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ON THE EXISTENCE
OF PROBABILITY MEASURES

WITH GIVEN MARGINALS

by D. A. EDWARDS

1. Introduction.

Let (JL 5 v be probability measures defined respectively
on spaces X , Y and suppose that K is a given set of
probability measures on the product X X Y . Then it is in
general a non-trivial question whether there exists a measure
in K whose projections onto the factor spaces X , Y are (JL
and ^ . A number of problems of this type have been investi-
gated by Strassen in his important paper [10] (see also the
works cited by Strassen there, especially the papers of Kellerer).
The main aim of the present paper is to investigate a class of
such problems concerning ordered topological spaces (we also
obtain some results in the same spirit for infinite products).
Various aspects of our subject have been studied by
Nachbin [7], Strassen [10], Preston [8] and Hommel [5],
and I comment below on some of their work. (Of recent work
on non-topological ordered measure spaces (not considered
here), it seems proper to mention [8], [4] and [6].)

It has been found necessary to develop here some general
theory for compact and for completely regular (unordered)
spaces (see § 3 and § 5). This material has been kept to the
minimum needed for present purposes; for a broader perspec-
tive the reader is urged to consult [10].

For valuable comments on parts of this paper I must thank
Dr. C. J. Preston and Pr G. Choquet. I must also thank
M. J. Saint Raymond for an example used in § 7.
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2. Notation.

Let X be a completely regular space. Then we denote by
^(X) (resp. ^(X)) the space of all continuous real (resp.
continuous and bounded) functions on X . If, moreover,
X is partially ordered then we denote by ^(X) (resp.
^(X)) the set of all increasing (resp. decreasing) bounded

continuous real functions on X . The cr-algebra of Borel
subsets of X will be denoted by ^(X) , the set of all bounded

Radon measures on X by ^(X) . The positive cone in
^(X) is denoted by ^+(X) ; ^(X) is the set of all proba-
bility Radon measures on X . Given fe ^(X) and [L e ^(X)

we shall usually write [^(f) as a shorthand for f f d\L .

The support of a measure [L e e^+(X) is denoted by supp [L .
By a compactification X^ of X we mean a compact Hausdorff
space X^ together with a function S; : X —> X

s that maps X
homeomorphically onto a dense subspace ^(X) of X^ .
In these circumstances we shall write

^.{X)={f^:fe^W}.

For example, if X? is the Cech-Stone compactification of X
then ^P(X) = <^(X) .

Given a topological product X X Y of two completely
regular spaces we normally denote by rex, ^y the natural
projections of it onto the factor spaces X, Y . We also use
the same symbols to denote the induced maps of ^(X X Y)
onto ^(X) and e^(Y) . But when dealing with a product

written in the form JJ X^ it will be more convenient to
aeA

denote the 0th natural projection by TT^ .
Given a convex set K we shall denote by K^ the set of

all extreme points of K .
Other notations will be explained as they arise.

3. Products of compact spaces.

We treat first the case of compact spaces, not merely
because of its attractive simplicity, but also because it is the
foundation of our approach to non-compact spaces.

We consider first the product of two spaces.
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THEOREM 3.1. — Let X , Y be compact Hausdorff spaces,

let [L e ^(X) , v e ^(Y) , and let K be a non-empty vaguely

compact convex subset of ^(X X Y) . Then the following

statements are equivalent:

(i) there exists a measure 6 e K such that

7T^6 == [JL , TTyQ = V ;

(ii) /or all u e ^(X) and v e ^(Y) we Aa^'e

[ji(u) + v^) ^ max {X(u o ?Cx + ^ ° ^v) : ^ e K} ;

(iii) whenever u e ^(X) and ^ G ^(Y) are such that

\{u o -n:x + ^ ° T^) ^ 0 (X e K) ,

we /ia^e {ji(u) + v(^) ^ 0 •

This result is based on Theorem 7 of Strassen [10] who,
however, worked with Polish spaces (and also introduced
some additional complications concerning moments). We
shall use Theorem 3.1 later to prove inter alia a mild generali-
zation of part of Strassen's result. The proof of Theorem 3.1
is a simple application of the Hahn-Banach theorem.

Replacing u, v by — u, — v respectively, we see that
statement (ii) is equivalent to

(if) for all u e ^(X) and v e ^(Y) we have

min { X ( u o TTx + ^ ° ^v) ''
 x e

 K} ^ (Ji(u) + v^) •

It is obvious that (ii') implies (iii). On the other hand if (iii)
is true and if u e ^(X), v e ^(Y) and

a = min { X ( u o TT^ -t~ ^ ° ^i) : ^ e K}

then, on writing w(y) =. v(y) — a , we obtain

X(u o TTx -T W o TTy) ^ 0

for all X e K , and hence [i(u) + v(^) ^ 0 ? from which
statement (ii') follows at once. Thus (ii) and (iii) are equivalent.

Next, we note that (i) implies (iii) trivially. To complete
the proof we show that statement (ii) implies (i). For this we
write, for all fe ^(X X Y) ,

p ( / ' ) = m a x { X ( / ' ) : X e K } .
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Then p is a real sublinear functional on ^(X X Y) . Consider
the linear subspace

L = {U o TCx + V o TCy : U G ^(X) , ^ E ^(Y)}

of ^(X X Y) and define 6 : L -> R via

Q{U o TTx + ^ ° ^1-) = ̂ (^ + v^) •

It is easy to see that 6 is well defined and linear and that
6(1) = 1 . By (ii) we have Q(f) ^ p(f) for all fe L . By the
Hahn-Banach theorem 6 can be extended to a linear func-
tional (call it 6 again) on ^(X X Y) such that 6(/1) ^ p(f)

for all fe ^(X X Y) . If f ̂  0 then Q(f) ^ p(f) ^ 0 .
Consequently 6 is positive and 6(1) = 1 , whence
6 e ^(X X Y) . It is obvious that n^Q == [L , 7TY6 == v .
Finally we note that because

K = n {P,:he <^(X X Y)} ,
where

P,= { p c ^ ( X x Y): p(/i) ^ p(A)} ,

we have 6 e K . This completes the proof.
A special case of some interest is that in which K is of the

form
{6 G ^(X X Y): 61 ^ 6 ^ 63}

where 6^, 62 are given elements of c^(X X Y) .
In some of the applications of Theorem 3.1 the following

observation is useful.

ADDENDUM TO THEOREM 3.1. — In Theorem 3.1 conditions

(ii) and (iii) are respectively equivalent to :

(ii)g for all u e ^(X) and v e ^(Y) we have

pi(u) + v(^) ^ sup {X(u o n^+ v o n^) : \ e KJ ;

(iii)g whenever u e ^(X) and v E ^(Y) are such that

\{U o TTx + V o TTy) ^ 0 (X 6 K^) ,

w^ have [L{u) + ^(^) ^ 0 .

This follows from the Krein-Milman theorem. By way of
application we have the following result.
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COROLLARY 3.2. — Let X, Y , |JL , v be as in Theorem 3.1

and let R be a non-empty closed subset of X X Y . Then the

following statements are equivalent:

(i) there exists a measure Q e ^(X X Y) , with supp 6 c R ^

such that n^Q = (JL , 7Ty6 = v ;

(ii) /br all u e ^(X) a/zd v 6 ^(Y) we /ia^

(i(u) + v(^) ^ max {u{x) + ^(y) •• (^, y) ^ R} ;

(iii) if u e ^(X) , v e ^(Y) and u(a;) + v{y) ^ 0 /or all

{x, y) G R then (Ji(u) + v(^) ^ 0 •
To see this we need only take

K = {Q E ^(X X Y) : supp 6 c R}

and apply Theorem 3.1 (with Addendum).
In many applications it is important to have criteria for

the existence of 6 expressed in terms of sets rather than
functions. For example (compare [10]) in connection with
Corollary 3.2 we have the following result.

PROPOSITION 3.3. — Let X , Y be compact Hausdorff

spaces^ let |JL e ^(X) , v e ^(Y) and let R be a closed non-

empty subset of X X Y . Then the following statements are

equivalent:

(i) there exists a measure 6 E ^(X X Y) , with supp 6 c R ^
such that n^Q = [L , TiyO = v ;

(ii) for all E e ^(X) and F e ^(Y) such that

(E X [ ?) n R == 9 we have [L{E) ^ v(F) ;

(iii) for all open U c X and open V c Y such that

(U X [ V) n R = 9 we have (i(U) ^ v(V) .

The implication (i) ===»- (ii) requires only an easy calcu-

lation; (ii) ==^ (iii) is evident. To prove that (iii) ===^ (i)
let u e ^(X) , v e ^(Y) be such that u{x} ^ v{y) for all
{x , y) e R and let

U, = {x e X : u[x) > t} , V, = {y e Y : v{y) > t}
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for all real t . Then (u, X [ V,) n R = 0 and so, if (iii)
is assumed, we have P-(U) < v(V^) . Adding a positive
constant to u , v if necessary, we can suppose that thev are
positive. We now have

|i(u) = fj° pL(H) dt ^ f^ v(V,) dt ^ v(v) .

It follows that statement (iii) of Corollary 3.2 has been verified,
and the existence of 6 is therefore proved.

For much more information about criteria involving sets
rather than functions see [10].

The foregoing results, with the exception of Proposition 3.3,
extend at once to finite products of compact spaces. Moreover,
one can go to infinite products in the following way.

THEOREM 3.4. — Let (X^^ be a non-empty family of

compact Hausdorff spaces and let X be the topological product

n x^ Suppose that (p^LeA ls an
 element of TT ^(X^)

aeA . aeA

and that K is a non-empty vaguely compact subset of ^(X) .
Then the following statements are equivalent.

(i) there exists a measure 9 e K such that ^yQ = ̂  for all
a e A ;

(ii) whenever n ^ i , (04 , a^ , . . . , aj e A^ and u^ e ^(X^ )

for r = l , 2 , . . . , n , we have

n ^ ( n \ )
S ^a^a) ^ max X ( ̂  Uy o TT:^ ): X e K[ ;
^i ( \r.--i '' V )

(iii) whenever n ^ 1, (o^ , ag , . . . , aj G A71 and u^ e ^(X^J

/or r = 1 , 2 , . . . , n , and

X^^o^ ^ 0 ( X e K ) ,

n

We /l0^ ^ ^a,(^a,) > 0 •
r==l

The proof is a mild complication of that for Theorem 3.1
and may be left to the reader, who will also see that Corollary
3.2 may be extended in the same fashion.
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4. Compact ordered spaces.

By a compact ordered space we shall understand, following
Nachbin [7], a partially ordered compact HausdorfT space X
the graph of whose partial ordering,

R= { ( ^ , y ) G X 2 : x ^ y }

is a closed subset of the topological product X2 . Throughout
this section X will be such a space. We recall that, by a
theorem of Nachbin [7]. the space ^(X) is order determining

for X in the sense that, for all {x , y} e X2 , we have x ^ y

if and only if g[x) < g{y) for all g e ^(X) . Thus if x ^ y

then there exists an he ^(X) such that h(x) > h{y) .
It follows that ^(X) separates the points of X and hence,
by the Kakutani-Stone theorem, that the vector difference
^(X) — ^(X) is a dense sublattice of ^(X) .

Given [L , v e ^+(X) , we shall write [JL ^ v whenever

^(g) ^ ^{g}
 for a11

 8
 e ^(x) - since ± 1 e ^(x) this

condition implies that |ji(l) = v( l) . Since ^(X) generates
a dense subspace of ^(X) the relation ^ is a partial ordering

for ^/+(X) .
The first theorem of this section is as follows.

THEOREM 4.1. — Suppose that [L , v e ^(X) and that

[L ^ v . Then there exists a measure Q e ^(X2) such that

(i) supp 6 c R ^

(ii) the first and second marginals of 6 are [L ,. ^ respectively.

A result in this spirit, but for Polish spaces, was given by
Strassen [10] who, however, defined his ordering of measures
in terms of sets rather than functions. (We shall deduce
Strassen's result from Theorem 3.1 in § 7.) For finite X ,
Theorem 4.1 is an immediate consequence of Strassen's result;
and both the finite case and Strassen's theorem have been
shown by Preston (in [8] and an unpublished communication)
to follow from the min-cut max-flow theorem of programming
theory. Theorem 4.1 was announced in [3].

Our main object here is to give a proof of Theorem 4.1 that
will generalize to higher products, but it may be of interest
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to give first a very short proof, even though it does not so
generalize.

By a theorem of Nachbin (see p. 46 of [7]) and one of

Priestley (Theorem 3 of [9]), compact ordered spaces have the

following property : Let X be a compact ordered space and let

u , v e <<?(X) be functions such that, for all (x , y) e R,
u{x) ^ ^(y) • Then there exists a function w e <g'+(X) such
that, for all x e X ,

u(x) < w{x) ;$ v{x) .

Admit this, and let u , v , w be as in the statement. Then

(A(M) < (A(w) < v(w) <$ v(p) .

We have thus proved that, whenever u , v e %'(X) with

- u(x) + ?(i/) > 0

for all (x , y) e R it follows that

ti(— u) + v(P) > 0 .

Hence, by Corollary 3.2, a measure 6 e ^(X2) with the
desired properties (i) and (ii) exists.

The above proof will not generalize to higher products,
and we shall therefore give another one which will. This second
proof is an adaptation of some standard arguments of Choquet
theory. (In fact the argument is a special case of parts of [2]
and [II], but it is simpler for present purposes to argue directly)

When fe %'(X) and a; e X we shall write

f{x) == inf {g{x): g e <^(X) , g ^ f } .

This definition provides an upper semicontinuous decreasing

function f: X -> R that majorizes f but is bounded above
by max f.

PROPOSITION 4.2. — Let y. e ^+(X) and let v be a linear

functional on ^(X) . Then v(f) < y.(f) for all fe ^(X)

if and only if v e ^'^.(X) with v ^- (A .

For the reader's convenience we give the (short) proof.
Suppose that v e ^+(X) and that v ^ (A , and let

g e ^(X) . Then y.{g) ^ v(g) . Since {g e <^(X) : g ^ f } is
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downward filtering with pointwise limit f, it follows that

^n > ^(f) ^ ^(D .
Conversely, let v be a linear functional on ^(X) that

satisfies ^{f) < y.(f) for all fe <<?(X) . Then v(/~) ^ 0
whenever f < 0 , and hence v 6 ^+(X) . And if g e <^(X)
then g= g and we have v(g) ^ (A (g) = (i(g), whence
v ^ (A .

PROPOSITION 4.3. - Let (A , ̂  , ̂  , v fcefo^g (o ^(X)

and suppose (/ia( (i ^ v , ;x = ̂  + ̂  . Then there exist

measures ^, v, e ̂ (X) suc/i (A^ î -; Vi , (x^ <; ̂  and
v = v! + ^2 .

If /'6 ^(X) then, by Proposition 4.2,

^(/') < v-(n = v-i(n + ̂ (f).
If we write ?(/•)= (x,(/), q(f) = v(/-) - ̂ ) then p is
subhnear on %'(X) , q is superlinear, and ^(/") < p(f) for all
/'6 <<?(X) . By a well-known sharpening of the Hahn-Banach
theorem, there is a linear functional ^ on 'g'(X) such that

<?(/') < vi(/") < ?(/•) (fe <^(X)).

On taking ^ = v — v, and using Proposition 4.2 we see that
YI and vg have the desired properties.

Now let

s= {((^ , ^ } - - V- , v e^(X) , (A <{ v} .

Then S is a compact convex subset of ^(X)2 , and we
proceed to characterize the extreme points of S . '

THEOREM 4.4. - S, = {(e, , s,) : x , y 6 X , x < y} .

Let ((A , v) e S and suppose that (A has a non-trivial
convex decomposition

V- == a^! + (1 — a)^

with ^ , ̂  6 ^(X) . By Proposition 4.3, there exist measures

vi , v2 e ^(X) such that Vi ^ ^ , ̂ , ^ ^ and

v = avi + (1 — a)va .
But now

(^ , v) = a(^ , v,) + (1 - a)(^ , v^) ,
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which shows that ((A, v) is not extreme. It follows that if
((A , v) e S^ then (A == e^. for some x e X . Reversing the
order in X we see that we must likewise also then have
v = £y for some y in X . But since ^(X) is order deter-
mining, we have e^. ^ e^ if and only if x ^ y . The result is
therefore clear.

We can now prove Theorem 4.1. For this it is enough
by Corollary 3.2 to show that, for all u , v e ^(X) ,

(4.1) [L{U) + v(P) ^ max {u(x) + p(y): {x , y) e R} ,

where R is the graph of the order in X . Since the map

S 9 ((1 , V) I——^ (i(u) + v(P)

is affine and continuous on S it is enough, by the Krein-
Milman theorem, to check that the inequality (4.1) is true for
all ((A , v) e S^. By Theorem 4.5 this means that we must
show that, for all (S , ^ e R ,

^(S) + ̂ ) ^ max {u^) + ̂ y): { x . y ) e R} ?
which is obvious.

PROPOSITION 4.5. — Suppose that [L , v G ^(X) and that

(A ^ v . Let /*, g e ^(X) 6e 5uc/i tAa( /^(^) ^ g(y) whenever
( ^ , y ) e R . T^n ^(/ l) ^ v(g) .

This result was demonstrated during the first proof of
Theorem 4.1. It also follows directly from Theorem 4.1 and
Corollary 3.2.

The measure 6 of Theorem 4.1 is in general not unique,
as one can see by considering for example the matrices

0 i- A
4 4

i J-
4 4

0 0 0

0

1 1

^ ° ^
0 ^- 0

0 0 0

where the rows are to be numbered from the bottom, the
columns from the left. Uniqueness does occur in the special
case (i == v .
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PROPOSITION 4.6. — If in Theorem 4.1 it is assumed that

^ == v then Q is uniquely determined and, moreover, supp 6 c A,
where A is the diagonal in the space X

2
 .

Suppose if possible that {xo , yo) e supp 6 with XQ < yo .
Then yo ^ XQ and so we can find a function fe ^(X)
such that f (xo) < f (yo) . Then

0 = ^{f) - {.(/•) = ff^ (f{y) - f(x))Q {dx , dy) > 0 ,

so we have a contradiction, and it follows that supp 6 c A .
It follows easily now that 6 can be identified with the measure
on A that is the image of (JL under the map X 9 x i—>- (x , x),

In Proposition 4.6, all the mass is carried by A . In the
next result none of it is.

PROPOSITION 4.7. — Let [L , v e ^(X) with [L ^ v and

suppose that [L , v are mutually singular. Then any measure

Q e ^(X2) that satisfies conditions (i) and (ii) of Theorem 4.1
must also satisfy the equation 9 (A) == 0 .

To see this let 6^ be the measure on X
2 defined by

6i(E) = 6(E n A) (E e ^(X2)).

Then 0 ^ 61 < 6 . The two projections of Q^ are equal,
and their common value, p say, satisfies 0 ^ p ^ (JL ,
0 ^ p ^ v . Since p. , v are mutually singular, these inequa-
lities imply that p = 0 , whence 61 = 0 . Hence 6(A) == 0 y
as asserted.

COROLLARY 4.8 (Nachbin). — Let a e <^(X) be such that

^{f) ^ 0 /or a^ ^e ^(X) . Then there exists a measure
6 e ^+(X2) such that

(i) supp 6 c R fcu< 6(A) == 0 ;

(ii) ||e|| = 1/2 HI ;
(iii) a(/l) = JLx(/l (2/) ~ f W)Q {dx ? dy) for au f e ̂ (x)'
To see this consider the Jordan decomposition a"=Gt—CT~

of cr . Then a4- , a- e ^^.(X) , o- ^ a4- and, without loss of
generality, we can suppose that <r4- , a- e ^(X) . By Theorem
4.1 there is a measure 6 e ^(X2) supported by R and
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having cr- , (T+ as its first and second projections. By Propo-
sition 4.7 this 6 satisfies 6(A) = 0 . Moreover since 6 , a~ , a+
are probabilities,

l i e u =l/2(||(T+|| +|| (T-ii) =1/2 M I .

Property (iii) is evident. This completes the proof.
Nachbin's own proof of Corollary 4.8 was rather different

from this one (see pp. 120-121 of [7]).
It should be remarked that Theorem 4.1 and Corollary 4.8

are in fact equivalent, as we shall now show by adapting a
construction of Hommel [5]. To derive Theorem 4.1 from
Nachbin's result let Y be a homeomorphic copy of X and
let Z be the topological sum of X and Y . Partially
order Z by taking (with a convenient abuse of notation)
the set

r = {(^ , y) ̂  (= X , y e Y , x ^ y} u {{z ,z) : z e Z}

in Z
2 as the graph of the order relation. Let pi e ^(X) ,

v e ^(Y) with (abuse of notation) [L ^ v . Interpret [L , v
as measures on Z and take <r == v — (JL in Corollary 4.8.
Then the measure 6 provided by that corollary lives on

F\{{z , z) : ze Z} = {{x , y) e X X Y : x ^ y}

and its marginals are [L , v (again interpreted as measures
on Z). Hence we get the conclusions of Theorem 4.1.

The route to Theorem 4.1 via Nachbin's theorem is somewhat
similar to the proof given above that was based on Priestley's
theorem. Like that argument, it has no natural generalization
to higher products.

It can be shown that if (JL , v e ^(X) then (JL ^ v if and
only if [ji(E) ^ v(E) for every increasing E e ^(X) . We

postpone discussion of this type of criterion until § 7, and
turn now instead to the question of higher products.

Suppose that A is a totally ordered set and let us, for the
rest of this section, use R to denote the set of all those
(^a)aeA m ^A ^or which the map a -> Xy^ is an increasing
function from A into X . Let us also write now S for the
set of all those (p-a)aGA m ^(X)A for which the map a -> ̂
is increasing with respect to the partial order ^ in ^(X) .



ON THE EXISTENCE OF PROBABILITY MEASURES 65

THEOREM 4.9. — Let (|ia)aeA e S . Then there exists a
measure 6 e ^(X^ such that

(i) supp 6 c R ,

(ii) Tr.e = ̂  (a G A) . ^

We begin by considering the special case where
A = = { l , 2 , . . . , n } with the usual order. Points of X^,
^(X)A are then denoted by ^-tuples. The crucial step in this
case is to prove that

(4.2) S, = {(^ , £ , , , . . . , £j : (^ , ̂  , . . . , x,} E R} .

Suppose, for this, that (p4 , ^2 ? • • • ? P^n) e S and that one
of these measures, (JL,. say, has a non-trivial convex decom-
position

^=tG,+ (1 - t)^,

where 0 < ( < 1 and ^ , p^ e ^(X) . Working backwards
and forwards from (JL^ with the aid of Proposition 4.3 (as in
the proof of Theorem 4.4) we obtain elements

((TI , Og , . . . , crj , (pi , P2 5 • • • ? Pn)

of S such that

^=^,+(1--^ ( / = 1 , 2 , ... ,n).

Since cr^ 7^ p^ this shows that ((AI , ̂  , . . . , (ij is not an
extreme point of S . The equation (4.2) is therefore now clear.
We can now apply Theorem 3.4 (see the remark at the end of
§ 3) with

K = { 6 G ^(X^ : supp 6 c R}

to conclude the proof for this special case (see the final steps
for Theorem 4.1).

- To prove the general case it is evidently enough, by Theorem
3.4, to show that whenever n ^ 1 , (ai , 002 , . . . , aj £ A71

and u^ e ^(X) for r == 1 , 2 , . . . , n we have

n f n \

5 ̂ M ^ max ) S ^{x^) : (^)^A G R i •
r==l ( r=l )

But this inequality is a consequence of our argument for the
case of finite A . The proof of Theorem 4.9 is therefore com-
plete.
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5. Completely regular spaces.

Here we consider Radon probability measures on completely
regular spaces.

We first recall some facts about Radon measures. Let X
be a completely regular space and let X? be a compactifi-
cation of X (see § 2). Then the map i; , as a map of Borel
measures (see § 2), maps ^(X) injectively into ^(X^) ,
and maps probabilities to probabilities. If (ii e ^^(XS)
then in order that there exist a measure [L e ^_^.(X) such
that ^[L = (Jii it is necessary and sufficient that for each
e > 0 we can find a compact subset C of X such that
(Jii(X^\^(C)) < s . On these matters see [I], especially
Expose n° 6.

In our first theorem we consider two completely regular
spaces X , Y and their product Z == X X Y . We take
compactifications X^ of X and Y71 of Y and let ^ = S X " y ] ,
V = XS x Y^ .

PROPOSITION 5.1. —Let (JL e ^(X) , v e ^(Y) , 61 e ^(Z^)

and suppose that the projections of 61 onto the factor spaces of

X^ X Y71 are ^(JL , Y]V . Then there is a unique measure 6 e ^(Z)

such that ^6 == 61 . Moreover, n^Q = (JL , 7Ty6 = v .

Let £ > 0 and choose compact sets Xg c X and Yg g Y

such that

^x(X\X,) <-J-, v(Y\Y,) <y.

Then

WX, X Y^) = [WW = ;x(X,) > 1 -y

Similarly

6i(X^x 73 Y,) > 1--J-.

Hence
6i(Z^Z,) < £ .

where Zg == Xg X Yg . By our opening remarks this shows
that there is a unique 6 e ^(Z) such that ^6 = 61 .

Now let E e ^(X) . Then there exists an Ei e ^(X?)
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such that E = ^(Ei) . Then

6(E x Y) = 6(^(E, x Y^)) = e,(E, x Y^) = (^)(E,) = (X(E) ,

and so 7^x6 === (JL . Similarly TTyO == v .
Continuing with the same notation, we can now prove :

THEOREM 5.2. — Let (A e^(X) , v e ^(Y) am^ ^( K

fee a non-empty o(^(Z) , ^(Z)) — closed convex subset of

^(X X Y) . Then the following statements are equivalent:

(i) (Aere exists a measure 6 e K such that

^x9 •== ^- , ̂ yB == v ;

(ii) for all u e ^(X) , ^ e ^^(Y) we have

(Ji(u) + v(^) ^ sup {X(u o TCX + v o Tiy) : X e K} ;

(iii) whenever u e ^(X) , v e ^^(Y) and

X(u o TCX + ^ ° ^y) ^ 0 (X e K)

we have pi(u) + v(?) ^ 0 .

The implications (i) =^ (ii) -<r=> (iii) are much the same
as for Theorem 3.1. It will accordingly suffice for us to give
the proof that (ii) => (i) .

Let us denote by K the a{^{V) , ^(Z^)) — closure in

^(Z) of the convex set ^(K) . Then K is a non-empty
compact convex subset of ^(Z^) and it is easy to see that

(5.1) KnWZ)) = r(K),

Now assume that statement (ii) of Theorem 5.2 is true. Then,
for all u e ^(Y?) and all v e ^(YI) we have

(^(i)(u) + (7]v)(^) ^ max {X(u o n^ + v o -n;̂ ) : X e K} .

By Theorem 3.1 there exists a measure 62 e K such that

TC ^6 == E;[JL , TT ^6 === T]V . Proposition 5.1 now supplies a

measure 6 e ^(Z) such that ^6 == 6i , n^Q = [L , 7Ty6 = v .

COROLLARY 5.3. — Let X , Y , ( J I , V , S , Y ) be as in Theorem

5.2 and let R be a non-empty closed subset of X X Y .
Then the following statements are equivalent:

(i) there exists a measure 6 e ^(X X Y) , with supp 6 c R ^
such that Tt^O == p. , 7Ty6 === v ;
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(ii) for all u e ^(X) and v e ^(Y) we have

(i(u) + v(^) ^ sup {u(x) + ^(y) : (x , y) e R} ;

(iii) if u e ^(X) , v e ^(Y) and. u{x) + ^(y) ^ 0 for all

(x , y) e R t/^n pL(u) + v(^) ^ 0 .

To prove this one applies Theorem 5.2 with

K = {Q e ^(X X Y) : supp 6 c R} ,

noting that this choice makes the supremum in that theorem
have the same value as in Corollary 5.3. The proof that this K
is o(^(Z) , ^(Z)) — closed may be left to the reader.

PROPOSITION 5.4. — If in Proposition 3.3 the conditions are

relaxed to allow X , Y to be completely regular spaces^ the

conclusions remain true.

The proof is as before, except that one uses Corollary 5.3
in place of Corollary 3.2.

In order to treat infinite products we introduce some nota-
tion. We let (XJ^i be an infinite sequence of completely

00

regular spaces, with topological product X = JJ X^ . For
71=1

each n we suppose given a compactification Xj" of X^ .
00

We denote by ^ the product map JJ ^ , so that X^ can
ra=i °°

be identified with the topological product ]j[ XJ" . The
n=i

natural projections X -> X^ and XE -> XJ" will be denoted
by TC^ and o^ respectively.

PROPOSITION 5.5. — Suppose that [L,, e ^(XJ for all n ,
that 61 e ^(X^) and that c^6i = ^(JL^ for all n . Then there

is a unique measure 6 G ^(X) such that i;6 = 61 . Moreover

7r^6 == (JL^ for all n .

To see this choose e > 0 and then a sequence (sj^i
n

of positive reals such that ^ s^ < e . For each n we can
n=l

find a compact subset Y^ of X^ such that (J^(X^\YJ < e^ .
Now let

En = (n w) x ( n xi.)
V=l / \/c==n+l /
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Then a simple calculation (see the proof of Proposition 5.1
for the idea) shows that

6i(EJ > l - ( ^ + s , + • • • + S J .

Letting n —> oo we obtain

Qifn^w) ^ i -n^ > i - e .
V=l / /c=l

By the opening remarks of this section this implies that there
is a unique 6 e ^(X) such that ^6 = 6i . The rest of the
proof is similar to that for Proposition 5.1.

00

THEOREM 5.6. — Let ((iJe]J^(XJ and let K be a
n=l

non-empty CT(^(X) , ̂ (X)) — closed convex subset of ^(X) .

TAen ̂  following statements are equivalent:

(i) there exists a 6eK 5ucA that n^Q=[L^ for n=i , 2 , ... ;

(ii) whenever m > 1 and Up £ ^^(X^) /or r === 1 , 2 , ... , m

we have

^ .̂(u,) ^ sup x( ^ u, o TrJ : X e K ;

(iii) whenever m ^ 1 and! u^ e ^(X^) /br r == 1 , 2 , . . . , m

and, for all X e K ,
/ m \

X ( S r̂ ° ^r ) ^ 0
\r==l /

m

it follows that ^ ^r^r) ^ 0 .
r==l

The proof is the (now) obvious extension of that for Theorem
5.2. One appeals to Theorem 3.4 and to Proposition 5.6
instead of (respectively) Theorem 3.1 and Proposition 5.1.

If in Theorem 5.2 we take X^ and Y^ to be the fiech-
Stone compactifications then we obtain an extension to
completely regular spaces of a special case of Strassen's
Theorem 7 [10]. We have dealt here with more general compac-
tifications because of the needs of S 6 below.
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6. Completely regular ordered spaces.

Our aim here is to extend some of the results of § 4 to a
reasonable class of non-compact ordered spaces. For this
purpose Nachbin's [7] completely regular ordered spaces

(CRO-spaces) will serve. He defines such a space to be a topo-
logical space X on which a partial order (with closed graph R)
is defined such that:

(i) for each a e X and each neighbourhood G of a we
can find continuous functions /", g : X -> [0 , 1] such that f
is increasing, g is decreasing, f'(a) = g{a) = 1 , and
min (/*, g) is identically zero in G ;

(ii) if x , y e X then x < y if and only if f {x) ^ f {y) ,
for all ^(X).

Such spaces are completely regular in the usual sense.
A compact ordered space is always a CRO-space; so is every
subspace of a CRO-space. A Euclidean space R

k , with the
ordering induced by its positive cone, is a CRO-space. More
generally, let E be a topological abelian group with a partial
order such that (i) the set E+ == {x G E : x ^ 0} is closed,
(ii) there is a neighbourhood base ^ at the origin such that if
O ^ x ^ y e V e ^ then x e U . In these circumstances E
is a CRO-space; this example includes many ordered topological
vector spaces. (On all this see Chapter II of [7].)

Nachbin [7] (see Hommel [5] for a more convenient account)
has shown that if X is a CRO-space then there exists a
compactification X

T of X such that:

(a) X1' is a compact ordered space;

(&) i f x , y e X then x < y in X if and only if ^(x) ̂  y(2/)
in X^ ;

(c) for every fe ^(X) there exists a function f^ e ^(XT)
such that /i o Y == f '

This compactification is unique up to isomorphisms of
ordered topological spaces, and will be called the Nachbin

compactification of X .
If X is a CRO-space and ^ , v e ^+(X) we shall write

[L ^ v if (!(/') ^ v(f) for all fe <^(X) . This is evidently
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the case if and only if Y((1) < Y^) in ^(^ • Conse-
quently the relation ^ is a partial order in e^+(X) .

THEOREM 6.1. — Let X be a CRO-space, and let [L , v e ^(X)
wi(/i (JL -< v . T/ien there exists a measure 6 e ^(X2) sucA (Aat

(i) 6(R) = 1 ;

(ii) the first and second marginals of 0 are [L and ^ .

Since y^) ^ vM there exists, by Theorem 4.1, a measure
63. e ^(XT X XT) , whose first and second marginals are

Y(|i) and y(v) , and which satisfies 6i(R) = 1 , where R
is the graph in XT X XT of the order relation on XT . By
Proposition 5.1, there is a unique measure 6 e ^(X2) such
that 61 == (y X v)(6) ; and this measure 6 has [L , v as its
first and second marginals. It remains only for us to prove that
Q/pn == 1 . By condition (fc) in the definition of XT we have

R n (y(X) X y(X)) = (Y X y)(R) •

Since 61 == (y X Y)(6) this
 impli

68 that

6(R) = e((y X T)-1^) = ̂ (R) == 1 •

COROLLARY 6.2. — Let X , [JL , v ^ 05 in Theorem 6.1 and
^( /*, g e ^^X) fee 5uc/i that f {x) ^ g(y) for all {x , y) e R .

77î  |x(f) ^ v(g) .

To see this, consider f^{g° ^2— f° ^i) rfe . where 6
is as in Theorem 6.1.

Corollary 6.2 generalizes Proposition 4.5. Other results of
§ 4 which carry over, mutatis mutandis, to the present situation
are Proposition 4.6 (uniqueness of 6 when [A = v) and
Proposition 4.7 (6(A) =0 if |i ^ v with (i , v mutually
singular). From this last remark it follows that we have the
following generalization of Nachbin's theorem.

THEOREM 6.3. — Let X be a CRO-space and let a e ^(X)
be such that a{f) ^ 0 for all fe <^(X) . Then there exists a

measure 6 e J^+(X2) such that

(i) suppO c R but 6(A) =0 ;
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(ii) ||6|| -1/21HI ;
(iii) ^(f)=ff^(f{y)-f{x))Q(dx,dy) for all / -e^(X) .

The proof is the obvious extension of that for Corollary 4.8.
Hommel [5] has investigated rather fully the possibility

of extending Nachbin's theorem to locally compact ordered
spaces (see Theorem 4.2.5 and Corollary 4.2.8 in [5]). Theorem
6.3 shows that in part (1) of HommeFs Corollary 4.2.8. we can
drop the local compactness condition, provided that we
continue to insist that all measures be Radon.

We can extend Theorem 6.1 to a power XA of X , for any
countable totally ordered set A . We obtain the following
theorem, in which R denotes the set of all (^a)aeA e ^A

such that y. —> Xy^ is an increasing map.

THEOREM 6.4. — Let X be a CT{0-space, let A. be a totally

ordered countable set, and let a -> [L^ be an increasing map of

A into ^(X^ such that

(i) supp 6 c R ;

(ii) n^Q == (J-a for all a e A .

To prove this, let Y be the Nachbin compactiflcation
X^ of X and consider the map ai—^ Y^a °^ A into ^(Y) .
Since this map is increasing, Theorem 4.9 provides a measure
61 e ^(Y^ such that

supp 61 c R , ^61 = Y(^ (a e A) ,

where R is the set of all (^a)aeA in ^A such that a —> x^

is an increasing map, and &a is the a th projection of YA

onto Y . Since A is countable there exists, by Proposition
5.5, a measure 6 e ^(X^ such that 61 = y6 and 7^6 = [L^

for all a . It remains to prove that 6(R) == 1 , but this
follows (see the proof of Theorem 6.1) from the relation

R n Y(X)A = (y^R) .

7. Further remarks on ordered spaces.

By an ordered completely regular space we shall mean a
completely regular space with a partial order whose graph is
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closed. Such a space need not be a CRO-space (see p. 88 of [5]).
The following result is very close to part of Theorem 4.2.4
in [5], and we shall merely sketch the proof.

THEOREM 7.1. — Let X be an ordered completely regular

space and let [L , v e ^(X) . Then the following conditions are

equivalent:

(i) [^(f) ^ ^(/*) for all increasing bounded upper semiconti-

nuous f: X -> R ;

(ii) (JI.(F) ^ v(F) for all increasing closed F c X ;

(iii) pi(G) ^ ^(G) for all increasing open G c X ;

(iv) [^{f) ^ ^(/*) for all increasing bounded lower semi-

continuous f: X —> R .

If X is in fact a CI{0-space then these conditions are equi-

valent to :

(v) (.(/•) ^ ^(U for all /-e^(X).

To show that (i) ==^ (ii) it suffices to take f = lp in (i),
with F a closed increasing subset of X . To prove that
(ii) =^ (i) it suffices to consider the case of increasing upper
semicontinuous f: X —> [0 , 1] . For such, take

F { t } = { x : f { x ) ^ t} {teR)

and let /, = J^ 1 Then, by (ii), (<) ^ v(/'J .

r-!
But 0 ^ f^ — f ̂  — ? and hence we see, letting n —> oo ,

iv

that [^{f) ^ v(/ l) • We have thus proved that (i), (ii) are
equivalent. The proof that (iii) -4==»- (iv) is similar, and we
omit it.

To prove that (ii) ==^ (iii) take G as in (iii), let e < 0 ,
and choose a compact set K such that

ti(G) < (i(K) + s , v(G) < v(K) + s .

Because K is compact the smallest increasing subset i(K)

of X that contains K is closed (see p. 44 of [7]). By condi-
tion (ii) we therefore have

li(G) < (.(K) + e ^ ^'(K)) + e ^ v(.(K)) + c < v(G) + s .
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Hence we obtain (in). The proof that (iii) -==^ (ii) is similar

C P
(consider G and [ F) .

Now suppose that X is a CRO-space. Then (i) ===^ (v) .
To complete the proof of Theorem 7.1 it will suffice to show
that (v) ==^ (i) . To see this, consider

ff^f{y)-fW)Q{dx,dy)^

where 6 is as in Theorem 6.1 and f is bounded increasing
and upper semicontinuous.

If X is an ordered completely regular space which is not
a CRO-space then, as we shall see below, it can happen that
the space ^(X) does not determine the order in X . In
that case we can find a , b in X such that (a, b) < ^ R
yet f{a) ^ f {b) for all fe <^(X) . Consequently ^ ^ s,
in the sense of § 6, but there is no measure 6 on R having
s^ , s^, as its first and second marginals.

For an example of an ordered completely regular space X
for which ^(X) does notdetermine the order I am indebted
to M. J. Saint-Raymond. Here is his example. Let

S=j^ : n = l , 2 , 3 , . . . j u { 0 } ,

J=[0,1]\Q,

and let {g,} be an enumeration of the set Q n [0 , 1] .
Let X be the following subspace of R

2
 :

X = ( J x { 0 } ) u j ^ , l ^ : m , n = l , 2 , . . . ?
(\ mn] )

^ { { 2 k • . k = l , 2 , . . . } x S ) .

One can show that X is a Gg , and hence is a Polish space,
and hence completely regular. We partially order X by
postulating that

{x , 0) < (y , 0) if {x , 0) e X , {y , 0) e X and x < y ;

1 \ / ^

- n ) " ^/cn.
2k'-L)<s(^ii;) for A - , " = l , 2 , 3 , ....

The graph of this partial order is closed. However, one can
easily show that every fin ^(X) is constant on Xn(R X {0}).
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Accordingly ^(X) does not determine the order, and the
pathology indicated above (failure of conclusion of Theorem6.1)
occurs here.

To obtain a positive result for an ordered completely
regular space X that is not CRO let us consider the following
conditions for X :

Oi: If G is an open subset of X then so is i(G) ;
Og: If F is a closed subset of X then so is i(F) .

THEOREM 7.2. — Let X be an ordered completely regular

space which satisfies either of the conditions Oi , Oa . Let

(JL , v e ^(X) be such that the (mutually equivalent) conditions
/{\ — /iY^ of theorem 7.1 are satisfied. Then there exists a

measure 6 e ^(X2) such that

(i) 6(R) = 1 ;

(ii) the first and second marginals of 6 are [L and v .

Assume that Oi is true and let u , v e ^(X) be such
that u{x) ^ v(y) for all (x , y} e R . For all real t let
G( == {x: u{x) > t} . Note that G( , and hence i(G^) ,
decreases as ( increases. Hence, for all x e X ,

inf {(: xf i{Gt)} = sup { t : x e i(G^)} .

Let w(x) be the (finite) common value of these two expres-
sions. I claim that w is a lower semicontinuous increasing
function such that u ^ w ^ v . Admit this for the moment.
Then

|A(u) ^ (A(w) ^ v(w) ^ v(^) .

Consequently, by Corollary 5.3 a measure 6 satisfying
conditions (i) and (ii) exists. It remains for us to check that w

has the properties asserted.
Suppose that y e X , s e R with w{y) > s . Choose (

such that w{y) > t > s . Then

y e i{Gt) c { x : w{x) > s} .

Since, by Oi , I'(G() is open, this shows that w is lower
semicontinuous.

Next suppose that x , t are such that u[x) > t . Then
x e G( c i(G^) and hence w{x) ^ ( . This shows that u ^ w .
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Suppose now that y , ( satisfy w(y) > t . Then y e i(G^) ,
and so y ^ x for some x e G( . Then ( < u(x) < p(y) .
This proves that w ^ ^ .

The fact that w is increasing is clear because t f—>- i(G^)
is a decreasing map. This concludes the proof when Oi is
true.

When Og is true a similar proof applies. For this case one
takes

Ft = { x : u{x) ^ t}

and now defines w{x) as the common value of the two sides of

inf { ( : x ^ i(F,)} = sup { ( : x e i(F,)} .

One then shows that u ^ w ^ ^ and that w is increasing
and upper semicontinuous. The rest of the proof is as before.
We leave the details of this case to the reader.

Conditions Oi and 0^ are in general not satisfied. For
example if X == [0 , 1] and

R = A u
1 3
T'T

then Oa is true, but Oi is false. On the other hand, if
X = R

2 , with the partial order induced by its positive cone
(i.e. positive quadrant) then Oi is true but Og false. (Indeed,
Oi is always true for a Banach space with the partial order
induced by a closed cone).

If we assume neither Oi nor Og , but take X to be
Polish then a theorem of Strassen [10] provides a positive
conclusion :

THEOREM 7.3 (Strassen). — Let X be an ordered Polish

space, let [L , v e ^(X) , and suppose that (JL(E) ^ v(E)

whenever E is an increasing analytic subset of X . Then there

exist a measure 6 e ^(X2) such that

(i) 6(R) = 1 ;

(ii) the first and second marginals of Q are [L and v

Here is a proof of Theorem 7.3 somewhat different from
Strassen's. Let u , v e ^(X) be such that u{x) ^ ^(y)
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for all (x , y) e R . Let w : X —>• R be defined by

w(^) == sup {u(y) : y ^ x} {x e X) .

I claim that w is increasing and universally measurable and
that u ^ w ^ v .

To prove that w is increasing and that u ^ w ^ v is
easy, so we omit this part. For the measurability of w observe
that

{y : w[y) > a} == {y : 3x such that x ^ y , u{x) > a} .

Thus {y : w{y) > a} is a projection of the Borel set

R r^ {{x: u(x) > a} x X)

and hence is analytic. Hence w is universally measurable.
If now we can show that (Ji(w) ^ v(w) then the proof can

be concluded as for Theorem 7.2.
To prove that p-(<^) ^ ^(w) we can suppose that

0 ^ w ^ 1 . Write

W(t) == { x : w{x) ^ t} {teR)

^ n-l

and let w^ =— V 1 _. • Then ^-(wj ^ ^(wj and
^ r=0 ^"J

j[

0 ^ w^ — w ^ — • Letting n —> oo we get [^(w) ^ v(w) as
desired. n

JVo(e added in proof, 2 August 1978. Since this paper was submitted new material
on the existence of probability measures with prescribed marginals has appeared
in J. HofTmann-Jergensen's lectures « Probability in Banach spaces » in Ecole d'Ete

de Probability de Saint-Flour VJ-1976, Springer-Verlag, Berlin, 1977.
There is some overlap between our two accounts; but, as regards the strictly new

material, the only significant overlap lies in the fact that Hoffmann-Jorgensen's
Theorem I. 5.12 contains the present Theorem 7.2. CRO-spaces ar enot dealt with
by HofTmann-Jergensen.
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