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ON THE EXISTENCE OF SLICES FOR ACTIONS 

OF NON-COMPACT LIE GROUPS 

RICHARD S. PALAIS* 

(Received March 16, 1960) 

If G is a topological group then by a G-space we mean a completely 
regular space X together with a fixed action of G on X. If one restricts 
consideration to compact Lie groups then a substantial general theory of 
G-spaces can be developed. However if G is allowed to be anything more 
general than a compact Lie group, theorems about G-spaces become ex- 
tremely scarce, and it is clear that if one hopes to recover any sort of 
theory, some restriction must be made on the way G is allowed to act. A 
clue as to the sort of restriction that should be made is to be found in 
one of the most fundamental facts in the theory of G-spaces when G is 
a compact Lie group; namely the result, proved in special cases by Gleason 

12], Koszul [5], Montgomery and Yang [6] and finally, in full generality, 
by Mostow [8] that there is a "slice" through each point of a G-space 
(see 2.1.1 for definition). In fact it is clear from even a passing acquaint- 
ance with the methodology of proof in transformation group theory that 
if G is a Lie group and X a G-space with compact isotropy groups for 
which there exists a slice at each point, then many of the statements 
that apply when G is compact are valid in this case also. 

In ? 1 of this paper we define a G-space X (G any locally compact group) 
-to be a Cartan G-space if for each point of X there is a neighborhood U 
such that the set of g in G for which g U n U is not empty has compact 
closure. In case G acts freely on X (i.e., the isotropy group at each point 
is the identity) this turns out to be equivalent to H. Cartan's basic axiom 
PF for principal bundles in the Seminaire H. Cartan of 1948-49, which 
explains the choice of name. 

In ? 2 we show that if G is a Lie group then the Cartan G-spaces are 
precisely those G-spaces with compact isotropy groups for which there is 
a slice through every point. 

As remarked above this allows one to extend a substantial portion of 
the theory of G-space that holds when G is a compact Lie group to Cartan 
G-spaces (or the slightly more restrictive class of proper G-spaces, also 
introduced in ? 1) when G is an arbitrary Lie group. Part of this exten- 
sion is carried out in ? 4, more or less by way of showing what can be done. 
In particular we prove a generalization of Mostow's equivariant embed- 
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ding theorem [8]. 

0. Notation 

G will denote a locally compact group with identity e. In the second 
part of the paper we will restrict G to be a Lie group. If X is a space, 
an action of G on X is a homomorphism T of G into the group of homeo- 
morphisms of X such that the function (g, x) - T(g)x from G x X - Xis 
continuous. A G-space is a completely regular space X together with 
a fixed action T of G on X. We will in general not explicitly mention the 
action T and write gx for T(g)x. If g # e implies gx # x for some x e X, 
we say that G is effective on X, and if g # e implies gx ? x for each x e X, 
we say that G acts freely on X or that X is a G-principal bundle (in the 
wide sense). If x e X we write G. for the isotropy group at x = 
{g e G I gx = x} and we write Gx for the orbit of x = {gx I g e G}. More 
generally if S _ Xwe write GS for the saturation of S = {gs I g e G, s e SI. 
We denote the set of orbits of X under G, made into a topological space 
with the usual identification space topology, by X/G and we write H, for 
the orbit map of X onto X/G. In what follows we will often have occasion 
to consider subsets of G of the form {g e G i gU f v # 01 where U and 
V are subsets of a G-space X. We will denote this set by ((U, V)). A 
G-space X will be called differentiable if X is differentiable manifold and 
each of the maps x - gx is differentiable; Riemannian if in addition X is 
given a Riemannian structure and each of the maps x - gx is an isom- 
etry of X; and linear if X is a finite dimensional real vector space and 
each of the maps x - gx is linear. 

1.1. Thin sets and Cartan G-spaces 

1.1.1. DEFINITION. If U and V are subsets of a G-space X then we 
shall say that U is thin relative to V if ((U, V)) has compact closure in 
G. If U is thin relative to itself then we say that U is thin. 

Since (g U n v) = g( U n g-1 V) it follows that if U is thin relative to V 
then V is thin relative to U, hence we will often simply say that U and 
V are relatively thin. Because (gg, U n g2 v) = g2(g2-gg, u n v) it follows 
that if U and V are relatively thin then so are any translates g, U and 
g2 V. In particular if U is thin then any pair of translates of U are rela- 
tively thin. It is clear that if U and V are relatively thin and U' _ U, 
V' _ V then U' and V' are relatively thin. In particular a subset of a 
thin set is thin. Because we clearly have ((U Ui, V)) = U((Uf, V)), any 
finite union of sets thin relative to V is itself thin relative to V. More 
generally ((UfUi, nav)) C U((U,, V,)) so that if Us is thin relative to 
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Vj, 
i = 1, ... n then U>1 Us is thin relative to fl> Vi. If K1 and K2 are 

compact subsets of a G-space then it is easily seen that ((K1, K2)) is closed 
in G, hence if K1 and K2 are relatively thin compact sets then ((K1, K2)) 
is compact. Finally we note that if G is compact then of course every 
subset of a G-space is thin. In what follows we shall use these simple 
properties of the concept of thinness without further mention. 

1.1.2. DEFINITION. A G-space X is a Cartan G-space if every point of 
X has a thin neighborhood. 

If G is compact then the notion of a Cartan G-space becomes trivial. 
In fact in this case every G-space satisfies the stronger condition of being 
proper which we will define shortly. 

We now explain the choice of name. Let X be a G-principal bundle (in 
the wide sense) and let R be the set of pairs (x1, x2) in X x X for which 
x1 and x2 belong to the same orbit. Since X is principal it follows that 
for each (x1, X2) e R there is a unique element f(x1, x2) e G such that x2 = 
f(x1, x2)x1. Cartan (in the Seminaire Henri Cartan 1948-1949) has re- 
stricted the term principal bundle to principal bundles in the wide sense 
for which the function f: R - G is continuous. We shall call such re- 
stricted principal bundles Cartan principal bundles. In a general G-space 
the function f is not well defined and it would seem at first glance that 
there is no natural way of generalizing the Cartan condition. However 
as the reader may have guessed from our choice of terminology we have 

1.1.3. THEOREM. A G-principal bundle X is a Cartan principal 
bundle if and only if it is a Cartan G-space. 

PROOF. Suppose X is a Cartan principal bundle and x e X. Since 
f(x, x) = e, if K is a compact neighborhood of e then there is a neighbor- 
hood U of x in Xsuch thatf((U x U) n R) c K. Then clearly ((U, U)) (K 
so U is thin and it follows that X is a Cartan G-space. 

Conversely suppose X is a Cartan G-space and let (x0;, glx,0;) (x, gx). 
We must show that g0l; - g. Let U be a thin neighborhood of x. We 
can suppose that x0l; e U and g,,,x0, e gU so that g0l; e ((U, g U)) which has 
compact closure. Thus if g0; -/4 g by passing to a subnet if necessary, we 
can suppose gl g' # g. But then since x0; - x, gx = lima; g9,,x, = g'x 
and hence, since G acts freely on X, g = g' a contradiction. Hence g0l 
must converge to g. q.e.d. 

We will now derive some of the elementary properties of Cartan G- 
spaces. It should be noted that the following propositions are standard 
results for G-spaces when G is compact which are not valid for arbitrary 
G-spaces when G is not compact. 
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1.1.4. PROPOSITION. If X is a Cartan G-space then each orbit of Xis 
closed in X (i.e., X/G is a T1-space) and each isotropy group of X is 
compact. 

PROOF. Given x e X let V be a thin neighborhood of x. Clearly G. is 
closed in G and since it is included in ((V, V)) it is compact. Now let y 
be adherent to Gx and let U be a thin neighborbood of y. Let g,,;x be a 
net in U converging to y. Fixing a0, (g',,,g)(g%,,0x) = gx so gg ((U U)) 
and by passing to a subnet we can suppose that g'Xg-1 converges and 
hence that gl converges say to g. Then y = lim glx = gx e Gx so Gx is, 
closed. q.e.d. 

Later we shall derive a considerably stronger result, namely that X/G 
is locally completely regular. However we now show by example that 
XIG need not be Hausdorff. Let X be the strip in the plane defined by 
{(x, y) l-1_ X < 1}. We make X into a Cartan R-principal bundle (R = 
additive group of real numbers) such that X/R is not Hausdorff . If 
I x0 I < 1 let C(xo, v) be the vertical translate of the graph of the equation 
y = x2/(1 - x2) which contains (x0, yo). We define t(xo, y0) to be the point 
(x, y) on C(xo, yo) such that the length of the arc of C(xo, y between (x0, yo) 
and (x, y) is I t I and x is greater than or less than x0 according as t is 
positive or negative; i.e., (x0, yo) moves "counter-clockwise" along 
C(xo,,O) with unit velocity. To complete the definition of the action of R 
on X we define t(l, y) = (1, y + t) and t( 1, y) = ( -1, y -t). It is. 
easily seen that if K is a compact subset of X then K is thin if and only 
if it does not meet both of the boundary lines x = 1 and x = -1. It. 
follows that X is a Cartan R-principal bundle. On the other hand, it is, 
clear that the orbits x = 1 and x = -1 cannot be separated by saturated 
open sets, hence X/R is not Hausdorff. 

LEMMA. If X is a Cartan G-space and x e X then g gx is an open, 
map of G onto Gx. 

PROOF. By homogeneity it will suffice to show that if K is a neighbor- 
hood of e in G then Kx is a neighborhood of x in Gx. Suppose not. Then 
there is a net gas in G such that g,,,x 0 Kx but gox - x. Since clearly 
g,,,x e Kx gz , g0 e KGx it follows that gas , KGx and since KGx is a 
neighborhood of G,, that no subnet of go can converge to an element of 
GX. Let U be a thin neighborhood of x. Since g,,,x is eventually in U, by- 
passing to a subnet we can suppose that gel e ((U, U)) and so by again 
passing to a subnet we can suppose that go, - g. But then gx = lim gx = x 
so g e Gx a contradiction. q.e.d. 

1.1.5. PROPOSITION. If X is a Cartan G-space and x e Xthen the map 
gGX - gx is a homeomorphism of G/GS onto Gx. 



EXISTENCE OF SLICES 299 

PROOF. Immediate from the lemma and the openness of the canonical 
map of G onto GIGX. 

1.1.6. PROPOSITION. If X is a Cartan G-space and x e X then given. 
any neighborhood U of G. in G there is a neighborhood V of x in Xsuch- 
that ((V, V)) c U. 

PROOF. We can assume that U is open and (because G. is compact) a. 
union of left G. cosets. By 1.1.5 (G - U)x is closed in Gx and hence (by 
1.1.4) in X so we can find a neighborhood Wof x such that W n (G -U)x 
is empty. We can suppose that W is closed and thin. Let K be the clo- 
sureof {g e G-UigWn We# 0}sothatKisacompactsubsetofG- U. 
If k e K then kx e (G - U)x so kx e X - W and since X - W is open 
we can find a neighborhood Q1 of k and a neighborhood Vk of x such that 
Qk V (- X - W. We can suppose Vk _ W. Let Qk1, * , Qkn cover K and 
put V = nf=l Vki so that V is a neighborhood of x included in W. Now 
suppose g e ((V, V)), i.e., gVn Ve/ 0. Then gWn We 0 hence 
g e U U K. To complete the proof we will show that g 0 K. In fact if 
g e K then g e Qk1 SO 9 V _ Qkl Vk X X- W X- V so thatgVfn V= 
0 a contradiction. q.e.d. 

REMARK. It follows that GV e U if y e V and hence by the conjugacy 
theorem of Montgomery and Zippin [7] that if G is a Lie group then all 
isotropy groups of points sufficiently close to x are conjugate to a sub-- 
group of G.. However we will give a direct proof of this fact later, using- 
slices, and then with this we will give a simple proof of the conjugacy 
theorem referred to. 

LEMMA. If X is a Cartan G-space and N is the kernel of the action of 
G on X then X is a Cartan GIN-space. 

PROOF. Note that N = nfl G. is compact by 1.1.4 so that a subset of 
X is thin when X is considered as a G/N-space if and only if it is thin 
when X is considered as a G-space. q.e.d. 

1.1.7. PROPOSITION. If X is a Cartan G-space then the action of G on. 
X is a continuous and relatively open map of G into the group of homeo- 
morphisms of X when the latter is given the topology of pointwise con- 
vergence. 

PROOF. By the lemma we can suppose that X is an effective G-space. 
Continuity is clear from the definition of a G-space. To prove openness let 
V be a neighborhood of e in G with g0b 0 V. We will show that gosx - x 
for each x e X leads to a contradiction. In fact if K is a thin neighbor- 
hood of some point x, then since glx, - x0 it follows that gab e ((K, K)) for 
sufficiently large a and by passing to a subnet we can suppose gb - g. 
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But then gx = lim gzx = x for all x e X so g = e by effectiveness. But 
gal )e contradicts gb , V. q.e.d. 

COROLLARY. If X is a Cartan G-space then the set of homeomorphisms 
{x ) gx I g e G} is closed in the group of all homeomorphisms of X in 
the topology of pointwise convergence. 

PROOF. It follows from the theorem that this set of homeomorphisms 
is a subgroup isomorphic (as a topological group) to GIN where N = 

{g e G I gx = x for all x e X}. But GIN is locally compact, and a locally 
compact group is closed in any containing topological group. q.e.d. 

1.2. Small sets and proper G-spaces 

1.2.1. DEFINITION. A subset S of a G-space X is a small subset of X 
if each point of X has a neighborhood which is thin relative to S. 

Unlike thin, which is absolute, small is a relative notion, i.e., if Y is a 
G-space and X is an invariant subspace then a small subset of X is not 
necessarily a small subset of Y. Nevertheless when no confusion is likely 
we will often speak of a small set. 

1.2.2. DEFINITION. A G-space X is proper if each point of X has a 
small neighborhood. 

We now list a number of elementary facts about small sets and proper 
G-spaces. The proofs follow easily from the properties of thinness given 
at the beginning of ? 1.1 and are left to the reader. 

1. A subset of a small set is small. 
2. A finite union of small sets is small. 
3. If S is a small subset of X and K is a compact subset of X then K 

is thin relative to S and in fact K has a neighborhood which is thin rela- 
tive to S. 

4. If X is a proper G-space then every compact subset of X is small 
and in fact has a small neighborhood. 

5. If X is a proper G-space then every compact subset of X is thin and 
in fact has a thin neighborhood. 

6. If X is a proper G-space and K is a compact subset of X then 
((K, K)) is a compact subset of G. 

7. If G is compact then every G-space is proper. 

1.2.3. PROPOSITION. A proper G-space is a Cartan G-space. 
PROOF. Let X be a proper G-space and x e X. Let S be a small neigh- 

borhood of x and V a neighborhood of x thin relative to S. Then U n S 
is a thin neighborhood of x. q.e.d. 

The converse is false. We shall see in fact that a Cartan G-space X is 
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proper if and only if X/G is completely regular and we know (see remark 
following 1.1.4) that the latter need not to the case. Nevertheless 

1.2.4. PROPOSITION. If U is a thin open set in a G-space X then GU 
is a proper G-space, hence every point of a Cartan G-space is contained 
in an invariant open set which is a proper G-space. 

PROOF. Immediate from the fact that g U and 7 U are relatively thin 
for any g, y e G. 

1.2.5. PROPOSITION. If X is a Cartan G-space and X/G is regular 
then X is a proper G-space. 

PROOF. Let x e X and choose U a thin open neighborhood of x. Then 
GU is a neighborhood of Gx and since X/G is regular we can find a closed 
invariant neighborhood W of Gx included in GU. Let 0 = W f U. We 
shall show that 0 is a small neighborhood of x in X. In fact if y e GU, 
say y e g U, then g U is a neighbourhood of y thin relative to U and 
a fortiori relative to 0. If y 5 G U then X - W is a neighborhood of y and 
since Wis invariant ((X- W, 0)) = 0 so X- Wis thin relative to 0. q.e.d. 

We omit the proof of the following easy and well-known fact. 

LEMMA. If K is a compact space and M a metric space, denote by MK 
the space of continuous maps of K into M metrized by p(f1, f2) = 
Sup {p(f1(k), f2(k)) I k e K} so that convergence means uniform conver- 
gence on K. If X is an arbitrary space and f: X x K M is continuous 
define fz e MK for each x e X by f,(k) = f(x, k). Then x - f., is a con- 
tinuous map of X into MK. Hence if M is a Banach space and , is any 
Radon measure on K then x -Sf,(k)dpL(k) is a continuous map of X 
into M. 

The following replaces the well-known technique of " averaging over 
the group" that plays an important role in the theory of compact trans- 
formation groups. 

1.2.6. PROPOSITION. Let X be a G-space and f a continuous map of X 
into a linear G-space V. If the support of f is a small subset S of X 
then F(x) = Sg-1f(gx)dp(g) (where p is right Haar measure on G) is an 
equivariant map of X into V, i.e., F(gx) = gF(x) for all (g, x) e G x X. 
Moreover F(x) = 0 unless x e GS. 

PROOF. Let x0 e X and let U be a neighborhood of xs which is thin 
relative to S. If W is the closure of ((U, S)) then W is compact and 
clearly f(gx) = 0 if x e U and g 0 W, hence F I U(x) = S g-1f(gx)dP(g). 
Since (x, g) - g-lf(gx) is a continuous map of U x W into V, it follows 
from the lemma that F I U is continuous and hence F is continuous at x0. 
Clearly x 5 GS # f(gx) = 0 for all g e G so F(x) = 0. Finally 
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F(7x) = S g- f(g7x)de(g) 
= S7g-lf(gx) dp(g) 
= 7Sg- f(gx) dp(g) = 7F(x) 

taking 7y outside the integral sign being justified because v y yv is a 
linear map of V. q.e.d. 

1.2.7. THEOREM. Let X be a proper G-space and v an element of a, 
linear G-space V. A necessary and sufficient condition that there exist 
an equivariant map F of X into V with F(x0) = v is that G0 c- Gv. 

PROOF. Since G_ c Gf(,) is a trivial consequence of equivariance, neces- 
sity is clear. Now let C8(X) denote the space of continuous real valued 
functions on X which have small support. Because finite unions of small 
sets are small CQ(X) is a linear space and clearly T: f - Sf(gxo)g-1vdL(g) 
is a linear map of CQ(X) into V, so W = T(Cs( V)) is a linear subspace of 
V. If Tf = v then, by 1.2.6, F(x) = 5f(gx)g-1vdi(g) will be an equiva- 
riant map of X into V with F(xo) = v. Hence it will suffice to show that 
if Gx0 C G, then v e W. Since subspaces of a finite dimensional real 
vector space are always closed, it will in turn be sufficient to show that 
v is adherent to W. Let K be any convex neighborhood of v. Since G., 
is compact and GXv c K we can find a compact neighborhood U of G. in 
G such that U-1v c K. By 1.1.6, there is a neighborhood S of x such that 
gx e S implies g e U and we can assume that S is small. Since X is com- 
pletely regular we can find a continuous non-negative real valued function 
f with support in S such that f(xo) # 0. By multiplying f by a positive 
constant we can assume that S f(gx0)da(g) = 1. Since g 0 U e gxo 0 S e 
f(gxo) = 0 it follows that d>(g) = f(gx0)da(g) defines a positive Radon 
measure of mass one in G with support in U. Since g-1v e K for g e U, 
and K is convex it follows that T(f) = Sf (gxo)g-1vda(g) = Sg-lvdv(g) is in 
K. Thus K n w # 0. Since every neighborhood of v includes a convex 
neighborhood of v it follows that v is adherent to W. q.e.d. 

1.2.8. PROPOSITION. If X is a proper G-space then X/G is completely 
regular. 

PROOF. We already know that X/G is T1, by 1.1.4. Let Yo = fl(xo) e X/G 
and let F be a closed subset of X/G not containing X, Let S be a small 
neighborhood of x0 disjoint from 112(F) and let f be a non-negative real 
valued function on X with support in S such that f(x0) > 0. By 1.2.6, 
f*(x) = Sf(gx)da(g) is an invariant, continuous, real valued function on 
X with f*(xo) > 0 and having support in GS (and hence disjoint from 
fl11 (F)). Since f* is invariant f = f * fl~1 is a well-defined function on 
X/G which satisfies f(YO) > 0 and f I F g- 0. Finally LHx is an open map 
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(if 0 is open in Xthen O=Hx(0) is open in X/G because IlX(O) = UgegO 
is a union of open sets) which immediately implies that f is continuous. 
q.e.d. 

COROLLARY 1. A G-space X is proper if and only if X is a Cartan 
G-space and X/G is regular. 

PROOF. Necessity from 1.2.3 and 1.2.8 and sufficiency from 1.2.5. 

COROLLARY 2. If X is a Cartan G-space then X/G is locally completely 
regular. 

PROOF. 1.2.4 and 1.2.8. 
Note that this is a considerable strengthening of 1.1.4 since a space 

that is even locally T1 is T1. 

LEMMA. If a G-space X has the property that every pair of its points 
has relatively thin neighborhoods then X/G is Hausdorff. 

PROOF. Let R = {(x, gx) I x e X, g e G}. We must show that R is closed 
in X x X. Suppose (xx,, g,,,xx) - (x, y) and let U and V be relatively thin 
neighborhoods of x and y respectively. We can suppose xm e U and 
glxo e V so gm e ((U, V)) and hence by passing to a subnet we can sup- 
pose that gb 0g. Since x- x we have y = lim gx, = gx so (x, y) = 
(x, gx) e R. q.e.d. 

1.2.9. THEOREM. If X is a locally compact G-space then the following 
are equivalent. 

(1) Given x, y in X there exist relatively thin neighborhoods U and V 
of x and y. 

(2) X is a Cartan G-space and X/G is Hausdorff. 
(3) X is a proper G-space. 
(4) Every compact subset of X is small. 
(5) Every compact subset of X is thin (or equivalently, if K c X is 

compact then ((K, K)) is compact). 
PROOF. Clearly (1) implies that X is Cartan and, by the lemma, that 

X/G is Hausdorff . Since X/G is locally compact (because, as was shown 
in the proof of 1.2.8, HX is open) Hausdorff implies regular so (2) implies 
(3). Since in a proper G-space compact sets are small, we see that (3) 
implies (4) and since a compact set is thin relative to a small set, (4) im- 
plies (5). Finally if (5) holds let U and V be compact neighborhoods of x 
and y respectively. Then U U V is thin and a fortiori U is thin relative 
to V. q.e.d. 

The notion of a proper G-space seems to have originated with A. Borel 
who defined the notion for locally compact G-spaces (unpublished) and 
took condition (5) above as his definition. In case G is discrete the notion 
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coincides with the classical notion of "properly discontinuous" and it was 
this that led to the choice of name. 

1.3 Operations on G-spaces 

In this section we study a number of the standard ways of forming 
new transformation groups out of old and investigate the extent to which 
these constructions preserve the properties of being Cartan and proper. 

1.3.1. PROPOSITION. If X is a proper (respectively, Cartan) G-space, 
H a closed subgroup of G and Y an H-invariant subspace of X then Y 
is a proper (respectively, Cartan) H-space. 

PROOF. Trivial. 

1.3.2. PROPOSITION. If X is a proper G-space and N is a closed nor- 
mal subgroup of G then XIN is a proper GIN-space. 

PROOF. Recall that GIN acts on XIN by (gN) (Nx) = Ngx. Since XIN 
is completely regular (1.2.8 and 1.3.1) it follows easily that this in fact 
makes XIN a G/N-space. Moreover XIN/GIN is canonically homeomorphic 
to XIG and so, by 1.2.8, again is completely regular. Thus by 1.2.5, it 
will suffice to show that XIN is a Cartan GIN space. Given x = Nx in 
XIN let U be a thin neighborhood of x in X. Then U = {Ny I y e U} is a 
neighborhood of x in XIN (because the projection map y - Ny is open). 
Moreover if II is the canonical map of G onto GIN then it is immediately 
checked that H ((U, U)) = ((U, U)), hence since ((U, U)) is relatively 
compact in G, ((U, U)) is relatively compact in GIN, so U is a thin neigh- 
borhood of x. q.e.d. 

1.3.3. PROPOSITION. Let X and Y be G-spaces. If X is a Cartan 
G-space (respectively, proper G-space) then so is X x Y. 

PROOF. Recall that G acts on X x Y by g(x, y) = (gx, gy). It is then 
easy to verify that if U and V are subsets of X then ((U x Y, V x Y)) = 
((U, V)). It follows that if U and V are relatively thin then so are U x Y 
and V x Y. In particular if U is a thin (small) neighborhood of x e X 
then for all y e Y and set U x Y is a thin (small) neighborhood of (x, y). 
q.e.d. 

Now let Y be a G-space, X a completely regular space and f: x YIG 
a map. We recall the definition of the induced G-space f-1(Y). As a 
space f'`(Y) = {(x, y) e X x Y I f(x) = Hl(y)} and the action of G is 
given by g(x, y) = (x, gy). We note that the map f: (x, y) - y is an equi- 
variant map of ft'( Y) into Y and that if H is the orbit map of f -( Y) 
onto its orbit space then h: H (x, y) - x is a homeomorphism of f -'( Y)IG 
with X such that f o h o H = H, o f . Moreover f ̀ (Y) can be character- 
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ized as a G-space (to within equivalence) by the existence of the maps h 
and f with these properties. This construction plays an important role 
in the classification theory of G-spaces. We now prove 

1.3.4. PROPOSITION. If Y is a proper G-space and f a map of a com- 
pletely regular space X into YIG then f-1(Y) is a proper G-space. 

PROOF. Since f -( Y)IG is homeomorphic to X and hence is completely 
regular it will suffice to show that f-1(Y) is a Cartan G-space, by 1.2.5. 
Let f be the natural equivariant map of f-1( Y) into Y, i.e., (x, y) - y. 
It will suffice to show that if U is a thin subset of Y then f-'(U) is a 
thin subset of f-1(Y). Let g e ((f-(U), f'-(U))). Then g(x, y) = (x', y') 
where y = f (x, y) and y' = f (x', y') are in U. But g(x, y) = (x, gy) hence 
yI = gy and g e ((U, U)). Thus ((f1(U), f 1(U))) is a subset of ((U, U)) 
and so is relatively compact in G. q.e.d. 

2.1 Slices and kernels 

Henceforth we assume that G is not only locally compact but also a 
Lie group. If H is a closed subgroup of G then by a local cross section in 
GIH we shall mean a differentiable map X: U - G where U is an open 
neighborhood of H in G/H, X(H) = e and x(7) e y for y e U. The exist- 
ence of local cross-sections is well known (see for example [1, page 109]). 

2.1.1. DEFINITION. Let X be a G-space and H a closed subgroup of G. 
A subset S of X will be called an H-kernel (over Hlx(S)) if there exists 
an equivariant map f: GS - GIH such that f -'(H) = S. If in addition 
GS is open in X we call S an H-slice in X. If GS = X we call S a global 
H-slice for X. If x e X then by a slice at x we mean a Gx-slice in X 
which contains x. 

Suppose S is an H-kernel in X and let f: GS - G/H be an equivariant 
map with S = f-'(H). Then if y e GS we have y = gs for some g e G 
and s e S so f (g) = f (gs) = gf (s) = gH. This shows that f is uniquely 
determined by S and we denote it by f S. Clearly then if U is a subset of 
X/G and U = IIX1( U) then f f-'(H) and S f'S are mutually inverse 
one-to-one correspondences between the set of equivariant maps of U into 
G/H and the set of H-kernels over U. 

If S is an H-kernel in the G-space X then S is clearly an H-invariant 
subset of X and so an H-space. If s e S then of course H8 = G, n H. On 
the other hand if g e G, then gH = gf S(s) = f S(gs) = fS(s) = H so g e H, 
i.e., G, ' H and so H8 = G,. 

2.1.2. PROPOSITION. Let S be an H-kernel in the G-space X and let 
x: U -4 G be a local cross-section in G/H. Then if g, e G the map 
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F: (u, s) g0X(gy-lu)s is a homeomorphism of go U x S onto an open 
neighborhood of goS in GS. Moreover fs(F(u, s)) u. 

PROOF. Recall that f S(gx) = gH for g e G, s e S, hence since X(gy-1u)H= 
g-ou (by definition of a local cross-section) it follows that fs(F(u, s)) 
goX(go-',)H = gogO-u = u. Thus F(goU x S) = fs'-(goU) is an open neigh- 
borhood of goS in GS. Since the continuity of F is clear we complete the 
proof by showing that if F(uo, so ) - F(u, s) then use - u and ala s. In 
fact uM = f (F(uM,, s,)) f f(F(u, s)) u. Then X(g-1u,)-1 X(gO-1u)-1 and 
since X(go-u,)s0 = gO-1F(u,, s,,) g-1F(u, s) = X(gO-lu)s it follows that 
s'V s. q.e.d. 

COROLLARY. If S is an H-kernel in X and W is open in S then G W is 
open in GS. 

PROOF. Taking go = e in the theorem we see that F(U x W) is open in 
GS and hence that GF( U x W) is open in GS. But clearly GF( U x W) = 
GW. q.e.d. 

2.1.3. PROPOSITION. Let S1 and S2 be H-kernels in G-spaces X1 and X2 
respectively and let fo be an H-equivariant map of S1 into S2. Then there 
is a unique G-equivariant map f of GS1 onto GS, such that f I S1 = fo; 
namely f (gs) = gfo(s) for g e G, s e S. Moreover if fo imbeds S1 in S2 
then f imbeds GS1 in GS2. 

PROOF. It is clear that if f exists it is given by f (gs) = gf o(s). Since 
f0 is H-equivariant it follows that H8 ( Hf0(,) and so that G. - Gfo(s) 
from which it follows that the above formula gives a well-defined function 
f from GS1 into GS2 which is clearly equivariant. It remains only to check 
the continuity of f, the continuity of f-1 when f -1 exists and is continu- 
ous then following by symmetry. Let X: U - G be a local cross section 
in G/H. By 2.1.2, the map Fi: (u, s) - goX(gy-lu)s is a homeomorphism of 
goU x S, onto a neighborhood of goS, in GS, for i = 1,2 and go e G. Since 
fFQ(u, s) = f (gox(g-1u)s) = goX(g-y1u)fo(s) = F2(u, fo(s)) the continuity of 
f on goS1 is clear and since go is arbitrary, f is continuous on GS. q.e.d. 

If S is any H-space, H being a closed subgroup of G, then it is easy to 
construct a G-space X in which S occurs as an H-slice. Namely X is the 
fiber bundle with fiber S associated with the principal H-bundle G over 
G/H (the action being h o g = gh-1 of course). For details see [5] or [10, 
1.7.14]. From this and 2.1.3, we have 

THEOREM. If G is a Lie group, H a closed subgroup and S an H-space 
then there exists a G-space X having S as a global H-slice. Moreover X 
is essentially unique in the sense that if X' is another G-space in which 
S occurs as a global H-slice then the identity map of S extends uniquely 
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to an equivariant homeomorphism of X onto X'. 

We now come to an important intrinsic characterization of an H-kernel. 

2.1.4. THEOREM. Let X be a G-space and H a closed subgroup of G. 
If S is an H-kernel in X then: 

(1) S is closed in GS; 
(2) S is invariant under H; 
(3) gsnst 0 7g e H. i.e., ((S,S)) =H. 

If H is compact then in addition 
(4) S has a thin neighborhood in GS. 

Conversely if conditions (1) - (4) hold then H is compact and S is an 
H-kernel in X. 

PROOF. If S is an H-kernel in X then it is immediately that (1) - (3) 
hold. If H is compact let U be a compact neighborhood of H in GIH so 
that U = union of cosets in U is a compact neighborhood of e in G. Then 
W = fS1( U) is a neighborhood of S in GS and it is easily checked that 
<(W, W)) c U so that W is thin and (4) holds. 

Conversely, supposing (1) - (4) hold, (2) and (4) show immediately that 
H is compact. If gj, g2 e G, s, s, e S and g1s1 =g2s then g2 gls1 =2 so 
by (3) g-'g, e H and gH =g2H, hence the function f: gs gH of GS 
onto G/H is well defined. Clearly f is equivariant and S = f-N(H) so it 
remains only to show that f is continuous. Let gvsw - gs. We must show 
that gusH- gH. Since g-1g<Xsi5, - s and since g-1gH - H implies gaH > H 
we can suppose g = e. Now if gOH 74 H there is a neighborhood U of H 
-in G such that gs, 0 U for arbitrarily large a, hence by passing to a subnet 
we can suppose that no subnet of g,,s converges to a point of H. On the 
other hand if we let V be a thin neighborhood of S in GS then gs,,, e V 
for a sufficiently large so gal e ((V, V)) and hence some subnet g,(a) of g. 
converges to g e G. We will show that g e H, a contradiction which will 
complete the proof. In fact since g (,)ss>) s it follows that Cas)r g-1s. 
Since S is closed in GS it follows that g-1s e S and so by (3) g-1 (and hence 
.g) is in H. q.e.d. 

Of course if G is compact then condition (4) of 2.1.4 is automatically 
satisfied. However in the general case the following example shows that 
(4) is not a consequence of (1) - (3). Take G = R, X =R x R, H = e 
and define t(x, y) = (x, y + t) (vertical translation) and let S = 

{(x, 1/x2) I x / 0} U (0, 0). 

2.1.5. PROPOSITION. Let H and K be closed subgroups of the Lie group 
.G with H ' K. Let X be a G-space, T a K-kernel (respectively, K-slice) 
in X and S an H-kernel (respectively, H-slice) in the K-space T. Then 
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S is an H-kernel (respectively, H-slice) in X. 
PROOF. If gSnS H- 0 then a fortiori gTn T =t 0 so g e K and, 

since T is a K-kernel, g e H. It follows as in the proof of 2.1.4 that the 
function f: gs > gH of GS into G/H is well defined and equivariant, and 
clearly S = f-1(H). We will now show that f is continuous which shows 
that S is an H-kernel. As in 2.1.4, it suffices to show that if gra -> s 
then gMH > H. Since T is a K-kernel and S c T gaK-> K. Let X: U->G 
be a local cross-section in GIK. We can assume that gwK e U. Put Ed, = 
X(gk#) Then 7# - e and gM, = 7,,ka, where ka, e K. Also lim kiss, = 
lim ry1 lim gram = s and since S is an H-kernel in the K-space T it follows 
that kaH > H. But then gaH = 7akaH H also. If S is an H-slice in T 
then KS is open in T and, by the corollary of 2.1.2, GS = GKS is open in 
GT. If also T is a K-slice in X then GT is open in X so GS is open in X 
hence S is an H-slice in X. q.e.d. 

2.1.6. DEFINITION. A subset S of a G-space X will be called a near- 
slice at x if x e S, GXS = S and there exists a local cross-section X: U > G 
in GIGX such that (u, s) > x(u)s is a homeomorphism of U x S onto an 
open neighborhood of x in X. 

Note that by 2.1.2 a slice at x is a near slice at x. The concept of a 
near slice will play only a transitory technical role. We are really inter- 
ested in showing that in a Cartan G-space there is always a slice at each 
point. Near slices however are easier to come by and the next result says 
it will be enough to show their existence. 

2.1.7. PROPOSITION. If x is a Cartan G-space and S* is a near slice at 
x e X then there is a neighborhood S of x in S* which is a slice at x. 

PROOF. Let X: U G be a local cross-section in GIG. such that 
(u, s) *X(u)s is a homeomorphism of Ux S* onto an open neighborhood of 
x. By 1.1.6 we can choose an open neighborhood V of x such that 
((V, V)) E U' where U' is the union of the cosets in U. Since G. is com- 
pact we can suppose that V is invariant under G. and hence that S = 
S* n V is invariant under G.. Since S is open in S* it follows that U'S = 
{X(u)s I u e U, s e S} is open in X and hence that GS = G U'S is open X. 
If gS n S o 0 then g e U' so gG, e U. Choosing s1 e S so that gs1 = s, e S 
and putting X(gG,) = gh we see that X(gG,)h-'s, = gs1 = S2= X(GX)s2. Now 
h e G. and S is G.-invariant so h-1s, e S and since (u, s) > x(u)s is a 
homeomorphism on U x S it follows that gG. = G., i.e., g e Gx. Thus 
((S S)) = G. and it follows as in 2.1.4 that gs > gH gives a well-defined 
equivariant function from GS into GIGX with S = f 1(G,). It remains to 
show that grm s implies gag -> Go. Now gash is eventually in V so gMG, 
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is eventually in U. Putting gel = X(g,,G,)h,,, for large X we have ha e G. so 
hs, e S. Since X(g#G,)has# 'X(G,)s it follows (using again that (u,s)--x(u)s 
is a homeomorphism on U x S) that gasGx - G,. q.e.d. 

2.1.8. PROPOSITION. Let X and Y be G-spaces and f: X Y an equi- 
variant map. Let x0 e X and suppose Gx0 = Gf (xO). Then if S* is a near 
slice at f(xo) in Y, S = ftl(S*) is a near slice at x0 in X. 

PROOF. Put GX0 = Gf (xO) = H and let X: U - G be a local cross-section 
in G/H such that F*: (u, s*) ) X(u)s* is a homeomorphism of U x S* 
onto an open neighborhood Q* of f(x0) in Y. Then 0 = f-l(O*) is an open 
neighborhood of x0 in X and to complete the proof we will show that 
F: (u, s) - x(u)s is a homeomorphism of U x S onto 0. The continuity of 
F is clear and since f F(u, s) = F*(u, f (s)) it follows that F(U x S) C 0. 
If x c 0 then f (x) = x(u)s* so f (x(u)-'s) = s* and x(u)-1x e S. Since 
F(u, X(u)-'x) = x it follows that F(U x S) = 0. To complete the proof 
we show that F(u,, s- ) F(u, s) X uso, - u and s,,, - s which implies that 
F is one-to-one and that F-1 is continuous. In fact F*(ua,, f(s2,)) = 
f F(u., sa) - f F(u, s) = F*(u, f (s)) and since F* is a homeomorphism 
use u. That sag - s now follows just as in the proof of 2.1.2. q.e.d. 

2.2. Slices and near slices in differentiable G-spaces 

LEMMA. Let X be a differentiable G-space, x e X and S * a submani- 
fold of X containing x and invariant under G,. Denote by S,*, (Gx)x, 
and Xx the tangent spaces at x to S*, Gx, and X respectively and suppose 
that S* is a linear complement to (Gx)x in X,. Then there exists a local 
cross-section X: U-p G in G/GX and a Gx-invariant open submanifold S 
of S* containing x such that (u, s) - X(u)s is a diffeomorphism of U x S 
onto an open neighborhood of x. Hence S is a near slice at x. 

PROOF. Let X*: U - G be a local cross section in GIG. and define 
F*: U* x S* - X by F(u, s) = x*(u)s. Clearly F is differentiable and 
by a general fact about differentiable G-spaces (which is an immediate 
consequence of the uniqueness theorem for solutions of ordinary differ- 
ential equations (see for example [10, 1.1.22]) 3F* maps the tangent space 
to U* x {x} at (Gx, x) isomorphically onto (Gx)x. On the other hand it is 
clear from F(GX, s) -s that 3F* maps the tangent space to G., x S* at 
(Gm, x) isomorphically onto S*, and hence 3F* is an isomorphism of the 
tangent space to U* x S* at (G., x) onto Xz, and by the implicit function 
theorem there exists a neighborhood U of Gx in U* and a neighborhood 
S' of x in S* such that F* I U x S' is a diffeomorphism onto a neighbor- 
hood of x in X. Since GX is compact we can find an open neighborhood S 
of x included in S' which is invariant under G.. Taking X = X* I U the 
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theorem is proved. q.e.d. 

2.2.1. PROPOSITION. (Koszul [5, p. 139]). If X is a differentiable G- 
space, x e X and G. is compact, then there exists a near-slice at x in X. 

PROOF. Choose a Riemannian metric for X invariant under G,. Let 
r > 0 be chosen so small that there is a Riemannian normal coordinate 
system at x of radius r and let S* be the union of geodesic segments of 
length r starting from x in a direction orthogonal to Gx. Clearly S* 
satisfies the condition of the lemma. q.e.d. 

2.2.2. PROPOSITION. If Xis a Cartan differentiable G-space and x e X 
then there exists a slice at x. 

PROOF. Immediate from 2.2.1 and 2.1.7. 

2.2.3. REMARK. If X is a Cartan differentiable G-space, x e X and S is 
a slice at x constructed by the above method, then GS is a tubular neigh- 
borhood of Gx relative to a G., invariant Riemannian metric for X and the 
equivariant map fS GS > GIGX is just the usual fiber map when GIG. is 
identified with Gx by gG, - gx. Hence in particular fS is differentiable. 
Moreover it follows that if X: U - G is a local cross-section GIG, and 
go e G then the map F: (u, s) g0X(g-1u)s is a diffeomorphism of g0U x S 
onto an open neighborhood of g0S in GS. 

2.3. Existence of slices in a Cartan G-space 

We shall say that a Lie group is of type S if there is a slice at each 
point of every proper G-space. Our next goal is to prove 

2.3.1. PROPOSITION. Every Lie group is of type S. 
We will arrive at the full proof of 2.3.1 by first proving a number of 

special cases. By a matrix group we mean a Lie group G which admits a 
faithful continuous linear representation in a finite dimensional real 
vector space. By a theorem in the next section of this paper (3.2), if G 
is a matrix group, X a proper G-space, and x e X there is a linear G-space 
V and a v e V such that G, - G,. By 2.2.1, there is a near slice S* at v 
relative to V, and by 1.2.7, there is an equivariant map f: X - V with 
f(x) = v. By 2.1.8, f-1(S*) is a near slice at x relative to X and so by 
2.1.7 (and 1.2.3) there is a slice at x in X. This proves what is perhaps 
the crucial special case of 2.3.1, namely: 

Case 1. A matrix group is of type S. 

Case 2. If a Lie group G has a closed normal subgroup N such that G/N 
is of type S and such that KN is of type S for each compact subgroup K 
of G then G is of type S. 
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PROOF. Let X be a proper G-space and let x e X. Let H denote the 
orbit map of X onto X/N. Now X/N is a proper G/N-space by 1.3.2, 
hence there exists a slice T at x = II (x) relative to XIN. We claim T = 
11'( T) is a GN slice in X. In fact recalling that GIN acts on XIN by 
(gN) H (y) = H (gy) it is clear in the first place that G T = HI-'(GINT) 
and hence, since GNT is open in X/N, GT is open in X. Next if h is the 
canonical identification of G/N/G.N/N with GIG.N then h o f T o I = f T 

is easily seen to be an equivariant map of GT onto GIG.N with 
fT-'(GxN) = T. 

Now T is a proper GxN-space by 1.3.1, hence we can find a slice S at 
x in the GxN-space T. Since the isotropy group at x in T (considered as 
a GXN-space) is Gx (see remark preceding 2.1.2) it follows that S is a 
Gx-slice in the GxN-space T and by 2.1.5, that S is a slice at x in X. 
q.e.d. 

Case 3. A discrete group is of type S. 
PROOF. Let G be a discrete group, X a proper G-space and x e X. Let 

W be a small neighborhood of x. Since GX is compact we can suppose 
that W is invariant under Gx. It is then trivial from the definition that 
W is a near slice at x and hence by 2.1.7 that some smaller neighborhood 
of x is a slice at x. q.e.d. 

In what follows G0 will as usual denote the identity component of a 
Lie group G. 

Case 4. If G is a Lie group such that KG, is of type S for each compact 
subgroup K of G then G is of type S. 

PROOF. Immediate from cases 2 and 3. 

Case 5. If G, is compact then G is of type S. 
PROOF. If K is a compact subgroup of G then KG, is a compact sub- 

group of G. Since all compact Lie groups are matrix groups and hence 
of type S this case follows from case 4. 

Case 6. A Lie group G which is an extension of a discrete normal 
subgroup N by a group of type S is itself of type S. 

PROOF. Let K be a compact subgroup of G. Since GINis by hypothesis 
of type S it will suffice by case 2 to show that KN is of type S. For this 
it will be enough to show that K is open in KN, for then (KN)o = Ko is 
compact and by case 5, KN is of type S. Choose a neighborhood V of K 
such that V n N C K (N is discrete). Since K is compact we can assume 
V is a union of right K cosets. Then if k e K, n e N, and kn e V it 
follows that Kn ' V so n e V n N _ K, hence kn e K. This shows 
KNnV = K so K is open in KN. q.e.d. 
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Case 7. A Lie group G which is an extension of a normal vector sub- 
group V by a compact group is a matrix group and hence of type S. 

PROOF. By a theorem of Iwasawa [4, Lemma 3.7] there is a compact 
subgroup H of G complimentary to V (i.e., HV = G, H n V = e, so G is 
the semidirect product of H and V). Let A be the adjoint representation 
of H in V and R' any faithful representation of H in a finite dimensional 
real vector space. Then R = R' (? A is a faithful representation of H in 
a finite dimensional real vector space W and V is an invariant subspace 
of W such that R I V -A. It is clear then that the group of affine trans- 
formations of W generated by the image of R and the translations 
T. w - w + v where v e V is isomorphic to G. Since the full affine 
group of W is a matrix group (it is its own adjoint group) a fortiori G is 
a matrix group. q.e.d. 

Case 8. If G is a Lie group, C the centralizer of Go and K a compact 
subgroup of G then F = KC0 is a matrix group and hence of type S. 

PROOF. By case 7 it will suffice to find a vector group V which is a 
closed normal subgroup of F such that ]/ V is compact. The kernel N of 
the adjoint representation of F on its Lie algebra clearly includes CO, 
hence PIN is compact and so the adjoint representation of F is completely 
reducible. The subgroup T of CO generated by one parameter subgroups 
with compact closure is a torus which is characteristic in CO and hence 
normal in F. Since the Lie algebras c and t of CO and T are ideals in the 
Lie algebra r of F it follows from the complete reducibility of ad (r) that 
there is an ideal v of r complimentary to t in c. The normal subgroup V 
of r generated by v is clearly a vector group closed in CO and hence in r. 
Since GO/ V - T is compact and r/V/Co! V r/CO- K/K n CO is compact, 
it follows that r/V is compact. q.e.d. 

PROOF OF 2.3.1. Let C be the centralizer of Go. Then GIC is a matrix 
group (C is the kernel of the adjoint representation of G on its Lie 
algebra) and hence of type S. Since GIG/GICCO G G/CO and CGCO is a dis- 
crete normal subgroup of GICO it follows from case 6 that G/CO is of type 
S. But if K is any compact subgroup of G then KCO is of type S by case 
8. Hence by case 2, G is of type S. q.e.d. 

2.3.2. THEOREM. Let G be a Lie group, X a G-space and x e X. The 
following two conditions are equivalent: 

(1) G., is compact and there is a slice at x. 
(2) There is a neighborhood V of x in X such that {g e G I g V n V # 0 } 

has compact closure in G. 
PROOF. That (1) implies (2) follows directly from 2.1.4. Conversely 
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suppose that (2) holds, i.e., that x has a thin neighborhood V. Then by 
1.2.4, G V is a proper G-space and hence G. is compact and by 2.3.1 there 
is a slice S at x in G V. Since G V is open in X, S is also a slice at x in X. 
q.e.d. 

2.3.3. THEOREM. Let G be a Lie group and X a G-space. Then the 
following two conditions are equivalent. 

(1) For each x e X, G. is compact and there is a slice at x. 
(2) X is a Cartan G-space. 
PROOF. An immediate corollary of 2.3.2 and definition 1.1.2. 

COROLLARY 1. If G is a Lie group and X a Cartan G-space then every 
orbit of X is an equivariant retract of an invariant neighborhood of 
itself. 

PROOF. Given x e X let S be a slice at x and let h: GIG., Gx be the 
equivariant homeomorphism (1.1.5), gG, - gx. Then h ofS is an equi- 
variant map of the invariant neighborhood GS of Gx onto Gx. Moreover 
if y = gx e Gx then fS(y) = gG. so h o fS(y) = y and h o fS is a retraction 
of GS onto Gx. 

COROLLARY 2. Let G be a Lie group and X a Cartan G-space. If x e X 
then there is a neighborhood V of x such that y e V implies G, is conju- 
gate in G to a subgroup of G.. Moreover if 0 is any neighborhood of e 
in G then V can be chosen so that in fact for each y e V we have 
Gy = gG.,g-j for some g e 0. 

PROOF. Let S be a slice at x, put f = fS and V = f-N(OG). Then Vis 
a neighborhood of x in GS and hence in X. Since f is equivariant, if y e V 
then G_ = Gf (,y). Now f(y) = gG, for some g e 0 and the isotropy group of 
gG, in GIG. is clearly gGg-'. q.e.d. 

COROLLARY 3. Let G be a Lie group, X a Cartan G-space and x e X. 
If H is any closed subgroup of G which includes G. then there exists an 
H-slice in X containing x. 

PROOF. Let S be a slice at x and let f: GIG, , G/H be the canonical 
equivariant map, i.e., f(gG,) = gH. Then f o fS is an equivariant map of 
GS into GIH so (f o fS'-) = HS is an H-slice containing x. q.e.d. 

3.1. Extending a representation 

Let G be a Lie group and V a linear G-space. By a matrix element of 
V we mean a real valued function on G of the form g - l(gv) where v e V 
and 1 e V*, the space of linear functionals on V. Since we can form 
direct sums and Kronecker products of representations of G it follows 
that the set R(G) of real valued functions on G which are matrix elements 
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of some linear G-space form a subalgebra of the algebra of all continuous 
real valued functions on G. If H is a compact subgroup of G we will write 
R(G) I H for the algebra of real valued functions on H which are restric- 
tions of elements in R(G). Now let U be an irreducible linear H-space 
and suppose V is a linear G-space which, considered as a linear H-space 
by restriction, contains no invariant subspace equivalent to U. Then it is 
an immediate consequence of the "Schur orthogonality relations" that if 
f is a matrix element of V and k a matrix element of U then f IH is or- 
thogonal to k with respect to Haar measure on H. Thus if there were no 
linear G-space V which considered as an H-space by restriction had an 
invariant subspace equivalent to U, then every matrix element of U 
would be orthogonal to R(G) I H. But now suppose G is a matrix group. 
Then clearly R(G) separates points of G so a fortiori R(G) I H separates 
points of H and by the Stone-Weierstrass theorem R(G)IH is uniformly 
dense in the space of continuous functions on H. It follows that no non- 
zero continuous function on H is orthogonal to R(G) I H. Hence we have 
proved that if U is an irreducible linear H-space there is always a linear 
G-space V which, considered as an H-space by restriction, contains U as 
an invariant linear subspace. Now since every linear H-space is a direct 
sum of irreducible ones, the same result clearly holds even when U is not 
irreducible. That is we have proved 

THEOREM. If G is a matrix group, H a compact subgroup, and U a 
linear H-space, then there is a linear G-space V which, considered as a 
linear H-space by restriction, contains U as an invariant linear 
subspace. 

3.2. A characterization of matrix groups 

THEOREM. A necessary and sufficient condition for a Lie group G to 
be a matrix group is that given a compact subgroup H of G there exists 
a linear G-space V and a v e V such that G, = H. 

PROOF. The condition is clearly sufficient for taking H = {e} the cor- 
responding V is an effective linear G-space so by definition G is a matrix 
group. 

Conversely suppose G is a matrix group. Then there exists a continu- 
ous one-to-one representation f of G in the group GL(n, R) of non-singular 
n x n real matrices and since H is compact we can assume that H* = 
f(H) _ 0(n) the group of orthogonal n x n matrices. By [9, Lemma a] 
there is a linear 0(n) space U with a u e U such that 0(n). = H*. By 
3.1 there is a linear GL(n, R) space U' such that, considered as an 0(n) 
space by restriction, U is an invariant linear subspace. Then clearly H* = 
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O(n) n GL(n, R),. On the other hand GL(n, R) acts linearly on the space 
W of quadratic forms of dimension n so that O(n) is the isotropy group 
of the unit quadratic form w. Then V = We13 U' is a linear GL(n, R) 
space and GL(n, R)(W, X) = GL(n, R)Wf nGL(n, R)U = O(n) n GL(n, R)=H*. 
Now V becomes a G-space by gv = f (g)v and clearly G(W, u) = f-'(H*) = H. 
q.e.d. 

4.1. Local triviality of principal bundles 

The results of this section are not new. For the case of compact Lie 
groups they are due to Gleason [2]. The general case has not, to the 
author's knowledge, appeared in published form but will be found in 
mimeographed notes of a Bourbaki seminar lecture given by J.-P. Serre 
on March 27, 1950 (Extensions des groupes localement compact). 

THEOREM. If G is a Lie group then a G-principal bundle is locally 
trivial if and only if it is a Cartan principal bundle. 

PROOF. In a principal G-bundle a slice at x is clearly the same as a 
local cross-section at x. Since local triviality is equivalent to the existence 
of a local cross-section through each point, the theorem is an immediate 
consequence of 1.1.3 and 2.3.3. q.e.d. 

Now let X be an arbitrary topological group and G a closed Lie sub- 
group of X. Then X is a G-principal bundle under the action g o x = xg-1, 
the orbits being the left G-cosets. If R is the set of pairs in X x X be- 
longing to the same orbit, then the map f: R > G such that x2 = 
f(x1, x2)x1 is given by f(x1 x2) = x 'x1, which is continuous, hence X is a 
Cartan principal bundle and 

COROLLARY. If X is a topological group and G is a closed Lie subgroup 
of X then the fibering of X by left G-cosets is locally trivial. 

4.2. The Montgomery-Zippin neighboring subgroups theorem 

The theorem of this section is also not new and will be found in Mont- 
gomery and Zippin [7]. Their proof involves an ingenious application of 
Riemannian geometry. G. D. Mostow has given a proof for the case G 
compact within the usual circle of ideas of transformations groups in 
[8, Cor. 3.2]. Here we will show how the results of this paper allow us 
to extend Mostow's proof of the general case. 

THEOREM (Montgomery-Zippin). Let G be a Lie group, U a neighbor- 
hood of the identity in G and H a compact subgroup of G. There is a 
neighborhood of H in G such that any subgroup of G included in this 
neighborhood is conjugate to a subgroup of H by an element of U. 
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PROOF. Let X be the space of compact non-empty subsets of G with 
the Hausdorff topology (i.e., a basic open set N of X is defined by choos- 
ing open sets O0, - * , 0. in G and letting N = {K e X I Kn of 0 and 
K ' 01 U ... U 0?), alternatively metrize X as in corollary 3.2 of [8]. 
Then if g e G and K e X we define gK as usual to be {gk I k e K} and it is 
easily seen that X is a G-space. If H is a compact subgroup of G then 
GH = H and if U is a neighborhood of H in G then U = {K e X I K c U} 
is a neighborhood of H in X. Thus 4.2.1 will be an immediate conse- 
quence of 2.3.3 once it is shown that X is a Cartan G-space. Let F be a 
non-empty compact subset of G and K a compact neighborhood of F in 
G. We shall show that the neighborhood U = {S e X I S c K} of F in X 
is thin. In fact suppose g e ((U, U)). Then there exists S e U such that 
gS e U. Choose s e S (recall elements of X are non empty). Then s e K 
and gs e K so g e KK-1. Thus (U, U) c KK-1 which is compact. q.e.d. 

4.3 Metrization of proper G-spaces 

4.3.1. THEOREM. Let G be a Lie group and X a proper differentiable 
G-space. Then X admits an invariant Riemannian metric. 

PROOF. For each x e X we can find a slice Sx at x which is "differenti- 
able" in the sense of satisfying the properties mentioned in 2.2.3. Since 
X/G is locally compact, a-compact and by 1.2.8 Hausdorff, we can choose 
a sequence {Ix} in X such that LJ,(Sxn) is a locally finite covering of X/G 
and hence GSxn is a locally finite covering of X. Since X/G is normal it 
is easily seen that we can find a neighborhood Kn of Xn in Sxn such that Kn 
has compact closure in Sxn and HX(Kn) is a covering of X/G. Let fin be a 
non-negative, differentiable, real valued function of Sxn positive on Kn 
and with support a compact subset of Sxn. Since GXn is compact we can 
suppose fn is invariant under Gxn. Then fn(gs) =fn(s) (g e G, s e Sxn)fn(X) = 
0, x i GSn is a well-defined invariant differentiable function on S. Let 
Vn be the restriction of the tangent bundle of X to Sxn. Then GXn acts 
naturally on Vn and since Gx is compact we can find an invariant Rieman- 
nian metric ?,n on the vector bundle Vn. If u and v are vectors at a point 
gs of GSn define 7n(u, v) = Jn(8g-'i, Ag-lv). Then 7n is a well-defined in- 
variant Riemannian metric for GSxn and En fnYn is an invariant Rieman- 
nian metric for X. q.e.d. 

4.3.2. DEFINITION. X is a Hilbert G-space if X is a real Hilbert space 
and each operation of G on X is an orthogonal linear transformation. 

LEMMA 1. If G is a Lie group and H a compact subgroup then every 
Hilbert H-space X is an H-invariant closed linear subspace of some 
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Hilbert G-space. 
PROOF. It suffices to prove the theorem for each irreducible component 

of a direct sum decomposition of X, so we can assume that H acts irre- 
ducibly on X. Let f be some non-zero matrix element of the representa- 
tion of H on X, e.g., f(h) = (hx, x) for some non-zero x e X. It follows 
from the Schur orthogonality relations that if V is a Hilbert G-space, u 
and v orthonormal elements of Vand m(g) =(gu,v) satisfies 5f(h)m(h)dh# 
0, then when V is considered an H-space by restriction it contains a sub- 
representation equivalent to X. It will suffice then to show that the 
linear span M of such continuous real valued functions m on G cannot be 
orthogonal to f on H. In fact, because of Kronecker products of repre- 
sentations, M is an algebra, and because the regular representation of G 
is faithful, M separates points of G. Thus by Stone-Weierstrass we can 
approximate f uniformly on H by the restrictions of functions in M. This 
is clearly inconsistent with f being orthogonal to the restriction of every- 
thing in M. q.e.d. 

LEMMA 2. Let G be a Lie group, H a compact subgroup, and X a 
Hilbert H-space. Then there exists a Hilbert G-space in which X is in- 
cluded as an H-kernel. 

PROOF. Let Vbe a Hilbert G-space in which Xoccurs as an H-invariant 
linear subspace. Let W be a Hilbert G-space in which Hoccurs as an iso- 
tropy group at some point w (e.g., W = L2(G) under right regular repre- 
sentation, f is a continuous function with compact support on G/H 
assuming the value one only at the coset H and w(g) = f(gH)). Then 
S = {(v, w) e VGE WI v e X} is easily seen by 2.1.4 to be an H-kernel in 
V? W and x -(x, w) is an H-equivariant imbedding of Xonto S. q.e.d. 

LEMMA 3. If a G-space X admits an equivariant imbedding in a 
Hilbert G-space then it admits one in the unit sphere of a Hilbert G- 
space. 

PROOF. Let f: X - H be an equivariant imbedding of X in the Hilbert 
G-space H and let V be a one dimensional Hilbert G-space on which G 
acts trivially. Then x - (f(x), v)/ II (f(x), v) II, where v is a non-zero 
element of V, is an equivariant imbedding of X in the unit sphere of 
He V. 

LEMMA 4. If G is a compact Lie group then every separable, metriz- 
able G-space X admits an equivariant imbedding in a Hilbert G-space. 

PROOF. Let F = {x e X I Gx = G}. F is a closed set in X and any 
imbedding of F in a Hilbert space (one exists because F is separable 
metric) is equivariant if we simply let G act trivially. The argument of 
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[8, Lemma 5.2] shows that it will suffice to prove that X- F admits an 
equivariant imbedding in a Hilbert G-space, i.e., we can assume that F 
is empty or, equivalently, that G. is a proper subgroup of G for all x e X. 
We can also assume (by induction on the dimension and number of com- 
ponents of G) that the theorem holds for any proper closed subgroups of 
G and hence for all the isotropy groups of X. Given x0 e X let f: S - H 
be a GxO-equivariant imbedding of a slice S at x0 into a Hilbert G.0-space 
H. By 2.1.3 and Lemmas 2 and 3 we can find a G-equivariant imbedding 
f * of GS into the unit sphere of a Hilbert G-space H*. Since X/G is 
completely regular we can find a continuous map X of X/G into the unit 
interval with X (Hx(xo)) = 1 and X identically zero in a neighborhood of 
the complement of Hx(S). Define X on X by X = X o fIX. Then we get 
an equivariant map f': X > H* by f'(x) = X(x)f*(x) if x e GS and 
f '(x) = 0 if x 0 GS. Moreover if U wB1((0, 1]) then f' is clearly a home- 
omorphism on U. Since X is separable it is now clear that we can con- 
struct the following: a sequence { U.} of open invariant subspaces of X 
which cover X, a sequence {If : X > Hn} of equivariant maps of X into 
Hilbert G-spaces H. such that II f n(x) II _ 1/n for all x e X and such that 
ft is a homeomorphism on U., and finally a sequence {J} of invariant 
continuous real valued functions on X such that I X.(x) I < 1/n for all 
x e X and U. = {x e X I X.(x) # 0}. Now let H be the Hilbert-space of 
square summable sequences of real numbers, made into aG-space by letting 
G act trivially and define X: X-> H by Xix) = (X1(x), 2(x), * ** 
Since the X, are invariant, X is equivariant. The weak continuity of X is 
clear and norm continuity follows as usual from I X. I ? 1/n. For the same 
reason the mapf: X -H0D He given by x >((X(x),f1(x), ... f.(x), ... 
is norm continuous and it is clearly equivariant. To complete the proof 
we show that if f (xk) f (x) then xk - x which will show both that f is 
one-to-one and that f1 is continuous. In fact choose a U, containing x. 
Then i(x) # 0 and since Xi(xk) > i(x) it follows that i(xk) # 0 for suffi- 
ciently large k and hence that xk e Us for large k. But fi(xk) - fi(x) and 
since fi is a homeomorphism on Uj it follows that xk - x. q.e.d. 

4.3.3. THEOREM. If G is a Lie group and X is a separable, metrizable, 
proper G-space, then X admits an equivariant imbedding in a Hilbert 
G-space. 

PROOF. By Lemma 4 the theorem holds for each isotropy group of G 
acting on X. We can now simply repeat the proof of Lemma 4 from the 
point where we saw we could make the corresponding assumption in that 
case. q.e.d. 

4.3.4. THEOREM. Every separable, metrizable, proper G-space X 
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admits an invariant metric. If p is an invariant metric then p(X, Yj)= 
Inf {p(x, y) Ix e A, y e j} is an invariant metric for X/G and the latter 
is separable. If X has dimension n at x then X/G has dimension 
n - dim GIGX at Hx(x), hence dim X/G < dim X. 

PROOF. That X has an invariant metric is a trivial consequence of 4.3.3. 
Since p is invariant 

p(Gx, Gz) = Inf {(x, gz) I g e G} 
< Inf {p(x, fy) + p(fy, gz) If, g e G} 
= Inf {a(x, fy) + p(y, f'-gz) I f, g e G} 
= Inf {p(x, fy) + p(y, kz) If, k e G} 
= p(Gx, Gy) + p(Gy, Gz) 

Since GX is a closed subset of X, by 1.1.4, if Gx i Gy then y is not 
adherent to Gx so p(Gx, Gy) = Inf {p(gx, y) I g e G} > 0. Thus p5 is a 
metric for the set X/G. It is clear from the definition of pU that fix is 
distance decreasing relative to p and g and on the other hand that HI, 
maps the s-ball about x onto the s-ball about L1x(x). Thus fiH is contin- 
uous and open relative to p and #. Since these two properties characterize 
the topology of X/G it follows that # is a metrization of X/G. Since X is 
separable it is Lindelkf so its continuous image X/G is Lindelkf and hence 
(being metrizable) separable. Finally suppose X has dimension n at x 
and let S be a slice at x. Since TIx(S) is a neighborhood of x = HIx(x) in 
X/G it will suffice to prove that the dimension at x in Hlx (S) is n -dim GIG,. 
Next note that, by 2.1.2, x has a neighborhood which is homeomorphic to 
U x S where U is an open set in a euclidean space of dimension = 
dim GIGX. By a theorem of Hurewicz [3] S has dimension n - dim GIGX at 
x. Now the map Gxs - Gs of SIGX onto flx(S) (which is clearly continuous 
and is one-to-one by 2.1.4) is a homeomorphism by the corollary of 2.1.2. 
Now by [10, 1.7.31] the desired dimension relation is known to hold for 
compact groups and in particular for G. so dim fl(S) at x = dim SIG. 
at x = dim S at x-dim GJ/G = n -dim GG,- 0. q.e.d. 

4.4 Equivariant imbeddings in linear G-spaces 

If G is a Lie group then by an orbit type of G we mean a class of con- 
jugate closed subgroups of G. If X is a G-space and x, gx are points of 
the same orbit of X then G., = gGzg-1 so that the set of isotropy groups 
on a given orbit form an orbit type which we call the type of that orbit. 
We have the following important theorem due to Yang [11] (see also [10, 
1.7.26] and [8, p. 444]). 

4.4.1. THEOREM. If H is a compact Lie group then only a finite 
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number of orbit types occurs in each linear H-space. 

LEMMA. If G is a matrix group and H and K are compact subgroups 
of G then the set of subgroups {H n gKg-1 I g e G} fall in a finite number 
of H orbit types. 

PROOF. By 3.2.1, we can find a linear G-space V in which K occurs as 
an isotropy group say of a point v. Now regard V as a linear H-space by 
restriction. Then the isotropy group at gv is clearly H n Ggv = H n gKg-1. 
Since V as an H-space has only a finite number of orbit types altogether, 
by 4.4.1, the lemma follows. 

4.4.2. PROPOSITION. Let G be a matrix group, X a Cartan G-space 
having only finitely many orbit types and H a compact subgroup of G. 
Then when X is regarded as an H-space by restriction it has only 
finitely many orbit types. 

PROOF. By assumption we can find subgroups K1, *--, K. of G which 
are isotropy groups at points of X such that every isotropy group of X is 
conjugate in G to one of the K,. By 1.1.4, each K, is compact. If X is 
now regarded as an H-space then the isotropy groups will all be of the 
form H n GX = H n gKfg-1 and the theorem is an immediate consequence 
of the lemma. q.e.d. 

COROLLARY 1. Let G be a matrix group,X a G-s pace having only finitely 
many orbit types and H a compact subgroup of X. Then any H-kernel 
in X when regarded as an H-space has only finitely many orbit types. 

COROLLARY 2. Let G be a matrix group, X a separable metrizable G- 
space of finite dimension having only finitely many orbit types and H a 
compact subgroup of G. Then if S is an H-kernel in X, GS admits an 
equivariant imbedding in a linear G-space. 

PROOF. By a theorem of Mostow [8, Theorem 6.1] (see also [10, 1.8.41) 
it follows from Corollary 1 that S admits an H-equivariant imbedding in 
a linear H-space V. By 3.1, there is a linear G-space Wwhich, regarded 
as a linear H-space by restriction, has V as an invariant linear subspace. 
By 3.2, there is a linear G-space U having a point u such that Gu = H. 
Then by 2.1.4, it follows easily that {(w, u) e WGD U I w e V} is an H- 
kernel in the linear G-space W E U which we can identify with V. Then 
by 2.1.3, the H-equivariant imbedding of S in V extends uniquely to a 
G-equivariant imbedding of GS into WeJ3 U. q.e.d. 

LEMMA 1. Let X be a separable metric proper G-space of dimension 
n < oo, and H a compact subgroup of G. Let X<H> = {x e X I Gx is con- 
jugate to a subgroup of H}. Then X<,, is open in X and there exist m = 
n-dim G/H+ 1 H-slices S1, * - *, Sf,, in Xsuch that X<H> C GS1 U ... U GSm. 
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PROOF. That X<,H is open in X follows immediately from Corollary 2 
of 2.3.3. If X<> = Hx(X<H,>) then it follows from 4.3.4 that 
dim X<f> ? m - 1. Moreover if x e X<, there exists x e x with Gx c- H 
and by Corollary 3 of 2.3.3 there exists an H-slice S at x. Clearly then 
X<H> has an open covering {S,} such that there exists an H-slice Sky over 
each S0. If Too is an open subset of S9l. then there is an H-slice Too over Too 
(for in fact the restriction of fSa to flX1(T0) is an equivariant map into 
G/H with T, = Ski f ,ll (Tic) the inverse image of H). In other words 
if {So} is any refinement of {S0i} then there is an H-slice Sp over each Sp. 
Now by [10, 1.8.2] we can find a covering {Sf} i = 1, * * * m of X<x> 
refining {S0,} such that Sa n si = 0 if ya #, f'. Let Si, be an H-slice over 
Si. The corresponding equivariant maps fip: H 1(S3) G/H have, for 
fixed i, disjoint open domains, hence their union is an equivariant map 
~f Hj'l(S) > G/H where Si = UserB SA, and Si = U6eB, Si, is the in- 
verse image of Hunderf8f and hence a slice over Sf. Now GS1 U ... U GSm= 

Ui=1 HI (U~eB, Sf) = H` (U SAi) = 11` (X<H>) = X<H>. q.e.d. 

LEMMA 2. Let X be a separable metric proper G-space and 01, - - *, Om 
invariant open sets in X each of which admits an equivariant imbed- 
ding in a linear G-space. Then 01 U ... U Om admits an equivariant 
imbedding in a linear G-space. 

PROOF. We can suppose that the 0X cover X. Let 0X = fi (0). Since 
X/G is metrizable (4.3.4) we can find open sets U1, ..., Ur covering X/G 
such that the closure of UC is included in 0i. Let hi be a continuous real 
valued function on X/G with hk I Ui 1 and hi I (X/G - 0,) = 0 and define 
invariant real valued functions hi on X by hi = he o fix. If ff is an equi- 
variant imbedding of O0 in a linear G-space Vi then we define an equi- 
variant map fp of X into Vi which is an imbedding on Us = HI1 (Us) by 
Of(x) = h1(x)fi(x) if x e 0 and f*(x) = 0 for x e 0f. Let V. be Rn con- 
sidered as a G-space under the trivial representation of G. Then 

xo* (h1(x), ... , h,,,(x)) is an equivariant map of X into V0. An argu- 
ment completely analogous to the final part of the proof of Lemma 4 
preceding 4.3.3, shows that f: x *(f*(x),f1(x), ... ,fm(x)) is an 
equivariant imbedding of X into VO &D V1 E ... &D V.. q.e.d. 

4.4.3. THEOREM. Let G be a matrix group and X a separable, metriz- 
able, proper G-space of finite dimension having only finitely many orbit 
types. Then X admits an equivariant imbedding in a linear G-space. 

PROOF. Let H1, ..., Hn be compact subgroups of G such that every 
isotropy group of X is conjugate to some H, and let X<,,, = {x e X I G., 
is conjugate to a subgroup of He}. Then by Lemma 1 each X<,,, is open 
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in X and clearly the X<i, cover X, so by Lemma 2 it suffices to show 
that each X<H,> admits an equivariant imbedding in a linear G-space. 
But by Corollaries 1 and 2 of 4.4.2, each X<H,> is a finite union of open 
invariant subsets which admit equivariant imbeddings in linear G-spaces, 
so another application of Lemma 2 completes the proof. q.e.d. 

We note that the restriction that G be a matrix group is essential. For 
let G be any Lie group and let X be G considered as a G-space acting by 
left translation. Then X is clearly proper and has a single orbit type (in 
fact a single orbit). If f: X-> V is an equivariant imbedding of X in a 
linear G-space then clearly the isotropy group at points of the image of 
X in V is the identity from which it follows that G acts effectively on V, 
so that by definition G is a matrix group. In another sense though, 4.4.3 
is not a best possible result. Namely the requirement of finitely many 
orbit types is not a necessary condition for equivariant imbedding in a 
linear G-space. In fact in [8, p. 446] Mostow exhibits a matrix group G 
having a linear G-space with infinitely many orbit types. 

4.5. The classification of proper G-spaces 

In Chapter 2 of [10] the author has given a classification theory for G- 
spaces with a given orbit space, G being a compact Lie group. This 
classification theory is analogous to and generalizes the well-known 
classification of principal G-bundles over a given base space in terms of 
homotopy classes for mappings of the base space into a classifying space. 
We wish to remark here that the results proved there generalize easily 
to the case of non-compact Lie groups if we consider only proper G-spaces. 
The reason is roughly this. The basic covering homotopy theorem is 
proved for a given group G using only the assumption that it holds for 
all compact proper subgroups of G and that there exists a slice through 
every point of a G-space. The same proof therefore works if G is any Lie 
group and we consider only proper G-spaces. Secondly, the universal G- 
spaces constructed in [2] are easily seen to be proper G-spaces and so, by 
1.3.4, the G-spaces induced by mappings into their orbit spaces (which 
are the classifying spaces) are all proper. 
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