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ON THE EXISTENCE OF SATURATED AND NEARLY
SATURATED ASYMMETRICAL ORTHOGONAL ARRAYS1

BY RAHUL MUKERJEE AND C. F. JEFF WU

Indian Institute of Management and University of Michigan

We develop a combinatorial condition necessary for the existence of a
saturated asymmetrical orthogonal array of strength 2. This condition
limits the choice of integral solutions to the system of equations in the
Bose]Bush approach and can thus strengthen considerably the Bose]Bush
approach as applied to a symmetrical part of such an array. As a conse-
quence, several nonexistence results follow for saturated and nearly satu-
rated orthogonal arrays of strength 2. One of these leads to a partial
settlement of an issue left open in a paper by Wu, Zhang and Wang.
Nonexistence of a class of saturated asymmetrical orthogonal arrays of
strength 4 is briefly discussed.

Ž .1. Introduction. An asymmetrical or mixed-level orthogonal array
Ž m1 mg .OA N, s ??? s , s of strength s is an N = m matrix, m s m q ??? qm ,1 g 1 g

Ž .in which m columns have s G 2 symbols such that for any s columns alli i
w Ž .xpossible combinations of symbols appear equally often Rao 1973 . A sym-

Ž m .metrical orthogonal array OA N, s , s is defined analogously. Because of
wthe wide applicability of orthogonal arrays for example, as optimal fractional

Ž .xfactorial plans; see Cheng 1980 , their existence problem, for given values of
the parameters, is of both theoretical and practical interest. While the
literature in this direction appears to be reasonably rich in the symmetric
case, not many results, apart from the one given by an extension of Rao’s
Ž .1947 bound, are as yet available in the asymmetric case; see Wu, Zhang and

wŽ . x Ž .Wang 1992 , hereafter abbreviated as WZW and Wang and Wu 1992 for
more details.

In connection with the existence problem of symmetrical orthogonal ar-
rays, it is useful to find a good upper bound for m, given N, s and s . Bose

Ž .and Bush 1952 provided one such bound, which we call the BB bound, and
subsequently there have been several bounds in the coding-theoretic litera-

w Ž .xture MacWilliams and Sloane 1977 . For studying the existence of an
Ž m1 mg .asymmetrical OA N, s ??? s , s , one approach is to apply bounds for1 g

Ž m1 . Žsymmetrical arrays to OA N, s , s by ignoring the m q ??? qm columns1 2 g

. Ž m2 .with s , . . . , s symbols and similarly to OA N, s , s and so on. As pointed2 g 2
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out by WZW, this approach does not seem to produce sharp results. For g s 2,
s s s and s s s r, s a prime power, WZW constructed a class of1 2

Ž m1Ž r .m2 . k Ž .OA N, s s , 2 with N s s , k s rq q p, 0 F p F r y 1, m s y 1 q1
Ž r . km s y 1 s s y 1 and m s 1, . . . , B , where2 2 1

1.1 B s sk y s rqp r s r y 1 q 1.Ž . Ž . Ž .1

Ž k . Ž r .The case of p s 0 is trivial because B s s y 1 r s y 1 and therefore1
cannot be further increased. For the rest of the paper we only consider p G 1.
The question is: Can there be more than B columns with s r symbols? By1

Ž Ž r .m2 .applying the BB bound to OA N, s , 2 , WZW obtained B as an upper2
bound for m , where2

sk y s p

B s y u y 1,2 0rs y 1

where u is the integer part of u ,0

1r21 1r r p r pu s q s s y s y s y s q .Ž . Ž .4 2

They also showed that B G B and the equality holds iff p s 1 and s s 2.2 1
They then conjectured that the BB bound is not sharp for general values of
p s 1 and s G 3, or p G 2.

The arrays considered in WZW are saturated in the sense that they leave
no degree of freedom for error estimation. It is known that the Delsarte
Ž .1973 theory provides a powerful tool for studying the existence of saturated

Ž . Ž .symmetrical orthogonal arrays; see Noda 1979 , Hong 1986 , Mukerjee and
Ž .Kageyama 1994 and the references therein. This motivates us to consider a

similar approach for investigating the existence of saturated orthogonal
arrays in the asymmetrical case. For a saturated asymmetrical orthogonal
array of strength 2 we obtain in Lemma 1 a necessary condition for its
existence. By using the condition and other combinatorial techniques, we

Ž .prove in Theorem 1 that the B value in 1.1 cannot be further improved in1
the case of p s 1 and general r and s. We employ Lemma 1 in Section 2 also

Ž 2 m1 m2 .to study the maximum for m in a saturated OA 4s , 2 s , 2 for odd s.2
Some results on the existence of nearly saturated orthogonal arrays of
strength 2 are presented in Section 3. Section 4, which deals with arrays of

Ž m1 m2 .strength 4, shows the nonexistence of a saturated OA N, s s , 4 with1 2
N F 1000, m q m G 5, 2 F s - s F 7.1 2 1 2

2. Saturated orthogonal arrays of strength 2. We begin by consider-
Ž m1 m2 . Žing an OA N, s s , 2 which is saturated in the sense that N y 1 s m s1 2 1 1

. Ž .y 1 q m s y 1 . We derive a necessary condition for the existence of such2 2
an array.

For i s 1, 2, let 1 be the s = 1 vector with all elements unity andi i
w Ž . Ž .x Ž .P s p 1 , . . . , p s be an s y 1 = s matrix such that the s = s matrixi i i i i i i i

Ž y1r2 X.X Ž m1 m2 .s 1 , P is orthogonal. Let A be a saturated OA N, s s , 2 . Withouti i i 1 2
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loss of generality, suppose the first m columns of A have the symbols1
1, 2, . . . , s and the last m columns have the symbols 1, 2, . . . , s . Thus1 2 2

a a ??? a a a ??? a111 112 11m 211 212 21m1 2

a a ??? a a a ??? a121 122 12 m 221 222 22 m1 22.1 A s ,Ž . . .. .. .
a a ??? a a a ??? a1 N 1 1 N 2 1 N m 2 N 1 2 N 2 2 N m1 2

� 4where a g 1, 2, . . . , s , i s 1, 2, 1 F j F N, 1 F k F m .i jk i i
Let « be an N = 1 vector with each element Ny1r2. For i s 1, 2, let AU bei

Ž Ž ..a matrix of order N = m s y 1 defined asi i

1r2 XU � 4A s s rN p a , 1 F j F N , 1 F k F m .Ž .i i i i jk i

Finally, define
U w U U x2.2 A s « A A .Ž . 1 2

Since A is an orthogonal array, it is not hard to see that AUXAU s I , theN
N = N identity matrix. From the saturation condition, AU is an N = N
square matrix. Hence AUAUX s I , that is, the scalar product of any twoN
distinct rows of AU must vanish. This leads to the following key condition
Ž .2.4 .

For 1 F j, u F N, j / u, consider the jth and uth rows of AU. Since their
scalar product is zero, we have

m2 i1 si X2.3 q p a p a s 0.Ž . Ž . Ž .Ý Ý i i jk i iukN Nis1 ks1

However, by the definition of P , for i s 1, 2,i

m mi i 1 miX Ž ju.p a p a s d a , a y s D y ,Ž . Ž . Ž .Ý Ýi i jk i iuk i jk iuk is si iks1 ks1

Ž ju. m i Ž .where D s Ý d a , a , andi ks1 i jk iuk

d a , a s 1, if a s a ,Ž .i jk iuk i jk iuk

s 0, otherwise.
Note that DŽ ju. can be interpreted as the number of coincidences between thei
jth and uth rows of the submatrix of A given by its s -symbol columns. Suchi
numbers of coincidences play a crucial role in the Delsarte theory for sym-
metric orthogonal arrays.

Ž .The relation 2.3 now simplifies to

s DŽ ju. q s DŽ ju. s m q m y 11 1 2 2 1 2

and we have the following lemma.

LEMMA 1. Consider any two distinct rows of a saturated orthogonal array
Ž m1 m2 .OA N, s s , 2 . For i s 1, 2, let D be the number of coincidences between1 2 i
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these two rows arising from the s -symbol columns. Then D and D arei 1 2
nonnegative integers satisfying D F m , D F m ,1 1 2 2

2.4 s D q s D s m q m y 1.Ž . 1 1 2 2 1 2

Ž m1 m2 mg .Lemma 1 can be easily extended to a saturated OA N, s s ??? s , 2 to1 2 g

yield the necessary condition s D q ??? qs D s m q ??? qm y 1, the nota-1 1 g g 1 g

tional system being obvious. Our approach, based on Lemma 1, for studying
Ž m1 m2 .the existence of a saturated OA N, s s , 2 is summarized below. First we1 2

Ž . Ž .employ 2.4 to find all possible integral-valued solutions for D , D in the1 2
range 0 F D F m , i s 1, 2, and thus find the set V of all possible values ofi i
D . Consider now the first row of the subarray given by the s -symbol1 1
columns. Among the other rows of this subarray, let there be t rows havingv

v coincidence with the first row, where v g V. Then, as in the derivation of
the BB bound,

mv 1 yi2.5 t s Ns y 1 , i s 0, 1, 2.Ž . Ž .Ý v 1ž / ž /i ivgV

Ž .If the system of equations 2.5 fails to admit a nonnegative integral-valued
solution for t , v g V , then the nonexistence of the saturatedv

Ž m1 m2 .OA N, s s , 2 follows. In fact, often one does not even have to utilize all1 2
Ž .the equations in 2.5 to prove nonexistence. It may be remarked that if one

works with D , instead of D , then the resulting system of equations becomes2 1
Ž .equivalent to 2.5 and hence yields identical results. Extension of this

Ž . Ž .approach to g G 3 is straightforward: i replace 2.4 by Ýs D s Ým y 1j j j
Ž . Ž .and ii replaces 2.5 by g y 1 analogous systems of equations representing

the first g y 1 subarrays given by the s -symbol columns, j s 1, . . . , g y 1.j
The following result, in continuation of Theorem 2 in WZW, can be proved

using the approach outlined above. This partially settles a question left open
in Section 5 of their paper.

THEOREM 1. For any prime power s and arbitrary positive integers r and
Ž .q r G 2, q G 1 , a saturated asymmetrical orthogonal array
Ž rqq1 m1Ž r .m2 .OA s , s s , 2 exists if and only if m and m are nonnegative1 2

integers satisfying

a m s y 1 q m s r y 1 s s rqq1 y 1Ž . Ž . Ž .1 2

and

s rqq1 y s rq1

b 0 F m F q 1.Ž . 2 rs y 1

PROOF. The ‘‘if ’’ part is proved in Theorem 2 of WZW. It remains to prove
the ‘‘only if ’’ part. For q s 1, this is an immediate consequence of the fact
that s rq1 is not an integral multiple of s2 r. We therefore prove the ‘‘only if ’’
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Ž . Ž .part for q G 2. The necessity of a is obvious. To prove the necessity of b ,
Ž rqq1 m1Ž r .m2 .assume an OA s , s s , 2 exists for

s r qq1 y s rq1

2.6a m s q 1 q jŽ . 2 rs y 1
w Ž .xand cf. a

rqq1 rq11 s y s
rqq1 rm s s y 1 y s y 1 q 1 q jŽ .1 r½ 5s y 1 s y 1

2.6bŽ .
s r y 1 s r y 1

rs 1 q s y j y 1 s s y j ,Ž .
s y 1 s y 1

where j is a positive integer satisfying

2.7 1 F j F s y 1,Ž .
as m G 1.1

Then with s s s and s s s r in Lemma 1, D and D , as defined there,1 2 1 2
must satisfy

s r y 1 s rqq1 y s rq1
rsD q s D s m q m y 1 s s y j y 1 q q 1 q jŽ .1 2 1 2 rs y 1 s y 1

s s rq y 1Ž .
2 ry1s s y j y 1 s q s q ??? qs q ,Ž . Ž . rs y 1

that is,

s ry1 y 1 s rq y 1
ry1D q s D s s y j y 1 qŽ .1 2 rs y 1 s y 1

s ry1 y 1 qy1ry1 r rs s y j q s q ??? q s .Ž . Ž .� 4ž /s y 1

Hence,

s ry1 y 1
ry1 r ry1D s s y j q s v y s D .1 2ž /s y 1

s ry1 y 1
ry1s s sv q 1 y D y j ,Ž .2 ž /s y 1

2 qy2 r Ž .where v s 1 q t q t q ??? qt , t s s . From 2.6b we also have

s ry1 y 1
ry1D F m s s y j s y j ,Ž .1 1 ž /s y 1

which implies that all possible values of D can be expressed as js ry1 y1
Ž ry1 . Ž . Ž .j s y 1 r s y 1 s D , say with 1 F j F s y j . Note that j s 0 would1 j

imply D - 0, which is impossible.1
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Consider now the first row of the orthogonal array. Among the other rows,
let there be f rows having D coincidences with the first row arising fromj 1 j

Ž .the s-symbol columns, 1 F j F s y j . Then as in 2.5 ,
syj

r qq12.8a f s s y 1,Ž . Ý j
js1

syj ry1s y 1
ry1 rq2.8b js y j f s m s y 1 .Ž . Ž .Ý j 1½ 5ž /s y 1js1

Ž . � ry1 Ž ry1 . Ž .4By multiplying 2.8a by s y j s y 1 r s y 1 , subtracting that from
Ž . Ž .2.8b and then simplifying using 2.6b , one obtains

rsyj s y 1
ry1 r rqj y 1 s f s s y j s y 1Ž . Ž .Ý j ž /s y 1js1

s ry1 y 1
rqq1 ry1y s y 1 s y jŽ . ½ 5ž /s y 1

2.9Ž .

s s ry1 y s r y j s rq y s ry1Ž .
s yj s r q y s y 1 y j s ry1 .Ž .

Ž . Ž .Clearly, the left-hand side of 2.9 is nonnegative, while, by 2.7 , the right-
Ž .hand side of 2.9 is negative. Thus we reach a contradiction and this

completes the proof of the theorem. I

It follows from Theorem 1 and the discussion in Section 1 that under the
setup of Theorem 1, the construction procedure in WZW cannot be improved
upon in the sense that one cannot accommodate more s r-level columns than

Ž .they have done. In particular, for r s 2 which implies p F 1 the work of
WZW completely settles the problem considered in their paper.

Ž .Theorem 1 illustrates a situation where use of 2.5 produces a sharper
result than that of the BB bound as applied to a symmetrical part of an
asymmetrical orthogonal array. In general, in the present context, application

Ž .of 2.5 will always be at least as powerful as that of the BB bound. This is
Ž .because equation 2.4 may provide more specific information about the

Ž .possible values of D than the trivial fact 0 F D F m . Consequently, 2.5i i i
will always be at least as strong as the corresponding system of equations
that yields the BB bound.

REMARK 1. Notwithstanding the previous remark, there are situations
Ž .where use of 2.5 fails to produce a result better than the BB bound. The

following example serves as an illustration.

Ž m1 m2 .EXAMPLE 1. We consider a saturated OA 256, 2 8 , 2 . By Theorem 2 in
WZW, such an array exists for m , m satisfying m G 1, m q 7m s 255,1 2 1 1 2
m F 33, while, as noted in their Table 3, application of the BB bound to the2
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Ž m2 .eight-symbol subarray OA 256, 8 , 2 yields m F 34. Thus the question of2
Ž 17 34.existence of OA 256, 2 8 remains open. As will be seen below, even the

Ž . Ž 17 34 .application of 2.5 fails to settle this issue. If an OA 256, 2 8 , 2 exists,
Ž .then by 2.4 one must have 2D q 8D s 50, so that the possible values of D1 2 2

are 2, 3, 4, 5 and 6, since D F 17, D F 34. Consider now the first row of the1 2
array. Among the other rows, let there be f rows having j coincidences withj
the first row arising from the eight-symbol columns, 2 F j F 6. Then follow-

Ž .ing 2.5 ,
f q f q f q f q f s 255,2 3 4 5 6

2 f q 3 f q 4 f q 5 f q 6 f s 1054,2 3 4 5 62.10Ž .
f q 3 f q 6 f q 10 f q 15 f s 1683.2 3 4 5 6

Ž .The system of equations 2.10 , however, has many nonnegative integral-
valued solutions, for example, one particular solution is given by
Ž . Ž .f , f , f , f , f s 0, 17, 187, 51, 0 . It can also be seen that a similar ap-2 3 4 5 6

Ž .proach base on D leads to equations equivalent to 2.10 . Thus, in this1
Ž .example, use of 2.5 fails to produce a result better than that given by the BB

bound.

REMARK 2. In general, in situations studied in Theorem 2 of WZW that
Ž .are not covered by our Theorem 1 e.g., the case p G 2 , use of our approach

does not seem to be helpful in the sense that it fails to produce inconsistent
equations. However, as the following example illustrates, there can be other
situations where our approach is useful.

Ž 2 m1 m2 . Ž .EXAMPLE 2. Consider a saturated OA 4s , 2 s , 2 where s G 3 is odd
and m , m are positive integers satisfying1 2

2.11 m q s y 1 m s 4s2 y 1.Ž . Ž .1 2

Application of the BB bound to its s-symbol subarray yields

m F 16, if s s 3,2

m F 23, if s s 5,22.12Ž .
m F 4s q 2, if s ) 7.2

Ž . Ž .We first consider s s 3 and s s 5. By employing 2.4 and 2.5 we will prove
Ž 3 16 . Ž 5 15 .the nonexistence of saturated OA 36, 2 3 , 2 , OA 36, 2 3 , 2 and

Ž 7 23 .OA 100, 2 5 , 2 .
Ž 5 15 . Ž .If an OA 36, 2 3 , 2 exists, then by 2.4 , D and D must satisfy 2D q1 2 1

Ž .3D s 19 so that the possible value of D F m are 2 and 5. As before,2 1 1
among the rows of the orthogonal array other than the first row, let there be

Ž .f rows having j coincidences with the first row j s 2, 5 arising from thej
two-symbol columns. Then f q f s 35, 2 f q 5 f s 85 and f q 10 f s 802 5 2 5 2 5
w Ž .xcf. 2.10 , with the unique solution f s 30, f s 5. Without loss of general-2 5
ity, let the first row of the two-symbol subarray be 11111. Since f s 5, there5
are five other rows of this subarray which equal 11111. Since f s 30, there2



ASYMMETRICAL ORTHOGONAL ARRAYS 2109

are 30 rows of this subarray having exactly two 1’s and three 2’s. Without loss
Ž .of generality by rearranging the columns if necessary , let one of these 30

rows be 11222. Since any two distinct rows of the two-symbol subarray must
have exactly two or five coincidences, it is not hard to check that each of these
30 rows must be 11222. However, then the subarray is not a two-symbol
orthogonal array at all. This contradiction shows the nonexistence of

Ž 5 15 . Ž 3 16 .OA 36, 2 3 , 2 . We omit the proofs for the nonexistence of OA 36, 2 3 , 2
Ž 7 23 .and OA 100, 2 5 , 2 because they are similar but simpler. In consideration

Ž .of 2.12 and the nonexistence of these three arrays, it now follows that
Ž .m F 4s q 2 for each odd s G 3 .2

Next we prove the impossibility of m s 4s q 1 and m s 4s q 2. First we2 2
Ž . Ž .consider the case m s 4s q 2. Then by 2.11 , m s 2 s q 1 and by 2.4 ,2 1

2D q sD s 6s q 2, with the only possibilities for D given by D s 1,1 2 1 1
Ž .s q 1, 2 s q 1. Using notation as before, analogously to 2.10 ,

f q f q f s 4s2 y 1,1 sq1 2 sq1

f q s q 1 f q 2 s q 1 f s 2 s q 1 2 s2 y 1 ,Ž . Ž . Ž . Ž .1 sq1 2 sq1

s q 1 sf q 2 s q 1 2 sf s 2 s q 1 2 s s2 y 1 ,Ž . Ž . Ž . Ž .sq1 2 sq1

with the unique solution f s 2 s q 1, f s 4s2 y 2 s y 2 and f s 0.1 sq1 2 sq1
Without loss of generality, suppose the first row of the two-symbol subarray
is 11 ??? 1. As f s 2 s q 1, there are 2 s q 1 rows of this subarray having1
exactly one 1 and 2 s 2’s. By rearranging columns, if necessary, let the first of
these 2 s q 1 rows be, say, e s 12 ??? 2. The second, say e , of these 2 s q 11 2
rows must also have one 1 and 2 s 2’s. However, this is impossible since, as
noted above, e and e must have either 1 or s q 1 coincidences. Thus the1 2
impossibility of m s 4s q 2 follows.2

Ž .We now consider m s 4s q 1. Then m s 3s and by 2.4 , 2D q sD s 7s.2 1 1 2
The possible values of D are 0, s, 2 s and 3s. As before,1

f q f q f q f s 4s2 y 1,0 s 2 s 3s

sf q 2 sf q 3sf s 3s 2 s2 y 1 ,Ž .s 2 s 3s

s s y 1 f q 2 s 2 s y 1 f q 3s 3s y 1 f s 3s 3s y 1 s2 y 1 .Ž . Ž . Ž . Ž . Ž .s 2 s 3s

2 Ž .Combining these equations with coefficients 2 s , y 3s y 1 and 1, respec-
2Ž . 2Ž .Ž .tively, we get 2 s f q f s ys s y 1 s y 2 - 0, which is impossible.0 3s

From the results in the preceding paragraphs, we conclude that m F 4s.2
Ž 2 4 sy1 4 s .Regarding the existence of a saturated OA 4s , 2 s , 2 , we note that such

Ž .an array necessarily exists if s G 3 is an odd prime or prime power and a
Hadamand matrix of order 4s is available, for then one can start with a

w Ž . Ž .xdifference matrix D Dawson 1985 ; de Launey 1986 and then em-4 s, 4 s; s
Ž .ploy the construction procedure due to Wang and Wu 1991 . For s s 3,

Ž 11 12 . Ž .OA 36, 2 3 , 2 has been constructed by Taguchi 1987 based on an
Ž 12 . Ž .OA 36, 3 , 2 constructed by Seiden 1954 . Because it can accommodate a

large number of factors with two or three levels, its run size economy makes
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it a popular candidate for experiments in quality improvement. Our result
Ž 35y2 m2 m2 .shows that m s 12 is maximum among the arrays OA 36, 2 3 , 2 .2

Ž .One can proceed as in Example 2 also to prove the nonexistence of i
Ž 107y2 x x . Ž . Ž 1 14 2 .OA 108, 2 3 , 2 , x s 49, 50, 51, 52, and ii OA 36, 6 3 2 , 2 ,
Ž 1 16 . Ž 2 12 1 . Ž .OA 36, 4 3 , 2 and OA 36, 6 3 2 , 2 . The result under i is particularly

Ž . Ž 11 48 . Ž .significant. Wang 1989 constructed an OA 108, 2 3 , 2 . According to i ,
the 48 three-level columns cannot be further improved within the class of
saturated arrays.

3. Nearly saturated orthogonal arrays of strength 2. In this section,
we show that in certain situations the existence of a nearly saturated
orthogonal array implies that of a saturated orthogonal array, which implies
that the findings of Section 2 can also be used with reference to nearly
saturated orthogonal arrays.

Ž m1 mg .LEMMA 2. The existence of an OA N, s ??? s , 2 , which is nearly satu-1 g

rated in the sense that
g

3.1 m s y 1 s N y 2,Ž . Ž .Ý i i
is1

Ž m1 mg 1 .implies the existence of a saturated OA N, s ??? s 2 , 2 .1 g

PROOF. For the sake of brevity in presentation, we consider the case
g s 2, although the proof can be easily extended for general g . Let A be an

Ž m1 m2 . Ž .OA N, s s , 2 which is nearly saturated in the sense of 3.1 . We express1 2
Ž . U Ž . Ž . U Ž .A as in 2.1 and construct a matrix A as in 2.2 . By 3.1 , A is N = N y 1

and since A is an orthogonal array, AUXAU s I .Ny 1
Ž .XHence there exists an N = 1 vector h s h , . . . , h such that the N = N1 N

w U xmatrix A h is orthogonal. Then

AUAUX q hhX s I .N

Equating the diagonal elements from both sides of the equation above, by
Ž . Ž .2.2 and 3.1 ,

3.2 Ny1 N y 1 q h2 s 1, that is, h s "Ny1r2 , 1 F i F N.Ž . Ž . i i

Ž . UIn view of 3.2 and the orthogonality of h to the first column of A , in h the
number of elements which equal Ny1r2 must be the same as the number of

y1r2 Ž .elements which equal N i.e., N must be even . We now add a two-sym-
bol column to A such that for 1 F i F N, if h s Ny1r2, then 1 appears in thei
ith position of this column, while if h s yNy1r2, then 2 appears in the ithi
position of this column. It will be seen that the resulting array, say A, is an

Ž m1 m2 1 .OA N, s s 2 , 2 .1 2
To that effect, it is enough to show that the newly added two-symbol

column is orthogonal to each column of A. Without loss of generality,
Ž .Xconsider the first column of A given by a , a , . . . , a , where a g111 121 1 N 1 1 i1

� 4 w Ž .x1, 2, . . . , s , 1 F i F N see 2.1 . For 1 F j F s , u s 1, 2, let f be the1 1 ju
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Ž .frequency of occurrence of the pair j, u as a row in the N = 2 subarray of A
given by the first column of A and the newly added two-symbol column. Since
h is orthogonal to each column of AU,

N

3.3 h p a s 0,Ž . Ž .Ý i 1 1 i1
is1

where 0 is the null vector of order s y 1. By our construction, for 1 F j F s ,1 1
Ž . Ž y1r2 . Ž y1r2 .the pair h , a equals N , j for f choices of i and yN , j for fi 1 i1 j1 j2

Ž .choices of i. Hence by 3.3 ,
s1

f y f p j s 0.Ž .Ž .Ý j1 j2 1
js1

Thus by the definition of the matrix P , there exists a constant f such that1 0
f y f s f for each j. Recalling the structure of h,j1 j2 0

s s1 1
1f s f s N.Ý Ýj1 j2 2

js1 js1

Hence f s 0 and f s f for each j. At the same time, since A is an0 j1 j2
orthogonal array of strength 2, f q f s Nsy1 for each j. Therefore, f sj1j1 j2 1

m m 11 2Ž . Ž .f s Nr 2 s for each j. Thus it follows that A is an OA N, s s 2 , 2 .j2 1 1 2
Ž .That it is saturated is obvious from 3.1 . I

REMARK 3. Lemma 2 shows that an orthogonal array of strength 2, which
Ž .is nearly saturated in the sense of 3.1 , is embedded in a saturated orthogo-

nal array of strength 2. One may wonder whether a similar conclusion holds
also for orthogonal arrays which are less nearly saturated. In general, the

Ž 1 7 .answer to this question is negative. Consider, for example, an OA 18, 2 3 , 2
w Ž .xwhich is known to exist Wang and Wu 1991 . Here N s 18, g s 2, s s 2,1

Ž .s s 3, m s 1, m s 7 and Ým s y 1 s N y 3. It is easy to see that if this2 1 2 i i
orthogonal array is embedded in a 18-run saturated orthogonal array of

Ž 1 8 .strength 2, then the saturated array must be an OA 18, 2 3 , 2 , which is,
however, nonexistent, as an application of the BB bound to its three-symbol
subarray shows. This shows that, in general, Lemma 2 cannot be strength-
ened further. However, the following lemma, whose proof is sketched in the
Appendix, presents a partial extension.

LEMMA 3. Suppose N is not an integral multiple of 3. Then the existence of
Ž m1 mg .an OA N, s ??? s , 2 satisfying1 g

g

3.4 m s y 1 s N y 3Ž . Ž .Ý i i
is1

Ž m1 mg 2 .implies the existence of a saturated OA N, s ??? s 2 , 2 .1 g

Combining the findings in Section 2 with Lemmas 2 and 3, it is possible to
prove the nonexistence of certain nearly saturated asymmetrical orthogon-
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al arrays of strength 2. Thus, by Lemma 2, the nonexistence of satur-
Ž 35y2 x x . Ž . Žated orthogonal arrays OA 36, 2 3 , 2 x s 13, 14, 15, 16 , OA 108,

107y2 x x . Ž . Ž 1 14 2 . Ž 2 12 1 .2 3 , 2 x s 49, 50, 51, 52 , OA 36, 6 3 2 , 2 and OA 36, 6 3 2 , 2 , as
noted in Section 2, implies the nonexistence of the nearly saturated arrays

Ž 34y 2 x x . Ž . Ž 106y 2 x x . ŽOA 36, 2 3 , 2 x s 13, 14, 15, 16 , OA 108, 2 3 , 2 x s
. Ž 1 14 1 . Ž 2 12 .49, 50, 51, 52 , OA 36, 6 3 2 , 2 and OA 36, 6 3 , 2 , respectively. Similarly

Ž .for odd s G 5 , if s is not an integral multiple of 3, then by Lemma 3, the
Ž 2 3s 4 sq1 . Ž 2 2 sq1 4 sq2 . Žnonexistence of saturated OA 4s , 2 s , 2 and OA 4s , 2 s , 2 see

. Ž 2 3sy2 4 sq1 . Ž 2 2 sy1 4 sq2 .Example 2 implies that of OA 4s , 2 s , 2 and OA 4s , 2 s , 2 .

4. Saturated orthogonal arrays of strength 4. In this section we
Ž m1 m2 .briefly consider saturated asymmetrical orthogonal arrays OA N, s s , 4 ,1 2

that is, those with

m 21N y 1 s m s y 1 q m s y 1 q s y 1Ž . Ž . Ž .1 1 2 2 1ž /2
4.1Ž .

m 22q s y 1 q m m s y 1 s y 1 .Ž . Ž . Ž .2 1 2 1 2ž /2

We first indicate an analogue of Lemma 1 with reference to such arrays.
Ž m1 m2 . Ž . U UDenote a saturated OA N, s s , 4 by A as in 2.1 . Define « , A and A1 2 1 2

2mias before. Also, for i s 1, 2, define the N = s y 1 matricesŽ .iž /ž /2

si X XUA s p a m p a , 1 F j F N , 1 F k - l F m ,Ž . Ž .i i i i jk i i jl i'N
U Ž Žwhere m denotes Kronecker product. Let A denote the N = m m s y12 1 2 1

.Ž ..1 s y 1 matrix2

s s' 1 2 X XUA s p a m p a , 1 F j F N , 1 F k F m , 1 F l F m .Ž . Ž .12 1 1 jk 2 2 jl 1 2N
Finally, define

UU w U U U U U xA s « A A A A A ,1 2 11 22 12

Ž .which is a square N = N matrix because of the saturation condition 4.1 . By
the definition of an orthogonal array of strength 4, AUUXAUU s I . Since AUU

N
is a square matrix, we have AUUAUUX s I . Hence proceeding as in theN
derivation of Lemma 1, we get the following result. A detailed proof can be

Ž .found in Mukerjee and Wu 1993 .

LEMMA 4. Consider any two distinct rows of a saturated orthogonal array
Ž m1 m2 .OA N, s s , 4 . Let D , D be as in the statement of Lemma 1. Then D and1 2 1 2 1

D are nonnegative integers satisfying D F m , D F m and2 1 1 2 2

3 1 1 12 2 20 s 1 y m q m q s D D y 1 q s D D y 1Ž . Ž .1 1 1 2 2 22 2 2 2

q s s D D y m y 2 s D q s D ,Ž . Ž .1 2 1 2 1 1 2 2

where m s m q m .1 2
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Ž .To avoid trivalities, let m s m q m G 5. We shall now apply Lemma 41 2
Ž m1 m2 .to study the existence of saturated OA N, s s , 4 over the range1 2

N F 1000, m G 1, m G 1, m s m q m G 5,Ž .1 2 1 2

2 F s - s F 7.1 2

4.2Ž .

Observe that the range N F 1000 should be enough for most practical
purposes. First suppose s s 2 and s s 3. Then the simple fact that N must1 2
be an integral multiple of each of the numbers 2 n1 3n2 , where 0 F n F m ,1 1
0 F n F m and n q n s 4, eliminates all possibilites other than m s 302 2 1 2 1

1w Ž .x wand m s 1 N s 528, by 4.1 . Under this situation, by Lemma 4, D s 302 1 2

x Ž .y 3D " 30 q 3D and no nonnegative integral-valued solution for D , D'2 2 1 2
is available. In a similar manner, one can show the nonexistence of a

Ž m1 m2 . Ž .saturated OA N, s s , 4 over the entire range given by 4.2 . The details1 2
Ž .can be found in Mukerjee and Wu 1993 .

APPENDIX

PROOF OF LEMMA 3. For ease in presentation, we consider the case g s 2
although it is easy to extend the proof for general g . Let A be an

Ž m1 m2 . Ž . U Ž .OA N, s s , 2 which satisfies 3.4 . From A, construct A as in 2.2 and1 2
Ž . U Ž . UX Uby 3.4 note that A is N = N y 2 satisfying A A s I . Hence it is notNy2

hard to see that there exists an N = 2 matrix Z with rows, say, zX , . . . , zX ,1 N
such that

A.1 zX s b , 0 ,Ž . Ž .1

w U xfor some b G 0 and the N = N matrix A Z is orthogonal. Then

AUAUX q ZZX s I .N

Equating corresponding elements from both sides of the equation above and
Ž . Ž .using 2.2 and 3.4 , we have

A.2 Ny1 N y 2 q zX z s 1, that is, zX z s 2rN, 1 F j F N ,Ž . Ž . j j j j

Ny1 1 q s DŽ ju. y m q s DŽ ju. y m q zX z s 0,� 4Ž . Ž .1 1 1 2 2 2 j uA.3Ž .
1 F j / u F N ,

Ž ju. Ž ju. Ž . Ž .where D and D are defined in Section 2. By A.2 , A.3 and the1 2
Cauchy]Schwarz inequality,

A.4 zX z s g rN, 1 F j / u F N ,Ž . j u ju

where the g ’s are integers satisfyingju

< <A.5 g F 2, 1 F j / u F N.Ž . ju
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X Ž . Ž . X Ž .Since z is as in A.1 with b G 0, by A.2 , z s d 1, 0 , where d s1 1
Ž .1r2 Ž . Ž . X2rN . Hence by A.4 and A.5 , the only possibilities for z , 2 F j F N, arej

'1 3
i d 0, " 1 , ii d " ," , iii d "1, 0 .Ž . Ž . Ž . Ž . Ž .ž /2 2

Ž . Ž .However, by A.4 and A.5 , Z cannot simultaneously have two rows, one of
Ž . Ž .which is of the form i and the other of the form ii . Hence two cases arise:

Case 1. Each row of Z is of the form

d 0, 1 or d 0, y1 or d 1, 0 or d y1, 0 .Ž . Ž . Ž . Ž .
Case 2. Each row of Z is of the form

' ' '1 3 1 3 1 3
d , or d , y or d y ,ž / ž / ž /2 2 2 2 2 2

'1 3
or d y , y or d 1, 0 or d y1, 0 .Ž . Ž .ž /2 2

Considering Case 2 first, suppose the vectors listed under this case appear
as rows of Z with respective frequencies b , . . . , b . By the definition of Z, its1 6

2second column has length unity. Therefore, b q b q b q b s N, which is1 2 3 4 3

impossible because N is not an integral multiple of 3. Thus Case 2 cannot
arise and the rows of Z must be as in Case 1. Let then the vectors listed
under Case 1 appear as rows of Z with respective frequencies l , . . . , l .1 4
Since each column of Z has length unity and is orthogonal to « , the first
column of AU,

1l q l s l q l s N , l y l s l y l s 0,3 4 1 2 3 4 1 22
1so that l s l s l s l s N, that is, N is an integral multiple of 4.1 2 3 4 4

We now add a two-symbol column to A such that for 1 F j F N, if zX sj
Ž . Ž .d 0, 1 or d 1, 0 , then 1 appears in the jth position of this column while if
X Ž . Ž .z s d 0, y1 or d y1, 0 , then 2 appears in the jth position of this column.j

Ž m1 m2 . Ž .As in the proof of Lemma 2, this gives an OA N, s s 2, 2 , which, by 3.4 ,1 2
Ž .is nearly saturated in the sense of 3.1 . Applying Lemma 2 guarantees the

Ž m1 m2 2 .existence of a saturated OA N, s s 2 , 2 . I1 2
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