
On the Existence of low-degree Equations
for Algebraic Attacks

Frederik Armknecht?

Theoretische Informatik
Universität Mannheim

68131 Mannheim, Germany
Armknecht@th.informatik.uni-mannheim.de

Abstract. Algebraic attacks on block ciphers and stream ciphers have gained more
and more attention in cryptography. The idea is to express a cipher by a system
of equations whose solution reveals the secret key. The complexity of an algebraic
attack is closely related to the degree of the equations. Hence, low-degree equations
are crucial for algebraic attacks. So far, the existence of low-degree equations for
simple combiners, combiners with memory and S-boxes was treated independently.
In this paper, we unify these approaches by reducing them to the same problem:
finding low-degree annihilators. This enables a systematic treatment and implies a
general criterion for the existence of low-degree equations.
The unification allows to extend former results to all three cases. Therefore, we repeat
an algorithm for finding a generating set of all low-degree equations. Additionally, we
introduce a new improved version, adapted to specific keystream generators (e.g., for
the Bluetooth keystream generator).
Finally, we describe for certain cases an upper and a lower bound for the lowest pos-
sible degree. To the best of our knowledge, the upper bound has only been presented
in the context of keystream generators before and the lower bound was not published
previously.

Keywords: algebraic attacks, block ciphers, keystream generators, low-degree equa-
tions, annihilators, algorithms, bounds

1 Introduction

The idea of algebraic attacks is to attack a cipher by solving a system of equations.
In this paper, we concentrate on algebraic attacks against block ciphers and LFSR-
based keystream generators.

An algebraic attack on a block ciphers was discussed for the first time in [15]. The
author reduced the security of DES to solving an (unknown) system of equations. In
[9], it was proven that the Advanced Encryption Standard (AES) can be easily de-
scribed by continuous fractions. In [7], the authors showed that AES can be attacked
by solving a system of quadratic equations. The reason is that the only non-linear
operation, the S-box, can be described by a system of quadratic Boolean equations.
Later, it was shown in [14] that this attack can be improved by using quadratic
equations over the finite field GF (28). Both attacks are the only attacks known yet
which may work for full AES. Although the correctness and the complexity require

? This work has been supported by grant 620307 of the DFG (German Research Foundation)

2 F. Armknecht

further examinations, the existence of a system of low-degree equations is a potential
threat.

In [6], algebraic attacks on simple combiners were presented. For each observed
keystream bit, an attacker has knowledge of one or several valid equations. If an
attacker has enough equations at his disposal, the secret key can be recovered by
solving the system of equations. For several keystream generators (e.g. LILI-128,
Toyocrypt), the algebraic attacks are the fastest known attacks. Both the required
number of known keystream bits and the complexity of the attack are polynomial in
the key size but exponential in the degree of the equations. Therefore, the availability
of low-degree equations is crucial for an efficient attack.

For several reasons, the extension of the attack to LFSR-based keystream generators
with additional memory (e.g., the Bluetooth keystream generator) was not apparent.
In [1], this question was finally solved. The authors showed that any LFSR-based
keystream generator can be expressed by system of equations with a bounded degree.
Also here, the effort grows exponentially with the degree.

An important improvement of algebraic attacks on LFSR-based keystream genera-
tors are fast algebraic attacks [4] which have been further examined in [2] and [12].
In fast algebraic attacks, some special properties of the system of equations are ex-
ploited to reduce the computation complexity. Nevertheless, the complexity remains
exponential in the degree of the equations.

The three cases described above have in common that they require equations of
low degree. For each of the cases, different methods resp. criteria for deciding the
existence of low-degree equations were developed. In this paper, we unify these ap-
proaches into one theory. We show that the question can be reduced to the existence
of low-degree annihilators of certain functions. This allows for the first time a sys-
tematic treatment of the existence of low-degree equations for several important
cases. In particular, results and algorithms developed for one case can now be trans-
ferred to the other ones. Another advantage is that the theory is also applicable for
ciphers which work over other fields than GF (2).

Additionally, we present two different algorithms which compute a generating set
of all low-degree equations (if any exist). The first one works in general and was
discussed before in several papers (but never in its generality). The second one is
adapted to certain LFSR-based keystream generators (e.g., the Bluetooth keystream
generator) to avoid unnecessary computations. As far as we know, this improvement
was unpublished before.

The practicability of these algorithms is limited to some cases. Hence, efficient cri-
teria to decide the existence of low-degree equations are desirable. For certain cases
we present an upper and a lower bound for the minimal degree. The upper bound
occurred before in the context of LFSR-based keystream generators [6, 1]. To the
best of our knowledge, the lower bound is new.

The paper is organized as follows: in section 2, we provide some facts about Boolean
functions and annihilators. In section 3, algebraic attacks against combiners without
memory, section 3.1, combiners with memory, section 3.2, and S-boxes used in block
ciphers, section 3.3, are described. We show that in all three cases, the introduction
of characteristic functions allows a general treatment of the existence of low-degree

On the Existence of low-degree Equations for Algebraic Attacks 3

equations. We derive a general criterion over arbitrary fields in section 3.4. In section
4, we describe two algorithms for computing all low-degree equations. While the
first one is applicable in general, the second one is adapted to certain keystream
generators to avoid specific redundant operations. Both algorithms can be used to
decide the existence of low-degree equations. However, their practical feasibility is
limited. Therefore, 5 we present in section an upper and a lower bound for the
minimal degree of the equations. Section 6 concludes the paper.

2 Basics on Boolean Functions

Definition 1. For an integer n ≥ 1, we define by
�

n the set of all Boolean functions
f : {0, 1}n → {0, 1}. For f ∈

�
n we define the sets 0f := {x ∈ {0, 1}n | f(x) = 0}

and 1f := {x ∈ {0, 1}n | f(x) = 1}.

Obviously, it is 1f

.
∪ 0f = {0, 1}n and 1f ∩ 1g = 1f ·g for all f, g ∈

�
n.

Definition 2. Let f ∈
�

n be a Boolean function. We call g ∈
�

n an annihilator of
f if f · g ≡ 0. Further on, we define An(f) := {g ∈

�
n | f · g ≡ 0}.

, the set of the annihilators of f .

Proposition 1. Let f, g ∈
�

n. Then g is an annihilator of f if and only if 1f ⊆ 0g.

Proof.
[

f(x) · g(x) ≡ 0
]

⇔
[

∀x : f(x) = 1 ⇒ g(x) = 0
]

⇔
[

1f ⊆ 0g

]

Proposition 2. Let f, g ∈
�

n be arbitrary. Then g is a multiple of f if and only if
1g ⊆ 1f .

Proof. ”⇒” Assume that g is a multiple of f . I.e., there exists h ∈
�

n such that
f · h = g. Then 1g = 1f ·h = 1f ∩ 1h ⊆ 1f .

”⇐” Assume now that 1g ⊆ 1f . Then 1g = 1g ∩ 1f = 1f ·g. Hence, it is g = g · f and
therefore g is a multiple of f .

Proposition 3. Let f ∈
�

n. Then An(f) = {(f ⊕ 1) · g | g ∈
�

n}. I.e., each
annihilator of f is a multiple of f ⊕ 1.

Proof. Due to proposition 1, g is an annihilator of f if and only if 1f ⊆ 0g. Obviously,
this is equivalent to 0f⊕1 ⊆ 0g ⇔ 1g ⊆ 1f⊕1. By proposition 2, this is equivalent to
(f ⊕ 1) | g.

An alternative proof has been given in [13].

Definition 3. We define for a set F ⊆
�

n, F 6= {0}, its minimal degree by

mindeg(F) := min{deg(f) | f ∈ F , f 6= 0}.

4 F. Armknecht

3 A general criterion for low-degree equations

In this section, we describe algebraic attacks on combiners without memory, on
combiners with memory and on block ciphers as the AES. In all three cases the
existence of low-degree equations are a necessary precondition for algebraic attacks.
We will show that by introducing the notion of characteristic functions it is possible
to derive a common criterion for the existence of low-degree equations.

3.1 Simple combiner

We define a simple combiner to be a keystream generator which consists of the
following components:

– An internal state S ∈ {0, 1}n

– A linear update function L : {0, 1}n → {0, 1}n

– A projection π : {0, 1}n → {0, 1}k

– An output function f : {0, 1}k → {0, 1}

Let the initial state S0 be the secret key K. Then for each clock t, the keystream bit
zt is computed by f(π(St)) = zt and the internal state St is updated to St+1 := L(St)
which is equal to Lt+1(K).

The first step in an algebraic attack is to describe the secret key K by a system of
equations in dependence of the observed keystream. This requires the knowledge of
two functions g0 and g1 such that for all clocks t ≥ 0 the following is true:

If zt = 0 ⇒ g0(π(Lt(K))) = 0
If zt = 1 ⇒ g1(π(Lt(K))) = 0

(1)

Actually, it suffices if at least one of the two functions is 6≡ 0. In this case, One
example is g0 = f and g1 = f⊕1. Depending on the values of the observed keystream
z0, z1, . . ., an attacker can now set up the following system of equations:

gz0(π(K)) = 0
gz1(π(L(K))) = 0
gz2(π(L2(K))) = 0

...

(2)

Of course, if multiple functions g0, g
′
0, . . . resp. g1, g

′
1, . . . are known fulfilling the

condition above, then all of them can be inserted in the system of equations. If
an attacker has enough equations at his disposal, he can recover the secret key K

by solving the system of equations. This is the idea of algebraic attacks. To find
the solution, several algorithms were discussed (e.g., Linearization [6], XL, XSL
[7], Gröbner bases [8]). All have in common that they benefit from a low degree
of (2). Observe that the linearity of L implies that the degree of (2) is bounded
by max{deg(g0), deg(g1)}.

1 I.e., the lower the degree of g0 resp. g1, the faster the

1 If the degrees are different, an attacker may use only those functions in (2) with the lower degree.

On the Existence of low-degree Equations for Algebraic Attacks 5

algebraic attack. Therefore, it is important for algebraic attacks to be able to decide
whether functions g0 resp. g1 of low degree exist or not.

Algebraic attacks on simple combiners have been introduced in [6]. The authors
proposed three different scenarios (S3a, S3b, S3c) under which functions g0 or g1

of low degree exist. In [13], it was showed that these scenarios can be reduced the
following general criterion: Low-degree functions g0 resp. g1 do exist if and only f

resp. f ⊕ 1 has annihilators of low-degree.

Now we will embed this setting into a new description which implies immediately
the criterion of [13]. This description has the advantage that it is extendable to other
situations (e.g., combiners with memory and S-boxes). To motivate our approach,
we rewrite (1) to

If f(X) = 0 ⇒ g0(X) = 0
If f(X) = 1 ⇒ g1(X) = 0

(3)

I.e., the expressions on the left side characterizes all inputs for which the functions
on the right side must be equal to zero.2 We generalize this idea by introducing the
notion of characteristic functions:

Definition 4. Let f ∈
�

n be the output function of a simple combiner. For z ∈
{0, 1}, we define the characteristic function Cz ∈

�
n by

∀X ∈ {0, 1}n : Cz(X) = 1 ⇔ f(X) = z.

In the case of simple combiners, it is C0 = f and C1 = f ⊕1. In the case of combiners
with memory and S-boxes, the form of the characteristic functions will not be that
obvious. Now, we can reformulate (3) to

If C0(X) = 1 ⇒ g0(X) = 0
If C1(X) = 1 ⇒ g1(X) = 0

(4)

We use now (4) to give a definition of the desired functions g0 resp. g1:

Definition 5. Let C0, C1 ∈
�

n be the characteristic functions of a simple combiner.
For z ∈ {0, 1}, we call a function gz ∈

�
n a z-function if

∀X ∈ {0, 1}n : Cz(X) = 1 ⇒ gz(X) = 0.

The following proposition is the main result of this section.

Proposition 4. Let C0, C1 ∈
�

n be the characteristic functions of a simple com-
biner. Then the following is true:

1. g ∈
�

n is a z-function for z ∈ {0, 1} if and only if g ∈ An(Cz)
2. If g ∈

�
n, g 6≡ 0, is a z-function, then deg(g) ≥ mindeg(An(Cz))

Proof. We fix z ∈ {0, 1}. By definition, g ∈
�

n is a z-function if and only if Cz(X) = 1
implies gz(X) = 0 for all X ∈ {0, 1}n. This is equivalent to 1Cz

⊆ 0gz . By 1, this is
the case if and only if gz ∈ An(Cz). This proves the fist proposition. The second one
is obvious from the definition of mindeg.

2 Otherwise, (1) would not be true in general.

6 F. Armknecht

The proposition says that low-degree equations for an algebraic attack exist if and
only if C0 or C1 has non-trivial low-degree annihilators. In this case, it is C0 = f and
C1 = f ⊕ 1. Together with proposition 3, this is equivalent to that f ⊕ 1 or f has
low-degree multiples. The same criterion was derived in [13], but in a different way.

Remark 1. Proposition 4 makes only statements about the degree of equations of
the type g(π(Lt(K))) = 0. Therefore, equations of the type

h(π(Lt(K)), π(Lt+1(K)), . . . , π(Lt+l(K))) = 0

may exist with a degree lower than mindeg(An(f)) and mindeg(An(f ⊕ 1)) (see
for example the clever ideas used in fast algebraic attacks [4].) But until now, it is
unclear how to find such equations without using z-functions.

3.2 Combiners with memory

A combiner with memory consists of the following components:

– An internal state S̃ = (S, M) ∈ {0, 1}n × {0, 1}l

– A projection π : {0, 1}n → {0, 1}k

– A linear update function L : {0, 1}n → {0, 1}n

– A non-linear update function Ψ : {0, 1}k × {0, 1}l → {0, 1}l

– An output function f : {0, 1}k × {0, 1}l → {0, 1}

At each clock t, the keystream bit zt is computed by zt = f(π(St), Mt). The internal
state S̃t = (St, Mt) is updated to S̃t+1 := (L(St), Ψ(π(St), Mt)). Again, an attackers
goal is to recover K = S0.

If an attacker uses the equations f(π(Lt(K), Mt) = zt for an algebraic attack, he
faces two problems. Either he keeps the expressions Mt in the equations or he ex-
presses f(π(Lt(K), Mt) by f ′(π(K), . . . , π(Lt(K)), M0). In the first case, the number
of unknowns increases with the number of equations which makes the system of equa-
tions unsolvable. In the second case, the degree can go up arbitrarily high. Hence,
for an efficient algebraic attacks, a different approach is necessary.

Such an approach was introduced in [1]. The authors proved that functions gZ for all
Z ∈ {0, 1}l+1 exist with at least one function 6≡ 0 such that the following equation
is true

If (zt, . . . , zt+l) = Z ⇒ gZ(π(Lt(K)), . . . , π(Lt+l(K))) = 0 (5)

The similarity to (1) is obvious. Again, the degree of equation (5) is bounded by
deg(g). Therefore, it is possible to pursuit the same strategy as described in section
3.1. First, an attacker sets up a system of equations using (5). Then, he recovers the
secret key K by computing the solution. Therefore, he can apply the same methods
as described in section 3.1. For several combiners with memory (e.g., the Bluetooth
keystream generator), the algebraic attack was faster than all previously known
attacks. The efficiency of the attack depends again on the degrees in (5). We will
show now that the criterion for low-degree equations from section 3.1 can be easily
extended to this case. For this purpose, we adapt the definitions of characteristic
functions and z-functions to this situation:

On the Existence of low-degree Equations for Algebraic Attacks 7

Definition 6. For combiner with memory, an integer r ≥ 1 and a value Z =
(Z1, . . . , Zr) ∈ {0, 1}r, we define the characteristic function CZ : ({0, 1}k)r → {0, 1}
by CZ((X1, . . . , Xr)) = 1 if and only if S1, . . . , Sr ∈ {0, 1}n and M1, . . . , Mr ∈ {0, 1}l

exist such that the following conditions are fulfilled:

1. Xi = π(Si), i = 1, . . . , r

2. Si+1 = L(Si), i = 1, . . . , r − 1

3. zi = f(π(Si), Mi), i = 1, . . . , r

4. Mi+1 = Ψ(Si, Mi), i = 1, . . . , r − 1

In other words, CZ(X) = 1 if and only if (X1, . . . , Xr) is a partial assignment of
the secret key which does not contradict the observed part Z of the keystream. If
r is too small, then CZ ≡ 1 for all Z ∈ {0, 1}r. In [1], the authors showed that for
r = l + 1 at least one Z ∈ {0, 1}r exists such that CZ 6≡ 1. In fact, the set NCrit(Z)
defined in [1] is equal to the set 1CZ

. Similar to the case of simple combiners, we
introduce the notion of Z-functions by

Definition 7. For a combiner with memory, an integer r ≥ 1 and a value Z =
(Z1, . . . , Zr) ∈ {0, 1}r, we say that a function gZ ∈ Bk·r is a Z-function if the
following holds:

∀X = (X1, . . . , Xr) ∈ {0, 1}k·r : If CZ(X) = 1 ⇒ gZ(X) = 0

I.e., the functions described in (5) are Z-functions. The proof of the following propo-
sition is almost the same as the proof of proposition 4:

Proposition 5. Let r ≥ 1 and CZ for Z ∈ {0, 1}r be the characteristic functions of
a combiner with memory. Then the following is true:

1. g ∈
�

k·r is a Z-function for Z ∈ {0, 1}r if and only if g ∈ An(CZ)

2. If g ∈
�

k·r, g 6≡ 0, is a Z-function, then deg(g) ≥ mindeg(An(CZ))

Remark 2. There is one important difference between the case of simple combiners
and combiners with memory. In the first case, we have only two characteristic func-
tions: C0 and C1 = C0 ⊕ 1. If mindeg(An(C0)) is high but mindeg(An(C0 ⊕ 1)) is low,
then the low-degree annihilators of C0 ⊕ 1 can be used for an algebraic attack. The
reason is that C0 ⊕ 1 is equal to the other characteristic function C1.

If in the case of a combiner with memory, the values mindeg(An(CZ)) are high for
all Z ∈ {0, 1}r, then all equations of the form

g(π(Lt(K)), . . . , π(Lt+r−1(K))) = 0

have a high degree. The values of mindeg(An(CZ ⊕ 1)) have absolutely no influence
on this fact.3

3 Unless, it is CZ = CZ′ ⊕ 1 for two different Z and Z ′.

8 F. Armknecht

Remark 3. Assume that for a fixed r, the characteristic functions CZ are known for
all Z ∈ {0, 1}r. This knowledge provides information about C

Ẑ
for all Ẑ ∈ {0, 1}r+1.

Let Ẑ = (Z1, . . . , Zr+1) ∈ {0, 1}r+1 be arbitrary. Then (X1, . . . , Xr+1) ∈ 1C(Z1,...,Zr+1)

implies that (X1, . . . , Xr) ∈ 1C(Z1,...,Zr)
and (X2, . . . , Xr+1) ∈ 1C(Z2,...,Zr+1)

. Hence, it

is 1C(Z1,...,Zr+1)
⊆ 1C(Z1,...,Zr)·C(Z2,...,Zr+1)

and therefore C(Z1,...,Zr+1) is a multiple of

C(Z1,...,Zr) · C(Z2,...,Zr+1).

3.3 S-boxes

An S-box is a Boolean mapping S : {0, 1}n → {0, 1}m. In [7], the authors proposed an
algebraic attack on the block cipher AES. The attack was based on the observation
that the AES S-box S : {0, 1}8 → {0, 1}8 can be expressed by a system of quadratic
equations. I.e., multiple functions g ∈

�
16 of degree 2 exist such that

If S(X) = Y ⇒ g(X, Y) = 0 (6)

They used this system of quadratic equations to derive an algebraic attack on the
AES. Although the attack in [7] is still controversial discussed, the existence of low-
degree equations for the S-box is a potential threat which should not be ignored.
We will see that the existence of low-degree equations is again equivalent to the
existence of low-degree annihilators of an appropriate characteristic function.

We observe the similarities between (6) and (1) and (5). Hence, the following defi-
nitions and proposition are obvious:

Definition 8. Let S : {0, 1}n → {0, 1}m be an S-box. The corresponding character-
istic function CS : {0, 1}n × {0, 1}m → {0, 1} is defined by

CS(X, Y) = 1 ⇔ S(X) = Y.

Definition 9. Let S : {0, 1}n → {0, 1}m be an S-box and CS its characteristic func-
tion. We call g : {0, 1}n+m → {0, 1} an S-function if

CS(X, Y) = 1 ⇒ g(X, Y) = 0.

Proposition 6. et S : {0, 1}n → {0, 1}m be an S-box and CS its characteristic
function. Then

1. g ∈
�

n+m is an S-function if and only if g ∈ An(CS)
2. If g ∈

�
n+m, g 6≡ 0, is an S-function, then deg(g) ≥ mindeg(An(CS))

The observation made in [7] can be reformulated to: The characteristic function CS

of the S-box used in the AES has quadratic annihilators.

3.4 A general criterion

In the three previous sections we have seen that three presumably different situations
can be expressed by the same theory. This allows to set up the following general
criterion for the existence of low-degree equations:

On the Existence of low-degree Equations for Algebraic Attacks 9

General criterion for low-degree equations
Let C ∈

�
n be a characteristic function as described in one of the sections

3.1, 3.2 and 3.3. Then, an equation of degree ≤ d for an algebraic attack exist
if and only if C has an annihilator of degree ≤ d.

4 Computing low-degree annihilators

In this section we present two algorithms to compute a generating set for all low-
degree Boolean annihilators. The first one, Algorithm 1 in section 4.1, is applicable
in general. The second one, Algorithm 2 described in 4.2, is adapted to certain
keystream generators as E0 or the summation generator where the output function
f and the update function Ψ are invariant under certain permutations. This can be
used to avoid redundant computations occurring Algorithm 1.

4.1 A general algorithm

We describe now a general algorithm which among other things can compute a
generating set for all low-degree annihilators. The algorithm is described for Boolean
functions. The reason is that it makes it easier to discuss the adapted version in the
next section. A general algorithm for functions over arbitrary fields can be found in
the proof of theorem 1.

For a set F of functions, < F > denotes its linear span.

Algorithm 1

Given: A set F ⊆ � n, X ⊆ {0, 1}n

Task: A set F ′ ⊆ � n such that < F ′ > is the vector space of all functions f ∈< F > with
f(X) = 0 for all X ∈ X

Algorithm:
Set F0 := F and X = {X1, . . . , Xs}
For i from 1 to s do

Set F0
i := {f |f ∈ Fi−1, f(Xi) = 0} and F1

i := {f |f ∈ Fi−1, f(Xi) = 1}
If |F1

i | > 1 then

Choose f̃ ∈ F1
i and set G0

i := {f̃ ⊕ f |f ∈ F1
i \ {f̃}}

else G0
i := ∅

Fi := F0
i ∪ G0

i

Output: The set Fs

The correctness is given by proposition 10 in appendix A.

Remark 4. If we set X := 1C and F to be the set of all monomials in
�

n of degree
≤ d, then Algorithm 1 computes a generating set for all annihilators of degree ≤ d.

Although Algorithm 1 is described explicitly for Boolean functions, it can be easily
reformulated to solving a system of linear equations. This implies a general algorithm
over arbitrary fields (see the proof of theorem 1 in section 5.1). The general algorithm
is not new. Probably, the quadratic equations for the AES S-box in [7] were derived
with the same method. In [3], the authors used it to find quadratic equations for

10 F. Armknecht

S-boxes of other block ciphers. In [1], it was described to compute a basis for all
ad-hoc equations for combiners with memory. Later, in [13], the same algorithm and
several improvements were presented to compute equations for combiners without
memory. With the theory of section 3, this coincidence is not a surprise, but rather
a consequence of the similarity of all three cases.

4.2 An adapted algorithm

The theory in this section was motivated by the following fact: for some keystream
generators (e.g., E0 or the summation generator), the output function f and the
update function Ψ depend only on the Hamming weight of π(St). I.e., the set 1CZ

is invariant under certain permutations. We will discuss in this section how this
property can be exploited to avoid unnecessary steps in Algorithm 1.

Definition 10. Let Sn be the group of permutations on {1, . . . , n}. For X = (x1, . . . , xn)
and σ ∈ Sn we define σ(X) := (xσ(1), . . . , xσ(r)) and [X] := {σ(X) | σ ∈ S}. Further
on, for f ∈

�
n we define σ(f) = σ(f)(x1, . . . , xn) := f(xσ(1), . . . , xσ(n)).

Let S ⊆ Sn. We say that a set X ⊆ {0, 1}n is S-invariant if σ(x) ∈ X for all
σ ∈ S and all x ∈ X . Consequently, we say that a function f ∈

�
n is S-invariant if

σ(f) = f for all σ ∈ S.

Proposition 7. Let S ⊆ Sn and < S > denote the subgroup of Sn generated by the
elements of S. A set X ⊆ {0, 1}n is S-invariant if and only if it is < S >-invariant.

Proof. Because of S ⊆< S >, a < S >-invariant set is always S-invariant also.

Let X denote now an S-invariant set. We have to show that for all σ, σ̃ ∈ S it
is (σ ◦ σ̃)(X) ⊆ X and σ−1(X) ⊆ X . The first proposition is obvious because of
σ(X) ⊆ X and σ̃(X) ⊆ X by assumption. The reason for the second proposition is
that |Sn| is finite and therefore σ−1 can be expressed by σm for an appropriate m.

Proposition 8. For S ⊆ Sn a function f ∈
�

n is S-invariant if and only if
1f ⊆ {0, 1}n is S-invariant.

Proof. Obviously, 1f is S invariant if and only if 1f and 0f are both S-invariant.
Otherwise there would exist a x ∈ 0f and σ ∈ S with x̃ := σ(x) ∈ 1f . But this implies
σ−1(x̃) ∈ 0f with σ−1 ∈< S > and x̃ ∈ 1f . Therefore 1f is not < S >-invariant.
With proposition 7, this contradicts that 1f is S-invariant.

The S-invariance of 1f and 0f is equivalent to f(x) = f(σ(x)) = σ(f)(x) for all
x ∈ {0, 1}n and σ ∈ S. This is exactly the definition of the S-invariance of f .

Proposition 9. Consider a combiner with memory as defined in section 3.2. As-
sume that for a set S ⊆ Sk the following properties hold:

(I) For any choice of X1, . . . , Xr ∈ {0, 1}k do S1, . . . , Sr ∈ {0, 1}n exist such that
π(Si) = Xi and Si+1 = L(Si).

(II) It is f(X, M) = f(σ(X), M) for all X ∈ {0, 1}k, M ∈ {0, 1}l and σ ∈ S.

On the Existence of low-degree Equations for Algebraic Attacks 11

(III) It is Ψ(X, M) = Ψ(σ(X), M) for all X ∈ {0, 1}k, M ∈ {0, 1}l and σ ∈ S.

Then CZ is Sr = S × . . . × S invariant for all Z ∈ {0, 1}r.

Proof. We fix Z ∈ {0, 1}r and X ∈ 1CZ
. I.e., there exist S1, . . . , Sr ∈ {0, 1}n and

M1, . . . , Mr ∈ {0, 1}l such that

1. Xi = π(Si), i = 1, . . . , r

2. Si+1 = L(Si), i = 1, . . . , r − 1

3. zi = f(π(Si), Mi), i = 1, . . . , r

4. Mi+1 = Ψ(π(Si), Mi), i = 1, . . . , r − 1

Let σ ∈ S. We show that σ(X) ∈ 1Cz
. I.e., we have to prove that Ŝ1, . . . , Ŝr ∈ {0, 1}n

and M̂1, . . . , M̂r ∈ {0, 1}l exist such that the conditions above are true. Conditions

1. and 2. are fulfilled by assumption (I) in the proposition for some Ŝi. We argue

now that 3 and 4 are also true if we additionally set M̂i := Mi.

It is

f(π(Ŝi), M̂i) = f(σ(π(Si), M̂i)
(II)
= f(π(Si), Mi)

3.
= zi,

M̂i+1 = Mi+1
4.
= Ψ(π(Si), Mi)

(III)
= Ψ(σ(π(Si)), Mi) = Ψ(π(Ŝi), M̂i).

Hence, σ(X) ∈ 1Cz
.

The proposition was motivated by combiners with memory as the summation gen-
erator or the E0 keystream generator. For S := Sk and r smaller than the shortest
LFSR, the assumptions of proposition 9 are fulfilled. Hence, we know that CZ is
Sr

k-invariant which is by proposition 8 equivalent to that 1CZ
is Sr

k-invariant.

In fact, this can be used to compute CZ faster. It is known that each Sk-invariant
function f ∈

�
k can be expressed by a linear combination of the elementary sym-

metric polynomials πi for i = 0, . . . , k. Hereby it is

πi =
⊕

1≤j1<...<ji<k

xj1 · . . . · xj1

the i-th elementary symmetric polynomial and π0 := 1. This implies that a Sr
k-

invariant function f ∈
�

r·k can be uniquely described by

f =
⊕

0≤i1,...,ir≤k

ci1,...,ir · π
(1)
i1

· . . . · π
(r)
ir

where π
(j)
i denotes the i-th elementary symmetric polynomials in the variables

x(j−1)·k+1, . . . , xj·k.

In the following we introduce an improvement of Algorithm 1 which exploits the
S-invariance of X :

12 F. Armknecht

Algorithm 2

Given: A set F ⊆ � n such that < F > is S-invariant, X ⊆ {0, 1}n, S ⊆ Sk

Task: A generating set for all f ∈< F > with f(X) = 0 for all X ∈ X
Algorithm:

Set F0 := F and X = {[X1], . . . , [Xs]}
For i from 1 to s do

Chose X ∈ [Xi] arbitrary
Set F0

i := {f |f ∈ Fi−1, f(X) = 0} and F1
i := {f |f ∈ Fi−1, f(X) = 1}

If Fi−1 = F0
i

then Fi := Fi−1

else Fi:=(Algorithm 1)(Fi−1,[Xi])
Output: The set Fs

The correctness is given by proposition 11 in appendix A. For S = {id}, Algorithm
2 is exactly Algorithm 1. The improvement is that in Algorithm 1, the sets F 0 and
G0 are computed for all X ∈ X .

If f(Xi) = 0 for all f ∈ Fi then proposition 11 shows that f(X) = 0 for all f ∈ Fi

and all X ∈ [Xi]. The algorithm Algorithm 2 uses this fact to skip the computation
of the sets F0 and G0 for the remaining elements in [Xi] . Therefore, the number
of operations in Algorithm 2 is in the worst case the same as in Algorithm 1 but in
presumably many cases significantly less.

Remark 5. With the theory of this section, one may be tempted to look only for
S-invariant annihilators of an S-invariant characteristic function C. Then, however,
low-degree annihilators may be overlooked.

One example is the S3-invariant characteristic function C := 1 ⊕ π2 ⊕ π3. It is
1C = {[0, 0, 0], [1, 0, 0], [1, 1, 1]} and mindeg(An(C)) = 2. A possible basis for all
degree-2-annihilators is the set {x1 · (x2 ⊕ x3), x3 · (x1 ⊕ x2)}. On the other hand,
An(C) contains no S3-invariant functions of degree ≤ 2. The reason is that for an
S3-invariant annihilator f := c0 ⊕ c1 · π1 ⊕ c2 · π2 of degree ≤ 2 it must be

0 = f([0, 0, 0]) = c0

0 = f([1, 0, 0]) = c0 ⊕ c1

0 = f([1, 1, 1]) = c0 ⊕ c1 ⊕ c2

This implies c0 = c1 = c2 = 0 and therefore f ≡ 0. I.e., the S3-invariant characteristic
function has quadratic annihilators which are all not S3-invariant.

5 Upper and lower bounds for mindeg(An(C))

If n resp. d are too large, the algorithms of section 4 become quickly impractical.
Hence, more efficient methods to decide the existence of low-degree annihilators are
desired. For certain cases, such criteria are presented in the following sections.

On the Existence of low-degree Equations for Algebraic Attacks 13

5.1 An upper bounds for mindeg(An(C))

Theorem 1. Let
�

be an arbitrary field and
�

n be the set of functions
� n →

�
.

Furthermore, let F := {f1, . . . , fs} ⊆
�

n be a set of linearly independent functions
and C ∈

�
n be given. We extend the definition of 1C to 1C := {X|C(X) 6= 0}. If

|1C | < s then f ∈< F >, f 6≡ 0, exists with f ∈ An(C).

Proof. Assume that 1C = {X1, . . . , Xr}. We set up the r × s matrix M = (mij)
by mij := fj(Xi). Because of s > |1C | = r the number of columns is larger than
the number of rows. Therefore the columns are linearly dependent and at least one
non-zero vector c := (c1, . . . , cs) exists such that

∑s
j=1 cj · fj(Xi) = 0 for all i. This

is equivalent to f(x) = 0 for all x ∈ 1C for f :=
∑s

j=1 cj · fj . I.e., f ∈ An(C).

The proof shows that the search for annihilators is equivalent to computing the
kernel of the matrix M . This implies an algorithm for computing a generating set
of all low-degree equations over arbitrary fields.

Corollary 1. For integers 0 ≤ d ≤ n, we set µ(n, d) :=
(

n
0

)
+ . . .+

(
n
d

)
. Let C ∈

�
n

be a Boolean function and d be such that µ(n, d) > |1C |. Then mindeg(An(C)) ≤ d.

Proof. We use theorem 1 and define F ⊆
�

n to be the set of all monomials in n

variables of degree ≤ d (including the constant 1). Obviously, F consists of µ(n, d)
linearly independent functions, all of them of degree ≤ d. Due to µ(n, d) > |1C |,
theorem 1 guarantees the existence of a function f ∈< F > with f(X) = 0 for all
X ∈ 1C . Therefore, f ∈ An(C). By definition of F , f has a degree ≤ d.

Remark 6. Let S be an arbitrary S-box S : {0, 1}n → {0, 1}m. Then, |1CS
| = 2n. If

2n < µ(n + m, d), then corollary 1 guarantees the existence of degree-d-equations.
Figure 1 depicts an upper bound for mindeg(An(CS)) for all values 1 ≤ n, m ≤ 32.
For example, for n = m = 8 (as it is the case for the AES S-box), an upper bound
is 3. I.e., equations of degree have to exist, whatever the definition of S. Hence,
the existence of degree-2-equations for the AES-S-box (see [7]) is not optimal with
respect to algebraic attacks but not as surprising as it may appear. For the DES
S-boxes with n = 6 and m = 4, an upper bound is 3. This has been showed before
in [16]. The S-boxes used in Sober-t16 [10] (n = 8, m = 16) resp. in Sober-t32 [11]
(n = 8, m = 32) have both quadratic equations.

Another interesting point is that for a fixed number n of inputs, the upper bound
decreases if the number of outputs increases. A similar observation has been made
for stream ciphers in [5].

14 F. Armknecht

(n, m) 1 5 9 13 17 21 25 29

1 1
2 1
2 2 2 2 1
3 2 2 2 2 2 2 2 2 2 2 1

5 3 3 2 1 1 1 1 1 1
4 3 3 3 2
4 3 3 3 3 3 3 3 2
5 4 4 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

9 5 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2
6 5 4 4 4 4 4 4 3
6 5 5 5 4 4 4 4 4 4 4 4 3
7 6 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

13 7 6 6 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3
8 7 6 6 5 5 5 5 5 5 5 4
8 7 7 6 6 6 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
9 8 7 7 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4

17 9 8 7 7 7 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4
10 8 8 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
10 9 8 8 7 7 7 7 7 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5
11 9 9 8 8 8 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5

21 11 10 9 9 8 8 8 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5
12 10 10 9 9 8 8 8 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
12 11 10 10 9 9 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6
13 11 11 10 10 9 9 9 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6

25 13 12 11 10 10 10 9 9 9 9 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6
14 12 11 11 10 10 10 9 9 9 9 9 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7
14 13 12 11 11 10 10 10 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7
15 13 12 12 11 11 10 10 10 10 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7

29 15 14 13 12 12 11 11 11 10 10 10 10 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8
16 14 13 13 12 12 11 11 11 10 10 10 10 10 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8
16 15 14 13 12 12 12 11 11 11 11 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8
17 15 14 13 13 12 12 12 11 11 11 11 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9 9 9 8 8

Fig. 1. Upper bounds for mindeg(An(CS)) for different S-boxes S : {0, 1}n → {0, 1}m

On the Existence of low-degree Equations for Algebraic Attacks 15

5.2 A lower Bound for mindeg(An(C))

Theorem 2. Let f ∈
�

n be a non-zero Boolean function of degree ≤ d. Then

2n−d ≤ |0f | ≤ (2d − 1) · 2n−d.

Both bounds can be achieved.

Proof. We prove the theorem by induction over n for a fixed degree d. Because of
2n −

(
2d − 1

)
· 2n−d = 2n−d, it suffices to show the upper bound.

For n = d, it is |0f | = 2d −1 for f = x1 · . . . ·xn. Suppose now that the proposition is
true for some n ≥ d. I.e., |0f | ≤ (2d −1) ·2n−d for all non-zero f ∈

�
n of degree ≤ d,

and this bound is sharp. Let f ∈
�

n+1 be an arbitrary non-zero Boolean function
of degree ≤ d. Then, f can be written as follows

f(x1, . . . , xn+1) = f ′(x1, . . . , xn) ⊕ xn+1 · f
′′(x1, . . . , xn)

where f ′, f ′′ ∈
�

n, deg(f ′) ≤ d, deg(f ′′) ≤ d−1 and at least one of them is non-zero.
We have to distinguish three cases:

f ′ 6= 0 and f ′′ = 0 : Then f ∈
�

n and |Of | ≤ (2d − 1)2n−d ≤ (2d − 1)2n+1−d by
assumption.

f ′ = 0 and f ′′ 6= 0 : Then 0f = {(x, 0)}
.
∪ {(x, 1)|x ∈ 0f ′′}. Because of

deg(f ′′) ≤ d − 1, it is |0f | ≤ 2n + (2d−1 − 1) · 2n−(d−1) = (2d − 1)2n−d.
f ′ 6= 0 and f ′′ 6= 0 : Then 0f can be expressed by

0f = {(x, 0)|x ∈ 0f ′}
.
∪ {(x, 1)|x ∈ 0f ′⊕f ′′}

If f ′ ⊕ f ′′ = 0 then deg f ′ = deg f ′′ ≤ d − 1 and

|0f | = |0f ′ | + |0f ′⊕f ′′ | ≤ (2d−1 − 1) · 2n−(d−1) + 2n = (2d − 1) · 2n+1−d

If f ′ ⊕ f ′′ 6= 0 then

|0f | = |0f ′ | + |0f ′⊕f ′′ | ≤ (2d − 1) · 2n−d + (2d − 1) · 2n−d = (2d − 1) · 2n+1−d

If we chose f ′ such that |0f ′ | = (2d − 1) · 2n−d and f ′′ = 0 then the bound (2d − 1) ·

2n+1−d is achieved by f .

Theorem 2 can be used to exclude the existence of annihilators of degree ≤ d:

Corollary 2. Let f ∈
�

n. If |1f | > (2d − 1)2n−d then mindeg(An(f)) > d.

Proof. Let g ∈ An(f). Proposition 1 implies that 1f ⊆ 0g and therefore |1f | ≤ |0g|.
Hence, the assumption deg(g) ≤ d would lead to the following contradiction:

(2d − 1)2n−d < |1f | ≤ |0g|
Th.2
≤ (2d − 1)2n−d.

Example 1. The E0 keystream generator uses k = 4 LFSRs. In [1], characteristic
functions CZ 6≡ 1 for all Z ∈ {0, 1}4 were described. We’ve checked that |1CZ

| =
53.248 for all Z ∈ {0, 1}4. Because of |1CZ

| = 53.248 > 49.152 = (22 − 1)24·4−2, all
annihilators f ∈ An(CZ) have a degree ≥ 3.

16 F. Armknecht

6 Conclusion

In this paper, we examined the existence of low-degree equations for three important
cases (combiners without memory, combiners with memory and S-boxes). For the
first time, the question of low-degree equations is reduced in all three cases to the
same problem, the search for low-degree annihilators. We assume that methods from
algebraic geometry may turn out to be useful for further research.

Further on, we discussed two different algorithms for computing a generating set of
all low-degree equations. The first one is generally applicable. It has been described
before but never in its generality. The second one is adapted to certain keystream
generators (e.g., the Bluetooth keystream generator) to avoid dispensable computa-
tions. To the best of our knowledge, it has not been published before.

Finally, we proved for certain cases an upper and a lower bound for the minimal
degree. The upper bound has been discussed before in other papers but only in the
context of LFSR-based keystream generators. The lower bound was unknown in the
context of algebraic attacks.

References

1. Frederik Armknecht, Matthias Krause: Algebraic attacks on Combiners with Memory, Proceed-
ings of Crypto 2003, LNCS 2729, pp. 162-176, Springer, 2003.

2. Frederik Armknecht: Improving fast algebraic Attacks, Fast Software Encryption 2004, LNCS
3017, pp. 65 - 82, Springer, 2004.

3. Alex Biryukov, Christoph De Cannière: Block Ciphers and Systems of Quadratic Equations, Fast
Software Encryption 2003, pp. 274-289, Springer, 2003.

4. Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback, Proceedings
of Crypto 2003, LNCS 2729, pp. 177-194, Springer, 2003.

5. Nicolas Courtois: Algebraic Attacks on Combiners with Memory and Several Outputs, Cryptology
ePrint Archive, Report 2003/125, 2003. http://eprint.iacr.org/2003/125.

6. Nicolas Courtois, Willi Meier: Algebraic attacks on Stream Ciphers with Linear Feedback, Pro-
ceedings of Eurocrypt 2003, LNCS 2656, pp. 345-359, Springer, 2003. An extended version is
available at http://www.cryptosystem.net/stream/

7. Nicolas Courtois, Josef Pieprzyk: Cryptanalysis of block ciphers with overdefined systems of equa-
tions, Proceedings of Asiacrypt 2002, LNCS 2501, pp. 267-287, Springer, 2002.

8. Jean-Charles Faugère, Gwenole Ars: An algebraic cryptanalysis of nonlinear filter generators
using Gröbner bases, 2003. Available at http://www.inria.fr/rrrt/rr-4739.html.

9. Niels Ferguson, Richard Schroeppel, Doug Whiting: A simple algebraic representation of Rijn-
dael, Proceedings of Seleceted Areas in Crpytography 2001, LNCS 2259, pp. 103 - 111, Springer,
2001.

10. Philip Hawkes, Gregory G. Rose: Primitive specification and supporting documentation for
Sober-t16 submission to NESSIE, Proceedings of the first NESSIE workshop, Belgium, 2000.

11. Philip Hawkes, Gregory G. Rose: Primitive specification and supporting documentation for
Sober-t32 submission to NESSIE, Proceedings of the first NESSIE workshop, Belgium, 2000.

12. Philip Hawkes, Gregory G. Rose: Rewriting Variables: the Complexity of Fast Al-
gebraic Attacks on Stream Ciphers, will be presented at Crypto 2004. Available at
http://eprint.iacr.org/2004/081/.

13. Willi Meier, Enes Pasalic, Claude Carlet: Algebraic attacks and decomposition of Boolean func-
tions, Proceeding of Eurocrypt 2004, LNCS 3027, pp. 474-491, Springer, 2004.

14. Sean Murphy, Matthew Robshaw: Comments on the Security of the AES and the XSL Tech-
nique, Electronic Letters, 39:26-38, 2003.

15. Ingrid Schaumüller-Bichl: Cryptanalysis of the Data Encryption Standard by the Method of
Formal Coding, Proceeding of Eurocrypt 1982, LNCS 149, pp. 235-255, Springer, 1983.

On the Existence of low-degree Equations for Algebraic Attacks 17

16. Takeshi Shimoyama, Toshinobu Kaneko: Quadratic Relation of S-box and Its Application to
the Linear Attack of Full Round DES, Proceedings of Crypto 1998, LNCS 1462, pp. 200-211,
Springer, 1998.

A Proofs of Correctness

In this section, we provide the proofs of correctness for Algorithm 1 and Algorithm
2. The following proposition shows that Algorithm 1 works properly:

Proposition 10. Let the identifiers be as described in Algorithm 1. Then < Fi >

is the vector space of all functions f ∈< Fi−1 > such that f(X1) = . . . = f(Xi) = 0.

Proof. We show this by induction over i. The case i = 0 is trivial. Assume now that
the proposition is true for i ≥ 1. Because of < Fi >⊆< Fi−1 > it is f(Xj) = 0 for
all f ∈< Fi > and j = 1, . . . , i − 1. By the definition of F0

i and G0
i , it is f(Xi) = 0

also. What remains is to show that all f ∈< Fi−1 > with f(Xi) = 0 are in < Fi >

too.

Let f ∈< Fi−1 > with f(Xi) = 0. There exist f1, . . . , fr ∈ Fi−1 with f =
⊕r

j=1 fj .

W.l.o.g., we can assume that there is an r′ with 1 ≤ r′ ≤ r such that fj(Xi) = 0 for
1 ≤ j ≤ r′ and fj(Xi) = 1 for r′ + 1 ≤ j ≤ r. The equation

0 = f(Xi) =
r′⊕

j=1

fj(Xi)
︸ ︷︷ ︸

=0

⊕
r⊕

j=r′+1

fj(Xi)
︸ ︷︷ ︸

=1

shows that the value r′ − r is even. Because of f̃ ⊕ f̃ = 0, the function f can be
equivalently expressed by

f =
r′⊕

j=1

fj ⊕
r⊕

j=r′+1

(fj ⊕ f̃)

which is in < F0
i ∪ G0

i >=< Fi >.

The correctness of Algorithm 2 is given by:

Proposition 11. Let the identifiers be as in Algorithm 2 and i ≥ 0. If f(X) = 0
for all f ∈ Fi−1 and one X ∈ [Xi] then f(X) = 0 for all f ∈ Fi−1 and all X ∈ [Xi].

Proof. First we show that < Fi > is S-invariant if < Fi−1 > is S-invariant. It is
either Fi = Fi−1 or Fi =(Algorithm 2)(Fi−1,[Xi]). In the first case, the proposition
is trivial. In the second case, < Fi > is the vector space of all f ∈ Fi−1 with
f(X) = 0 for all X ∈ [Xi]. Let f ∈< Fi > and σ ∈ S be arbitrary. Then σ(f)(X) =
f(σ(X)) = 0 for all X ∈ [Xi]. Therefore, σ(f) ∈< Fi >. This shows that < Fi > is
S-invariant.

Now assume that f(X) = 0 for all f ∈ Fi−1 and one X ∈ [Xi]. Let f ∈ Fi−1 and
σ ∈ S be arbitrary. We have to show that f(σ(X)) = 0 also. By the observation

18 F. Armknecht

above, < Fi−1 > is S-invariant. I.e., there exist f1, . . . , fr with σ(f) = f1 ⊕ . . .⊕ fr.
This implies

f(σ(X)) = σ(f)(X) = f1(X)
︸ ︷︷ ︸

=0

⊕ . . . ⊕ fr(X)
︸ ︷︷ ︸

=0

= 0.

