
Tohoku Math. J.
61 (2009), 241–252

ON THE EXISTENCE OF KÄHLER METRICS
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Abstract. For certain compact complex Fano manifolds M with reductive Lie algebras
of holomorphic vector fields, we determine the analytic subvariety of the second cohomology
group of M consisting of Kähler classes whose Bando-Calabi-Futaki character vanishes. Then
a Kähler class contains a Kähler metric of constant scalar curvature if and only if the Kähler
class is contained in the analytic subvariety. On examination of the analytic subvariety, it is
shown that M admits infinitely many nonhomothetic Kähler classes containing Kähler metrics
of constant scalar curvature but does not admit any Kähler-Einstein metric.

1. Introduction. The question of whether a manifold admits a Riemannian metric
of constant scalar curvature or not is a classical problem. For any real closed manifold M

of dimension greater than two, Kazdan and Warner [10] proved that M admits at least a
Riemannian metric of negative constant scalar curvature. On the other hand, there exists
an obstruction to the existence of Kähler metrics of constant scalar curvature. Indeed, let
M be an m-dimensional compact complex manifold. Denote by Aut(M) the complex Lie
group consisting of all biholomorphic automorphisms of M and by h(M) its Lie algebra
consisting of all holomorphic vector fields on M . The Lie algebra h(M) is called reductive if
h(M) is the complexification of the Lie algebra of a compact subgroup of Aut(M). In [14],
Matsushima proved that h(M) is the complexification of the real Lie algebra consisting of all
infinitesimal isometries of M , and hence h(M) is reductive, if M admits a Kähler-Einstein
metric. Generalizing the result of Matsushima, Lichnerowicz proved in [12], [13] that h(M)

must satisfy a certain condition if M admits a Kähler metric of constant scalar curvature. (For
details see also [11, Theorem 6.1].) When M is a compact simply connected Kähler manifold,
the condition of Lichnerowicz is equivalent to that of Matsushima. For example, the one point
blow-up of CP 2 does not satisfy the condition (see [5, p. 100]) and hence does not admit any
Kähler metric of constant scalar curvature. Thus the problem to solve is whether M with
reductive h(M) admits a Kähler metric of constant scalar curvature or not.

Generalizing the result of Futaki [3], Bando [1], Calabi [2] and Futaki [4] give an ob-
struction to the existence of a Kähler metric of constant scalar curvature whose Kähler form
is contained in some particular Kähler class. Let Ω be a Kähler class, ω ∈ Ω a Kähler form
and sω the scalar curvature of ω. Let c1(M) ∈ H 2(M; Z) be the first Chern class of M and
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set

µΩ = (Ωm−1 ∪ c1(M))[M]
Ωm[M] ,

where [M] denotes the fundamental cycle of M . Then there exists uniquely a smooth function
hω up to constant such that

sω − mµΩ = �ωhω ,

and the integral

fΩ(X) =
∫

M

Xhωωm

is defined for X ∈ h(M). This integral fΩ(X) is independent of the choice of Kähler forms
ω ∈ Ω . Moreover, fΩ : h(M) → C is a Lie algebra character and fΩ vanishes if Ω contains
a Kähler metric of constant scalar curvature. The character fΩ is called the Bando-Calabi-
Futaki character or the Futaki invariant.

When Ω is a Hodge class and a holomorphic line bundle L with c1(L) = Ω admits
a lifting of the Ω-preserving action of a subgroup G of Aut(M), in [16] Nakagawa gives a
lifting of the Lie algebra character fΩ to a group character G → C/(Z + µΩZ) by using the
results in [17] and [6].

Assume that there exists an inclusion ι : U(1) → Aut(M) and that Ω is equal to the first
Chern class of a holomorphic U(1)-line bundle L over M . For any integer p ≥ 2 let Y denote
the element 2π

√−1 of the Lie algebra of U(1) and set

X = ι∗Y ∈ h(M) , Xp = 1

p
X ∈ h(M) , gp = exp Xp ∈ Aut(M) .(1)

Then the order of gp is p. We assume that the next assumption is satisfied. (See Assumption
2.2 and Lemma 2.3 in [7].)

ASSUMPTION 1.1. Assume that the fixed point set of gk
p for 1 ≤ k ≤ p − 1 is in-

dependent of k and that the connected components N1, . . . , Nn of the fixed point set, which
are compact complex submanifolds of M , have cell decompositions with no codimension one
cells.

Let αp denote the primitive p-th root of unity defined by

αp = e2π
√−1/p

hereafter. Suppose that gk
p acts on K−1

M |Ni via multiplication by α
kri
p and acts on L|Ni via

multiplication by α
kκi
p . Suppose moreover that the normal bundle ν(Ni,M) is decomposed

into the direct sum of subbundles

ν(Ni,M) =
⊕

j

ν(Ni, θj ) ,
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where gk
p acts on ν(Ni, θj ) via multiplication by e

√−1θj . Then a cohomology class
Φ(ν(Ni,M)) is defined by

Φ(ν(Ni,M)) =
∏
j

Rj∏
k=1

1

1 − e−xk−
√−1θj

∈ H ∗(Ni; C) (Rj = rankC(ν(Ni, θj ))) ,

where
∏

k(1 + xk) is equal to the total Chern class of ν(Ni, θj ). For 1 ≤ k ≤ p − 1,
ε = −1, 0, +1 and an integer ζ , we define numbers Ti(k, ε, ζ ) and Sε(ζ ) by

Ti(k, ε, ζ )= 1

1 − αk
p

(αk(−εri+ζκi )
p e−εc1(K

−1
M |Ni

)+ζc1(L|Ni
)−1)m+1Td(T Ni)Φ(ν(Ni,M))[Ni] ,

Sε(ζ ) = 1

p

n∑
i=1

p−1∑
k=1

Ti(k, ε, ζ ) ,

where Td(T Ni) is the Todd class of T Ni . Then FL(gp) is defined by

FL(gp) = (m + 1)

m∑
i=0

(−1)i
(

m

i

)
(S−1(m − 2i) − S+1(m − 2i))

− mµΩ

m+1∑
i=0

(−1)i
(

m + 1
i

)
S0(m + 1 − 2i) .

The lifting of the character fΩ given by Nakagawa is expressed by a Simons character
of a certain foliation. In [7], we gives a localization formula for the Simons character under
Assumption 1.1. The next theorem follows from [16, Theorem 4.7] and [7, Theorem 2.5].

THEOREM 1.2. There exists a non-zero constant A(m, n) determined only by m, n

such that FL(gp) ≡ A(m, n)fΩ(Xp) (mod Z + µΩZ).

2. Main result. For m, n ≥ 1, let Hm, Hn be the hyperplane bundles over the com-
plex projective spaces CP m, CP n respectively, and

π1 : Hm → CP m , π2 : Hn → CP n

their projections. Let E = π∗
1 Hm ⊕ π∗

2 Hn be the rank 2 vector bundle over CP m × CP n.
Let M be the total space of the projective bundle of E and JM the tautological bundle of
M . Then M is an (m + n + 1)-dimensional simply-connected compact Kähler manifold and
the same argument as in [3, Proposition 3.1] shows that M is a Fano manifold (see also [5,
Proposition 4.2.1]) and the identity component of Aut(M) coincides with the factor group
(GL(m + 1,C) × GL(n + 1,C))/C∗, where C∗ is the center of GL(m + n + 2,C). Hence
the Lie algebra h(M) is isomorphic to

{(A,B) ∈ gl(m + 1,C) ⊕ gl(n + 1,C) ; Tr A + Tr B = 0} ,

which satisfies the condition of Matsushima.
Applying the Gysin exact sequence to the fibration

F = CP 1 → M
p→ B = CP m × CP n ,
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we have the split exact sequence

H−1(B; Z) = 0 → H 2(B; Z) � H 2(CP m; Z) ⊕ H 2(CP n; Z)

p∗
→ H 2(M; Z)

f→ H 0(B; Z) � Z → H 3(B; Z) = 0 ,

where f is the integration along the fiber. Then Hm, Hn are naturally regarded as vector
bundles over CP m × CP n, and since f (c1(J

∗
M)) = 1, it follows that

H 2(M; Z) = {λũ + µṽ + νw̃ ; λ, µ, ν ∈ Z} � Z3 ,

where ũ = c1(p
∗Hm), ṽ = c1(p

∗Hn) and w̃ = c1(J
∗
M).

REMARK 2.1. Let û, v̂ be the first Chern forms of Hm, Hn, respectively. Then xû+yv̂

is a Kähler form on CP m × CP n for x, y > 0, and hence xũ + yṽ + zw̃ is a Kähler class
of M for x, y > 0 and sufficiently small z > 0. Therefore the set of Kähler classes of M is
contained in the subset {xũ + yṽ + zw̃ ; x, y, z > 0} of H 2(M; R) � R3.

Now, let F(x, y, z) be an integral homogeneous polynomial of degree m+n+ 4 defined
by

F(x, y, z) = −(m(m + 2)yz + n(n + 2)xz + 2xy)g(x, y, z) + xyz h(x, y, z) ,

where

g(x, y, z) =
m+n∑
s=0

m∑
q=0

(
m + n + 2

s

)(
s

m − q

)(
m + n − s

q

)
(−1)m+n+s+q+1

((x − z)m−qyn+q+2 − xm−q(y − z)n+q+2) ,

h(x, y, z) =
m+n∑
s=0

m∑
q=0

(
m + n + 2

s

)(
s

m − q

)(
m + n − s

q

)
(−1)m+n+s+q+1




{(m + n + 2 − s) + (n + 2)(s − m + q)}(x − z)m−qyn+q+1

+ m(m − q)(x − z)m−q−1yn+q+2

+{(m + n + 2 − s) − n(s − m + q)}xm−q(y − z)n+q+1

− (m + 2)(m − q)xm−q−1(y − z)n+q+2


 .

For example, if (m, n) = (1, 2), we have

F(x, y, z) = 120x2y3z2 − 420x2y2z3 + 390x2yz4 − 120x2z5 + 60xy4z2 − 90xy3z3

+ 150xy2z4 − 99xyz5 + 24xz6 − 90y4z3 + 90y3z4 − 45y2z5 + 9yz6 .

Our main result is the next theorem.

THEOREM 2.2. The character fΩ for Ω = xũ + yṽ + zw̃ vanishes if and only if
F(x, y, z) = 0. Hence the open subset of H 2(M; R) � R3 defined by F(x, y, z) �= 0 does
not contain any Kähler metric of constant scalar curvature. (See Remark 3.2.)

REMARK 2.3. The group Aut(M) contains an (m+n+1)-dimensional algebraic torus.
Hence M is toric and the character can be calculated also by the formula of Nakagawa [15].
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3. Proof of the Theorem. Let q ∈ M , qm ∈ p∗Hm, qn ∈ p∗Hn and qJ ∈ J ∗
M be

points. Then the point q and the set (qm, qn, qJ ) are expressed as follows:

q = [(z0, . . . , zm), (w0, . . . , wn), (η0, η1)]
= [(az0, . . . , azm), (bw0, . . . , bwn), (caη0, cbη1)] ,

(qm, qn, qJ ) = [[(z0, . . . , zm), (w0, . . . , wn), (η0, η1)], hm, hn, ξ ]
= [[(az0, . . . , azm), (bw0, . . . , bwn), (caη0, cbη1)], ahm, bhn, cξ ]

for a, b, c ∈ C∗.

REMARK 3.1. Since fΩ vanishes on [h(M), h(M)] and h(M)/[h(M), h(M)] is rep-
resented by the vector field along the fiber CP 1, the character fΩ vanishes if and only if
fΩ(X) = 0 for the vector field X along the fiber.

Now we assume that p is an odd prime number hereafter. Then an action of Zp = 〈gp〉 ⊂
(GL(m + 1,C) × GL(n + 1,C))/C∗ on M is defined by

gp · [(z0, . . . , zm), (w0, . . . , wn), (η0, η1)]
= [(z0, . . . , zm), (αpw0, . . . , αpwn), (η0, η1)] .

(2)

This action naturally extends to an inclusion ι : U(1) → Aut(M), which defines vector fields
X, Xp ∈ h(M) along the fiber as in (1) and we have gp = exp(Xp). The fixed point set of gk

p

has the following two connected components

N1 = [(z0, . . . , zm), (w0, . . . , wn), (1, 0)] , N2 = [(z0, . . . , zm), (w0, . . . , wn), (0, 1)]
for 1 ≤ k ≤ p − 1, which are isomorphic to CP m ×CP n and have cell decompositions with
no codimension one cells. Let ν(Ni,M) be the normal bundle of Ni (i = 1, 2) in M . Then,
since

[(z0, . . . , zm), (w0, . . . , wn), (1, τ )] = [(az0, . . . , azm), (bw0, . . . , bwn), (1, a−1bτ)] ,

gp · [(z0, . . . , zm), (w0, . . . , wn), (1, τ )] = [(z0, . . . , zm), (w0, . . . , wn), (1, α−1
p τ)] ,

we have
ν(N1,M) � H−1

m ⊗ Hn , gp|ν(N1,M) = gp|(K−1
M |N1) = α−1

p .

The same argument shows that

ν(N2,M) � Hm ⊗ H−1
n , gp|ν(N2,M) = gp|(K−1

M |N2) = αp .

Hence it follows from the equality c1(K
−1
M |Ni ) = c1(M)|Ni = c1(T Ni) + c1(ν(Ni,M)) that

c1(ν(N1,M)) = −u + v , c1(ν(N2,M)) = u − v ,

c1(K
−1
M |N1) = mu + (n + 2)v , c1(K

−1
M |N2) = (m + 2)u + nv ,

where u = c1(Hm), v = c1(Hn). It is obvious that ũ|Ni = u, ṽ|Ni = v for i = 1, 2. Also,
since

[[(z0, . . . , zm), (w0, . . . , wn), (1, 0)], ξ ]
= [[(az0, . . . , azm), (bw0, . . . , bwn), (1, 0)], a−1ξ ] ,
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it follows that w̃|N1 = −u. The same argument shows that w̃|N2 = −v. Using the equalities
above, we see that

c1(M) = (m + 2)ũ + (n + 2)ṽ + 2w̃ ,

and hence for Ω = xũ + yṽ + zw̃ it follows that

µΩ = m(m + 2)yz + n(n + 2)xz + 2xy

(m + n + 1)xyz
.(3)

Let λ, µ, ν be integers. Then Ω = λũ + µṽ + νw̃ coincides with the first Chern class
of the complex line bundle L defined by

L = p∗Hλ
m ⊗ p∗Hµ

n ⊗ (J ∗
M)ν .

The action (2) lifts to actions on p∗Hm, p∗Hn, J ∗
M as follows:

gp · [[(z0, . . . , zm), (w0, . . . , wn), (η0, η1)], hm, hn, ξ ]
= [[(z0, . . . , zm), (αpw0, . . . , αpwn), (η0, η1)], hm, hn, ξ ] .

This action defines a lift of the action (2) to L and we can show that

gp|(p∗Hm|Ni ) = 1 , gp|(p∗Hn|Ni ) = α−1
p (i = 1, 2)

gp|(J ∗
M |N1) = 1 , gp|(J ∗

M |N2) = αp ,

and hence that

gp|(L|N1) = α−µ
p , gp|(L|N2) = α−µ+ν

p .(4)

Using the results above, we have

Ti(k, ε, ζ ) = umvn-coeff. of
1

1 − αk
p

(
αk(−εr+ζκ)

p e−ε(au+bv)+ζ(ρu+τv) − 1
)m+n+2

(
u

1 − e−u

)m+1(
v

1 − e−v

)n+1 1

1 − α−kδ
p e−δ(u−v)

,

where r, κ, a, b, ρ, τ, δ are numbers determined by i as follows:

r κ a b ρ τ δ

i = 1 −1 −µ m n + 2 λ − ν µ −1
i = 2 1 −µ + ν m + 2 n λ µ − ν 1
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Then, using the substitution x = eu − 1, y = ev − 1, we have

Ti(k, ε, ζ ) = u−1v−1-coeff. of
1

1 − αk
p

(αk(−εr+ζκ)
p eu(ζρ−εa)ev(ζτ−εb) − 1)m+n+2

(
eu

eu − 1

)m+1(
ev

ev − 1

)n+1 1

1 − α−kδ
p e−δueδv

=
(

1

2πi

)2 ∮
C(u)

∮
C(v)

1

1 − αk
p

(αk(−εr+ζκ)
p eu(ζρ−εa)ev(ζτ−εb) − 1)m+n+2

(eu)m

(eu − 1)m+1

(ev)n

(ev − 1)n+1

1

1 − α−kδ
p e−δueδv

euevdvdu

(where C(u), C(v) are sufficiently small counterclockwise loops around the origin)

=
(

1

2πi

)2 ∮
C(x)

∮
C(y)

1

1 − αk
p

(αk(−εr+ζκ)
p (1 + x)ζρ−εa(1 + y)ζτ−εb − 1)m+n+2

(1 + x)m

xm+1

(1 + y)n

yn+1

1

1 − α−kδ
p (1 + x)−δ(1 + y)δ

dydx

(where C(x), C(y) are sufficiently small counterclockwise loops around the origin).

Here we set β = ζρ − εa, γ = ζ τ − εb and

Φ = (1 + x)−δ(1 + y)δ − 1 = −δx + δy + Q(x, y) ,

Ψ = (1 + x)β(1 + y)γ − 1 = βx + γy + R(x, y) ,

where the total degrees of Q(x, y), R(x, y) are greater than 1. Then we have

Ti(k, ε, ζ )

= xmyn-coeff. of
1

1 − αk
p

(αk(ζκ−εr)
p − 1 + αk(ζκ−εr)

p Ψ )m+n+2(1 + x)m(1 + y)n(1 − α−kδ
p − α−kδ

p Φ)−1

= xmyn-coeff. of

1

1 − αk
p

m+n∑
s=0

(
m + n + 2

s

)
(αk(ζκ−εr)

p − 1)m+n+2−sαks(ζκ−εr)
p Ψ s(1 + x)m(1 + y)n

m+n∑
j=0

α
−kjδ
p Φj

(1 − α−kδ
p )j+1

= xmyn-coeff. of
m+n∑
s=0

m+n−s∑
j=0

(
m + n + 2

s

)
(−1)Λj(α

k
p)(1 + x)m(1 + y)nΦjΨ s ,
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where Λj(t) is an element of Z[t, t−1] defined by

Λj(t) = ts(ζκ−εr)+δ(tζκ−εr − 1)m+n+2−s

(t − 1)(tδ − 1)j+1 .

Here, since

p−1∑
k=1

αkl
p ≡ −1 (mod p)

for any integer l, we have

(−1)

p−1∑
k=1

Λj(α
k
p) ≡ Λj(1) (mod p)

=
{

0 if j < m + n − s

δm+n−s+1(ζ κ − εr)m+n+2−s if j = m + n − s
.

Therefore we have

p−1∑
k=1

Ti(k, ε, ζ )

≡ xmyn-coeff. of
m+n∑
s=0

(
m + n + 2

s

)
δm+n−s+1(ζ κ − εr)m+n+2−s (−δ(x − y))m+n−s (βx + γy)s

(mod p)

= xmyn-coeff. of
m+n∑
s=0

(
m + n + 2

s

)
δm+n−s+1(ζ κ − εr)m+n+2−s (−δ)m+n−s

s∑
h=0

(
s

h

)
βhxhγ s−hys−h

m∑
q=0

(
m + n − s

q

)
xq(−y)m+n−s−q

=
m+n∑
s=0

m∑
q=0

(
m + n + 2

s

)(
s

m − q

)(
m + n − s

q

)
(−1)q

δ(κζ − rε)m+n+2−s (ρζ − aε)m−q(τζ − bε)s−m+q ,

and hence it follows that
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Sε(ζ ) ≡ 1

p

m+n∑
s=0

m∑
q=0

(
m + n + 2

s

)(
s

m − q

)(
m + n − s

q

)
(−1)q

(
(−1)m+n+s+1(µζ − ε)m+n+2−s ((λ − ν)ζ − mε)m−q (µζ − (n + 2)ε)s−m+q

+((−µ + ν)ζ − ε)m+n+2−s (λζ − (m + 2)ε)m−q((µ − ν)ζ − nε)s−m+q

)

(mod Z)

= 1

p
g(λ, µ, ν)ζm+n+2 − ε

1

p
h(λ,µ, ν)ζm+n+1 + ϕ(ζ ) ,

where the degree of ϕ(ζ ) is less than m + n + 1.
Here for f (x) = (sinh x)k we have

f (x) = 1

2k

k∑
i=0

(−1)i
(

k

i

)
e(k−2i)x , f (x) = xk + k

6
xk+2 + higher order terms

and hence it follows that

2kf (l)(0) =
k∑

i=0

(−1)i
(

k

i

)
(k − 2i)l =

{
0 if 0 ≤ l < k or l = k + 1

2kk! if l = k
.

Therefore it follows from (3) that

λµνFL(gp)

= (m + n + 2)λµν

m+n+1∑
i=0

(−1)i
(

m + n + 1
i

)
(S−1(m + n + 1 − 2i) − S+1(m + n + 1 − 2i))

− (m(m + 2)µν + n(n + 2)λν + 2λµ)

m+n+2∑
i=0

(−1)i
(

m + n + 2
i

)
S0(m + n + 2 − 2i)

≡ 2m+n+2(m + n + 2)!
p

F(λ,µ, ν) (mod Z) .

Hence, for any odd prime number p, it follows from Theorem 1.2 that

1

p
A(m, n)λµνfΩ(λ,µ,ν)(X) = A(m, n)λµνfΩ(λ,µ,ν)(Xp)

≡ 1

p
2m+n+2(m + n + 2)!F(λ,µ, ν) (mod Z) ,

where Ω(λ,µ, ν) = λũ + µṽ + νw̃, which implies that

A(m, n)λµνfΩ(λ,µ,ν)(X) = 2m+n+2(m + n + 2)!F(λ,µ, ν) .(5)

Now, since �kω = k−1�ω, it follows that xyzfΩ(x,y,z)(X) is a homogeneous function in
x, y, z of degree m + n + 4 as well as F(x, y, z). Moreover, since the set

{(x, y, z) ∈ R3 ; (rx, ry, rz) ∈ Z3 for some r > 0}
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is dense in R3, the equality (5) implies that for any (x, y, z) ∈ R3

A(m, n)xyzfΩ(x,y,z)(X) = 2m+n+2(m + n + 2)!F(x, y, z) .

The result in Theorem 2.2 follows immediately from the equality above.

REMARK 3.2. Let G = (U(m + 1) × U(n + 1))/U(1) be the maximal compact
subgroup of Aut(M) and q = [(z0, . . . , zm), (w0, . . . , wn), (η0, η1)] a point in M . Then we
can see that the real dimension of the isotropy subgroup of G at q is equal to m2+n2 if η0η1 �=
0 and is equal to m2 + n2 + 1 if η0η1 = 0, which implies that the real codimension of the
principal orbit of G in M is one. Hence it follows from Corollary 1.1 in [8] that each Kähler
class of M contains an extremal metric, and therefore it follows from [2, Theorem 4] (see also
[5, Theorem 3.3.1]) that a Kähler class contains a Kähler metric of constant scalar curvature if
the character for the Kähler class vanishes. Hence a Kähler class Ω = xũ+yṽ+ zw̃ contains
a Kähler metric of constant scalar curvature if and only if F(x, y, z) = 0. Moreover we can
see that the Aut(M)-orbit of q with η0η1 �= 0 coincides with the open subset M \ (N1 ∪ N2)

of M . Hence M is an almost-homogeneous manifold (see [9]) and therefore it follows from
[8, Theorem 4] that M admits a Kähler metric of constant scalar curvature.

4. Examples. In this section, we consider the cases 1 ≤ m < n ≤ 10. Since
F(x, y, z) is a homogeneous polynomial, F(x, y, z) for x, y, z > 0 is determined by its
restriction to the face f of a regular octahedron defined by

f = {(x, y, z) ; x + y + z = 1 , x, y, z > 0} .

Let C be a point in f defined by

C = 1

m + n + 6
(m + 2, n + 2, 2)

and set A = (1, 0, 0), B = (0, 1, 0). Then, since C is homothetic to c1(M) > 0, C is a Kähler
class and hence the interior of the triangle ABC is contained in the set of Kähler classes of M

(see Remark 2.1). Let l1, l2 be lines in f defined by

l1(t) = (x1(t), y1(t), z1(t)) = (1 − t)A + tC ,

l2(t) = (x2(t), y2(t), z2(t)) = (1 − t)

(
1

2
,

1

2
, 0

)
+ t (0, 0, 1)

for 0 < t < 1. Then we have
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lim
t→+0

F(l1(t))/y1(t)
n+3

= lim
t→+0

m+n∑
s=0

m∑
q=0

(
m + n + 2

s

)(
s

m − q

)(
m + n − s

q

)
(−1)m+n+s+q+1tq

2(n + 2)−n−2(m + n + 6)−q

{((n + 1)s + (n + 2)q − m − mn − 2n − n2)(n + 2)n+1+q

− ((n + 1)s + nq − m − mn − 2n − n2 − 2)nn+1+q }

=
m+n∑
s=0

(
m + n + 2

s

)(
s

m

)
(−1)m+n+s+12(n + 2)−n−2

{((n + 1)s − m − mn − 2n − n2)(n + 2)n+1

− ((n + 1)s − m − mn − 2n − n2 − 2)nn+1} ,

lim
t→+0

F(l2(t))/z2(t)
2

=
m+n∑
s=0

m∑
q=0

(
m + n + 2

s

)(
s

m − q

)(
m + n − s

q

)
(−1)m+n+s+q+12−m−n−2

{2(n − m)q2 + (2(n + 1)s + (m2 − 4mn − n2 − 7m − 3n − 2))q

+ (−mn + n2 − m + 2n + 1)s + 3m2 + m2n − n3 − mn − 4n2 − 2m − 4n} .

Direct computation using the equalities above shows that

lim
t→+0

F(l1(t))/y1(t)
n+3 < 0 , lim

t→+0
F(l2(t))/z2(t)

2 > 0 ,

which imply that there exist points P1, P2 in the interior of the triangle ABC such that
F(P1) < 0 and F(P2) > 0. Therefore there exist infinitely many Kähler classes Ω such
that fΩ vanishes and hence that Ω contains a Kähler metric of constant scalar curvature (see
Remark 3.2).

On the other hand, direct computation also shows that

F(m + 2, n + 2, 2) �= 0 ,

which implies that c1(M) does not contain any Kähler metric of constant scalar curvature.
This result shows that M does not admit any Kähler-Einstein metric. (See [3].)
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