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ON THE EXISTENCE OF LEAST FAVORABLE DISTRIBUTIONSt 

BY E. L. LEHMANN 

Stanford University and University of California, Berkeley 

1. Summary. Sufficient conditions for the existence of a least favorable dis

tribution were given by Wald in his work on general decision theory. It is shown 

here that for problems of hypothesis testing and more generally for multiple 

decision problems involving a finite number of decisions, the result holds under 

a much weaker restriction than Wald's assumption of a compact parameter 

space. 

2. Introduction. In his general theory of decision functions W ald has given 

conditions under which there exists a least favorable distribution for Nature. 

One of these, which is rather restrictive and not required for many parts of the 

theory, is condition (3.7) of [1], a compactness assumption on the parameter 

space. This condition can, of course, in general not be dispensed with; there are 

many examples of simple statistical decision problems for which a least favorable 

distribution does not exist. However, as we shall show below, for certain special 

classes of problems the compactness assumption is not required. 

The following is a typical example. Suppose that 8 is a location parameter 

and that we are interested in testing H: 8 ~ 80 against K: 8 ~ 81 . If a least 

favorable distribution does not exist this means essentially that positive proba

bility is assigned to at least one of the points 8 = ± oo • But it is intuitively 

clear that by doing this, Nature would be playing into the hands of the statisti

cian, since for sufficiently large I 8 I it is very easy to determine whether or 

not H is true. In fact one would expect Nature to do better if the above strategy 

S were replaced by the (conditional) distribution for 8 obtained from S, given 

that no probability is placed on 8 = ± oo • 

In the next section we shall make this argument precise and use it to estab

lish the existence of a least favorable distribution for certain hypothesis testing 

and multiple decision problems. In particular our condition is satisfied for many 

problems of testing a composite hypothesis against a simple alternative. This 

shows that a method given in [2] for determining the most powerful test against 

a simple alternative is applicable in most problems of the kind usually con

sidered. 

3. Least favorable distributions for problems of hypothesis testing. In the 

present section we shall consider the hypothesis H that the probability density 

of a random variable X isf(x) with! e 5=, where 5= is some given class of densities, 

and the class of alternatives K that the density of X is (JB(x) with 8 e 0. We 

shall assume that the sample space OC is Euclidean and that 8 = (81, · · · , 8,), 

where 0 is a Borel set in R, . Since throughout we shall be concerned with dis-

1 Work sponsored in part by the office of Naval Research. 
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tributions over 0 we may, by defining these distributions to be zero outside of 

O, assume without loss of generality that 0 is the full Euclidean space R • . We 

assume further that for almost all x, g,(x) is continuous in 8 and measurable 

in 0 X OC. 

For the present we consider the usual asymmetric formulation of the problem 

in which a level of significance a is assigned and it is desired to maximize the 

minimum power of the test over K . In this situation, as is pointed out on page 

133 of [1], assumptions (3.1) - (3.6) of [1] hold, and we have, as a simple con

sequence of Theorem 3.12 of [1], 

LEMMA 3.1. There exists a level-a test cp of H that maximizes the minimum power 

against K, and a sequence of distributions X, over 0 such that 

(3.1) lim f E, q,(X) dX, (8) = inf E1 cp.(X) 
,_.00 ldl 

and 

(3.2) lim p, = inf E, q,(X), 
i-+00 ltU 

where /3i is the power of the most powerful level-a test for testing H against the simple 

alternative 

Now by Helly's compactness theorem there exists a subsequence of the se

quence {X..}, which without loss of generality we shall take to be the original 

sequence, such that 

(3.3) 

for all continuity intervals of p., where p. is again a distribution and 0 ~ 'Y ~ 1. 

If here we could assume that 'Y = 1 it would follow that p. is least favorable 

(see the proof of Theorem 3.14 of [1]). We shall now show that p. is least favor

able by proving that either 'Y = 1 or lim f3i = 1 under the following 

AssUMPTION A. Gtven any E > 0 and any closed bounded set w c 0 there exists 

a Borel set S in the sample space such that 

(3.4) 

and 

(3.5) 

P(S I f) ~ E 

P(S I ge) ~ E 

P(S I ge)-+ 0 uniformly as 0~ + · · · + 0~-+ co. 

for allf e 5, 

for all 8 e w, 

Clearly Assumption A is satisfied if both 5 and 0 are compact, but as we shall 

show later the assumption also holds in many cases in which (3.7) of [1] is not 

satisfied. 
The proof of our result is based on the following two lemmas. 
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LEMMA 3.2. Let w be any closed bounded set inn and let e > 0. Then there exists a 
Borel set Sin OC and an integer io such that 

(3.6) i P(S) I 0) a;,.., (0) ~ 1 - 'Y - E fori ~ io, 

and even 

(3.7) l Es [cj>(X)cs (X)] d'A1 (0) ~ 1 - 'Y - 2e f • > . 
;Or t = to, 

where cJ> is the test referred to in Lemma 3.1 and where cs(x) is the characteristic set 
function of S. 

Here and in what follows the notation P(S I 0) and Ee indicates that the 
probability or expectation is computed with respect to the probability density 
ge(x). 

LEMMA 3.3. For any e > 0 there exists a continuity interval w of p. such that for 
any test cJ> 

(3.8) i Eec/>(X) d'A1 (0) ~ 'Y L EecJ>(X) dp.(O) - e 

for sufficiently large i. 

Before proving these lemmas we shall show that they imply 'Y = 1 or lim f3i = 1 

and hence the existence of a least favorable distribution. Let cJ> be the test re
ferred to in Lemma 3.1 and let 

(3.9) !~ f Ee¢(X) d'A1 (0) = {3. 

Given any e > 0 let w be a bounded subset of n for which (3.8) holds. Then 

' l Ee cJ>(X) d'A; (0) = i Ee cJ>(X) d'A, (0) + i Ee cJ>(X) d'A, (0), 

where for sufficiently large i the first term is ~ 'Y L Eec~>(X) dp.(O) - e by (3.8) 

and the second term is ~ 1 - 'Y - 2e by (3.7), so that 

(3.10) {3 ~ (1 - 'Y) + 'Y L Eecj>(X) dp.(O) ~ L Eecj>(X) dp.(O). 

Here the last inequality is strict and therefore contradicts (3.1), unless either 

'Y = 1 or l Eecj>(X) dJ.&(O) = 1. 

But in the latter case {3 = 1 by (3.10), so that 

L Eec/>(X) dJ.&(O) = inf E8¢(X) 

and J.l would be least favorable. 
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PROOF oF LEMMA 3.2. Let S be a set guaranteed by Assumption A for which 

(3.11) 

(3.I2) 

and such that 

P(S I 0) ~ E/2 

P(S If) ~ E 

(3.I3) P(S I 8) --; 0 uniformly as 0~ + · · · + 0~--; oo. 

From (3.3) and (3.I3) it follows that 

(3.I4) l P(S I 8) i!Ai (0) ~ I - 'Y - E/2 

and (3.6) is an immediate consequence of (3.I4) and (3.11). 

for all 0 c w, 

for all f c 5'", 

fori ~ io, 

Suppose now that (3.7) did not hold. Then there would exist a subsequence of 

{Ai}, which we may again take to be the full sequence such that 

(3.I5) }~ i Ee [q,(X)cs (X)] i!Ai (8) = o < I - 'Y· 

We define a new test 4>* by 

(3.16) <{> *(x) = {: a • </>(x) 

Then for any f c 5'" we have, because of (3.I2) 

(3.I7) E(q,*(X) I f) ~ d - E a + P(S If) ~ a, 
a 

so that 4>* is again a level-a test. Also, for all x, 

(3.I8) q,*(x) ~ a - E q,(x) + cs (x)[I - q,(x)], 
a 

and hence 

J Ee4>*(X) i!Ai(O) ~ a a E J Eeq,(X) i!Ai(O) 

(3.I9) 

if XC S, 

if XC S. 

+fEe {cs(X)[I- q,(X)]} i!Ai(O). 

The first term on the right-hand side of (3.19) tends to f3(a - E)/a as i--; oo. 

On the other hand the second term is greater than or equal to 

l Pe (S) i!Ai (8) - l Ee [cs (X)q,(X)] i!Ai (0), 

which for sufficiently large i exceeds (1 - 'Y - E) - (o + E) by (3.15) and (3.6) . 

This shows that for sufficiently large i 
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f Es<t>*(X) dX; (8) > {3 + 1 - ; - 0 

and thus contradicts (3.2), since it implies that for sufficiently large i 4>* is 

more powerful than the most powerful test for testing H against J g8(x) dX1(8). 

PROOF OF LEMMA 3.3. Let w be a continuity interval of p., and so large that 

(3.20) p.(w) ~ E/2. 

Then by the Helly-Bray theorem, as i---+ oo 

£ gs (x) dX, (8) ---+ 'Y i g8 (x) dp.(8), 

and hence by Fatou's lemma 

Interchanging the order of integration we then have fori sufficiently large 

i E, q,(X) dX, (8) 6; 'Y i E, <t>(X) dp.(8) - E/2 ~ 'Y L E, <t>(X) dp.(8) - E 

by (3.20). 

We can sum up the work of this section in 

THEoREM 3.1. If g,(x) is continuous in 8 and if Assumption A holds, then for 

the problem of testing H against K there exists a least favorable distribution for 8. 

As an illustration, let X1, · · · , X .. be a sample from a distribution with 

density f(x - 8) and consider testing H: 8 ~ 8o against 8 ~ 81 . Here we could 

clearly take for Sa set of the form X 1 ~ c, so that Assumption A is satisfied. 

4. Testing against a simple alternative. As an application of Theorem 3.1 we 

now consider the problem of testing a composite hypothesis against a simple 

alternative. Let the hypothesis state that the density of X is f 8(x), 8 c n, and 

let the alternative be g(x), where we assume as before that the sample space is 

Euclidean and that 8 = (81 , • • • , 8,) with n being the full Euclidean spaceR,. 

AssuMPTION B. For every closed bounded setS in the sample space, P(S I fe)---+ 0 

uniformly as 8~ + · · · + 8! ---+ oo • 

THEOREM '4.1. If fs(x) is a continuous function of 8 for almost all x, then under 

Assumption B there exists a least favorable distribution over n. 
PRooF. Theorem 3.1 clearly applies if we interchange H, a with K, {3. We 

therefore only need to show that Assumption B implies Assumption A with 

f and g interchanged. That is, we need to prove that Assumption B implies the 

existence of a set S such that 

(4.1) 

(4.2) 

P(S I g) ~ E, 

P(S lis) ~ E for all 8 c w, 
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and 

(4.3) 

It was pointed out by Scheffe [3] that when g9(x) is continuous in 8, the con

vergence 8• ~ 8 implies 

(4.4) L gB, (x) dx ~ L g9 (x) dx uniformly for all Borel sets S. 

Therefore if w is bounded and closed, the associated set of distributions is com

pact with respect to the convergence definition (4.4). Let E > 0. Then we can 

find a finite number of points in w, say 81 , · · · , 8r , such that every 8 c w is 

within !E of one of these 8• in the sense that I P(S I 8) - P(S I 8,) I ~ !E for all 

Borel sets S. It follows that there exists a closed bounded set S for which (4.1) 

and ( 4.2) hold and ( 4.3) then follows from Assumption B. 

AssUMPTION C. There exists statistics Y, = h,(X), i = 1, · · · , s, such that the 

h, are continuous, the marginal distribution of Y, depends only on 8,, and Y, 

tends to + oo or - oo as 8i ~ + oo or - oo. 

LEMMA 4.1. A sufficient condition for Assumption B to hold is Assumption C. 

PROOF. LetS be a closed bounded set, and let a,= min8 h,(x), b, = maxs h,(x). 

ThenPB(X c S) ~ PB,(a, ~ Y, ~ b,) fori= 1, · · · , s. Now if 8i + · · · + 0~ > C 

we must have 8~ > C /s for at least one value of i. Given E > 0, let C be so large 

that 

if for all i. 

Then PB(X c S) ~ E provided 8i + · · · + 8! > C. 

As an example let X 1 , • • • , X" be a sample from a distribution with unknown 

location and scale parameter ~ and 1'1· Let 81 = t, 82 = log 1'/, and take Y1 = 

Xt/1 x2 - xl I ' y2 = log I x2 - xl I . Then Assumption cis seen to be satisfied, 

so that for testing a hypothesis of this type against a simple alternative, a least 

favorable distribution exists. 

Theorem 4.1 answers a problem raised by [2], where in Theorem 1 a method 

is given for proving that a test is most powerful for testing a composite hypothesis 

against a simple alternative. Combining Theorem 4.1 with Theorem 3.10 of [1], 

we see that this method is always applicable when Assumption B is satisfied. 

While it is quite likely that Assumption B can be weakened somewhat, it is 

perhaps of interest to point out that some condition of this type is required, 

which restricts the behavior of the distributions as 8i + · · · + 8! ~ oo • As 

an example consider the following situation in which n is denumerable and the 

densities are given by 

H:j, (x) = 2~ [e-Hz-i)2 + e-Hz-Cl/i))2], i = m, m + 1, ... ' 

K ( ) 1 -tz2 
:g x = V27r e . 
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We shall show that if m is sufficiently large the most powerful level-a test rejects 

when x ~ b, where b is determined by 

(4.5) 
b b 

l}~ loo j, (x) dx = ! {oo g(x) dx = a. 

b 

First one checks easily that for large i a(i) = [oo fi(x) dx is an increasing 

function of i . Let m be such that a(i) is increasing fori ~ m. Then the proposed 

test is of size a and power 2a by (4.5). But if {J is the power of the most powerful 

test cf> we clearly have 

{J ~ 2 li~ sup jJ, (x) cf> (x) dx ~ 2 a, 
1-->00 

which proves that the region of rejection x ~ b is most powerful. If a least 

favorable distribution X over n existed, the test x ~ b would be a Bayes solution 

for X (Theorem 3.9 of [1]), that is, would be most powerful for testing J fi(x) dX(i) 

against g(x) . But an application of the Neyman-Pearson fundamental lemma 

shows immediately that no Bayes solution is of this form. 

It may be worth pointing out that the conditions of the present paper are 

really of a quite different nature from those given by Wald in his general theory. 

Thus they do not even imply that the parameter space is weakly compact in 

the sense of (3.1) of [1]. As an example, consider a random variable X the dis

tribution of which depends on an unknown location parameter fJ. Let H denote 

the hypothesis 8 ~ 8o and suppose that the simple alternative is 81 > 8o . Let 

!Xi) be any sequence of distributions over H, and let cp(x) be any test. Then 

weak compactness of H would imply the existence of a subsequence {Xii) and a 

distribution X0 over H such that 

(4.6) lim sup J Ee cf> (x) dA,i (8) ~ J Ee cf> (x) dAo (8). 
J-00 

But let cf>(x) be the characteristic set function of the set x ~ C and let >-.,(8) 

assign probability 1 to the point 8 = -i. Then the left-hand side of (4.6) is 1, 

while for any distribution A.0 the right-hand side is < 1, so that H is not weakly 

compact. On the other hand, Assumption B is satisfied. 

5. Some extensions. We shall now indicate briefly how the results of Section 

3 may be extended to somewhat more general decision problems. As a first 

generalization consider the problem of hypothesis testing, formulated as in 

Section 3 except that the loss function need no longer be simple. Suppose that 

acceptance of the hypothesis when the true distribution is given by ge(x), 8 e n 
results in a loss W(O), and that l'(f) is the loss resulting from rejection of H 

when f is the true density. We shall assume that V and W are bounded and 

that we are interested in minimizing sups W(8)Ee[I - cf>(x)] among all tests cf> 

for which V(f)E[cp(x) I j] ~ a for all f c g:. 



66

LEAST FAVORABLE DISTRIBUTIONS 

Let Assumption A' be obtained from Assumption A by replacing P(S I ge) 

and P(S I ge) in (3.4) and (3.5) by W(O)P(S I ge) and W(O)P(S I ge) respectively, 

and P(S I f) in (3.4) by V(f)P(S I f). Then Assumption A' implies the existence 

of a least favorable distribution over n. Only the obvious changes are required 

in the proof of Theorem 3.1. 

As an immediate further generalization one next obtains an analogous result 

for the following two-decision problem. The parameter space is partitioned into 

two set Wt u w2. The loss is zero if () e w; and decision di is taken;it is Wi(8) if 

decision di is taken incorrectly. Let us denote the risk function of a decision 

procedure o as usual by R~(O) and suppose that if o is the minimax solution 

sup R, (0) = 'Y. 

Then the overall minimax problem is equivalent (see [4]) to the problem Ilt 

of minimizing sup 8 ~.., 1 R~( 0) subject to Ra( 0) ~ 'Y for all () e W2 , and also to the 

problem Ilz obtained from Il1 by interchanging 1 and 2. If a least favorable 

distribution over Wi exists for rr, (i = 1, 2), then one exists for the overall 

problem. But each of the partial problems is of the type discussed at the begin

ning of this section. 

The whole argument extends without much difficulty to multiple decision 
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problems involving a finite number of decisions arid having a bounded loss func

tion. We shall not give the details but simply state the result. Let Wt , · · · , WJC 

be the regions in the parameter space in which the decisions dt , · · · , dJC are 

appropriate so that the loss W(8, d,) = 0 if fJ c w1 • Then we consider the two

decision problems n, (i = 1, · · · , K), where the decision lies only between 

8 c "'' a.nd 8 c n - w,. A least favorable distribution exists over fl provided each 

of the problems n, satisfies Assumption A'. 

AJ3 an example consider the case that X1 , · • · , X,. ; Yt , · · · , Y n are m + n 
independent random variables, and that the density of the X's is f(x - ~) while 

that of the Y's is g(y - ,). Suppose that the partition of n is as shown in the 

diagram and that the loss is 0 or 1 as the correct or an incorrect decision is 

taken. Then a least favorable distribution exists. To show that n, satisfies 

Assumption A' suppose that the bounding rays l1 aad l,. of w3 are given by 

, = m 1 ~ and , = m,~. Then for S we may take a set in the sample space of the 

form 

where R, c1 and Ct must be chosen sufficiently large. 
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