (3) that

$$
\begin{aligned}
& \lambda \mu \nu F_{L}\left(g_{p}\right) \\
& =\quad(m+n+2) \lambda \mu \nu \\
& \quad \sum_{i=0}^{m+n+1}(-1)^{i}\binom{m+n+1}{i}\left(S_{-1}(m+n+1-2 i)-S_{+1}(m+n+1-2 i)\right) \\
& \quad-(m(m+2) \mu \nu+n(n+2) \lambda \nu+2 \lambda \mu) \sum_{i=0}^{m+n+2}(-1)^{i}\binom{m+n+2}{i} S_{0}(m+n+2-2 i) \\
& \equiv \frac{2^{m+n+2}(m+n+2)!}{p} F(\lambda, \mu, \nu)(\bmod \boldsymbol{Z}) .
\end{aligned}
$$

Hence, for any odd prime number p, it follows from Theorem 1.2 that

$$
\begin{aligned}
\frac{1}{p} A(m, n) \lambda \mu \nu f_{\Omega(\lambda, \mu, \nu)}(X) & =A(m, n) \lambda \mu \nu f_{\Omega(\lambda, \mu, \nu)}\left(X_{p}\right) \\
& \equiv \frac{1}{p} 2^{m+n+2}(m+n+2)!F(\lambda, \mu, \nu) \quad(\bmod \boldsymbol{Z})
\end{aligned}
$$

where $\Omega(\lambda, \mu, \nu)=\lambda \tilde{u}+\mu \tilde{v}+\nu \tilde{w}$, which implies that

$$
\begin{equation*}
A(m, n) \lambda \mu \nu f_{\Omega(\lambda, \mu, \nu)}(X)=2^{m+n+2}(m+n+2)!F(\lambda, \mu, \nu) \tag{5}
\end{equation*}
$$

Now, since $\triangle_{k \omega}=k^{-1} \Delta_{\omega}$, it follows that $x y z f_{\Omega(x, y, z)}(X)$ is a homogeneous function in x, y, z of degree $m+n+4$ as well as $F(x, y, z)$. Moreover, since the set

$$
\left\{(x, y, z) \in \boldsymbol{R}^{3} ;(r x, r y, r z) \in Z^{3} \text { for some } r>0\right\}
$$

is dense in \boldsymbol{R}^{3}, the equality (5) implies that for any $(x, y, z) \in \boldsymbol{R}^{3}$

$$
A(m, n) x y z f_{\Omega(x, y, z)}(X)=2^{m+n+2}(m+n+2)!F(x, y, z)
$$

The result in Theorem 2.2 follows immediately from the equality above.
REMARK 3.2. Let $G=(U(m+1) \times U(n+1)) / U(1)$ be the maximal compact subgroup of $\operatorname{Aut}(M)$ and $q=\left[\left(z_{0}, \ldots, z_{m}\right),\left(w_{0}, \ldots, w_{n}\right),\left(\eta_{0}, \eta_{1}\right)\right]$ a point in M. Then we can see that the real dimension of the isotropy subgroup of G at q is equal to $m^{2}+n^{2}$ if $\eta_{0} \eta_{1} \neq$ 0 and is equal to $m^{2}+n^{2}+1$ if $\eta_{0} \eta_{1}=0$, which implies that the real codimension of the principal orbit of G in M is one. Hence it follows from Corollary 1.1 in [8] that each Kähler class of M contains an extremal metric, and therefore it follows from [2, Theorem 4] (see also [5, Theorem 3.3.1]) that a Kähler class contains a Kähler metric of constant scalar curvature if the character for the Kähler class vanishes. Hence a Kähler class $\Omega=x \tilde{u}+y \tilde{v}+z \tilde{w}$ contains a Kähler metric of constant scalar curvature if and only if $F(x, y, z)=0$. Moreover we can see that the $\operatorname{Aut}(M)$-orbit of q with $\eta_{0} \eta_{1} \neq 0$ coincides with the open subset $M \backslash\left(N_{1} \cup N_{2}\right)$ of M. Hence M is an almost-homogeneous manifold (see [9]) and therefore it follows from [8, Theorem 4] that M admits a Kähler metric of constant scalar curvature.
4. Examples. In this section, we consider the cases $1 \leq m<n \leq 10$. Since $F(x, y, z)$ is a homogeneous polynomial, $F(x, y, z)$ for $x, y, z>0$ is determined by its restriction to the face f of a regular octahedron defined by

$$
f=\{(x, y, z) ; x+y+z=1, x, y, z>0\} .
$$

Let C be a point in f defined by

$$
C=\frac{1}{m+n+6}(m+2, n+2,2)
$$

and set $A=(1,0,0), B=(0,1,0)$. Then, since C is homothetic to $c_{1}(M)>0, C$ is a Kähler class and hence the interior of the triangle ABC is contained in the set of Kähler classes of M (see Remark 2.1). Let l_{1}, l_{2} be lines in f defined by

$$
\begin{aligned}
& l_{1}(t)=\left(x_{1}(t), y_{1}(t), z_{1}(t)\right)=(1-t) A+t C \\
& l_{2}(t)=\left(x_{2}(t), y_{2}(t), z_{2}(t)\right)=(1-t)\left(\frac{1}{2}, \frac{1}{2}, 0\right)+t(0,0,1)
\end{aligned}
$$

for $0<t<1$. Then we have

$$
\begin{aligned}
& \lim _{t \rightarrow+0} F\left(l_{1}(t)\right) / y_{1}(t)^{n+3} \\
& =\lim _{t \rightarrow+0} \sum_{s=0}^{m+n} \sum_{q=0}^{m}\binom{m+n+2}{s}\binom{s}{m-q}\binom{m+n-s}{q}(-1)^{m+n+s+q+1} t^{q} \\
& 2(n+2)^{-n-2}(m+n+6)^{-q} \\
& \left\{\left((n+1) s+(n+2) q-m-m n-2 n-n^{2}\right)(n+2)^{n+1+q}\right. \\
& \left.-\left((n+1) s+n q-m-m n-2 n-n^{2}-2\right) n^{n+1+q}\right\} \\
& =\sum_{s=0}^{m+n}\binom{m+n+2}{s}\binom{s}{m}(-1)^{m+n+s+1} 2(n+2)^{-n-2} \\
& \left\{\left((n+1) s-m-m n-2 n-n^{2}\right)(n+2)^{n+1}\right. \\
& \left.-\left((n+1) s-m-m n-2 n-n^{2}-2\right) n^{n+1}\right\}, \\
& \lim _{t \rightarrow+0} F\left(l_{2}(t)\right) / z_{2}(t)^{2} \\
& =\sum_{s=0}^{m+n} \sum_{q=0}^{m}\binom{m+n+2}{s}\binom{s}{m-q}\binom{m+n-s}{q}(-1)^{m+n+s+q+1} 2^{-m-n-2} \\
& \left\{2(n-m) q^{2}+\left(2(n+1) s+\left(m^{2}-4 m n-n^{2}-7 m-3 n-2\right)\right) q\right. \\
& \left.+\left(-m n+n^{2}-m+2 n+1\right) s+3 m^{2}+m^{2} n-n^{3}-m n-4 n^{2}-2 m-4 n\right\} \text {. }
\end{aligned}
$$

Direct computation using the equalities above shows that

$$
\lim _{t \rightarrow+0} F\left(l_{1}(t)\right) / y_{1}(t)^{n+3}<0, \quad \lim _{t \rightarrow+0} F\left(l_{2}(t)\right) / z_{2}(t)^{2}>0
$$

which imply that there exist points P_{1}, P_{2} in the interior of the triangle ABC such that $F\left(P_{1}\right)<0$ and $F\left(P_{2}\right)>0$. Therefore there exist infinitely many Kähler classes Ω such that f_{Ω} vanishes and hence that Ω contains a Kähler metric of constant scalar curvature (see Remark 3.2).

On the other hand, direct computation also shows that

$$
F(m+2, n+2,2) \neq 0
$$

which implies that $c_{1}(M)$ does not contain any Kähler metric of constant scalar curvature. This result shows that M does not admit any Kähler-Einstein metric. (See [3].)

References

[1] S. BANDO, An obstruction for Chern class forms to be harmonic, Kodai Math. J. 29 (2006), 337-345.
[2] E. Calabi, Extremal Kähler metrics II, Differential geometry and complex analysis, (I. Chavel and H. M. Farkas eds.), 95-114, Springer-Verlag, Berline-Heidelberg-New York, 1985.
[3] A. Futaki, An obstruction to the existence of Einstein-Kähler metrics, Invent. Math. 73 (1983), 437-443.
[4] A. Futaki, On compact Kähler manifold of constant scalar curvature, Proc. Japan Acad. Ser. A 59 (1983), 401-402.
[5] A. Futaki, Kähler-Einstein metrics and integral invariants, Lecture Notes in Math. 1314, Springer-Verlag, Berlin, 1988.
[6] A. FUTAKI AND S. MORITA, Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geom. 21 (1985), 135-142.
[7] A. Futaki and K. Tsuboi, Fixed point formula for characters of automorphism groups associated with Kähler classes, Math. Res. Lett. 8 (2001), 495-507.
[8] A. D. Hwang, On existence of Kähler metrics with constant scalar curvature, Osaka J. Math. 31 (1994), 561-595.
[9] A. T. HUCKLEbERRY and D. M. Snow, Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. Math. 19 (1982), 763-786.
[10] J. Kazdan and F. Warner, Prescribing curvatures, Proc. Sympos. Pure Math. 27 (1975), 309-319.
[11] S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[12] A. Lichnerowicz, Sur les transformations analytiques d'une variété Kählerienne compacte, 1959, Colloque Geom. Diff. Global (Bruxelles, 1958), 11-26, Centre Belge Rech. Math., Louvain.
[13] A. Lichnerowicz, Isométrie et transformations analytiques d'une variété Kählerienne compacte, Bull. Soc. Math. France 87 (1959), 427-437.
[14] Y. Matsushima, Sur la structure du groupe d'homéomorphismes d'une certaine variété Kaehlérienne, Nagoya Math. J. 11 (1957), 145-150.
[15] Y. NAKAGAWA, Bando-Calabi-Futaki character of compact toric manifolds, Tohoku Math. J. 53 (2001), 479490.
[16] Y. NAKAGAWA, The Bando-Calabi-Futaki character and its lifting to a group character, Math. Ann. 325 (2003), 31-53.
[17] G. Tian, Kähler-Einstein metrics on algebraic manifolds, in: Proc. C.I.M.E. conference on Transcendental methods in algebraic geometry, Lecture Notes in Math. 1646, Springer-Verlag, Berlin-Heidelberg-New York, 1996, 143-185.

Tokyo University of Marine Science and Technology
4-5-7 Kounan, Minato-ku
TOKYO 108-8477
Japan
E-mail address: tsubois@kaiyodai.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 53C25; Secondary 53C55.
 Key words and phrases. Kähler manifold, constant scalar curvature, Bando-Calabi-Futaki character.
 The author is deeply grateful to the referee for valuable information.

