
 Open access  Journal Article  DOI:10.1002/ZAMM.200900311

On the existence of solution in the linear elasticity with surface stresses
— Source link 

Holm Altenbach, Victor A. Eremeyev, Leonid P. Lebedev

Institutions: Martin Luther University of Halle-Wittenberg, National University of Colombia

Published on: 01 Mar 2010 - Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik (John Wiley & Sons, Ltd)

Topics: Linear elasticity, Boundary value problem, Weak solution, Uniqueness and Dynamic problem

Related papers:

 A continuum theory of elastic material surfaces

 Elastic surface—substrate interactions

 On the spectrum and stiffness of an elastic body with surface stresses

 Surface stress in solids.

 Size-dependent elastic properties of nanosized structural elements

Share this paper:    

View more about this paper here: https://typeset.io/papers/on-the-existence-of-solution-in-the-linear-elasticity-with-
1q9b8imi9o

https://typeset.io/
https://www.doi.org/10.1002/ZAMM.200900311
https://typeset.io/papers/on-the-existence-of-solution-in-the-linear-elasticity-with-1q9b8imi9o
https://typeset.io/authors/holm-altenbach-4jqctnxwkm
https://typeset.io/authors/victor-a-eremeyev-3d1udp8a4m
https://typeset.io/authors/leonid-p-lebedev-yhezfmcmkx
https://typeset.io/institutions/martin-luther-university-of-halle-wittenberg-d7kf8p7z
https://typeset.io/institutions/national-university-of-colombia-2bwtua3k
https://typeset.io/journals/zamm-zeitschrift-fur-angewandte-mathematik-und-mechanik-3ezhsw7v
https://typeset.io/topics/linear-elasticity-1hvys0ys
https://typeset.io/topics/boundary-value-problem-3tdxfygq
https://typeset.io/topics/weak-solution-16lwphjo
https://typeset.io/topics/uniqueness-3qxmcga9
https://typeset.io/topics/dynamic-problem-3f5l6j7e
https://typeset.io/papers/a-continuum-theory-of-elastic-material-surfaces-200snnc6a8
https://typeset.io/papers/elastic-surface-substrate-interactions-kr5d1tzrd6
https://typeset.io/papers/on-the-spectrum-and-stiffness-of-an-elastic-body-with-35ejd5vfuk
https://typeset.io/papers/surface-stress-in-solids-1ipozh76tx
https://typeset.io/papers/size-dependent-elastic-properties-of-nanosized-structural-5ra9g55fj1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-existence-of-solution-in-the-linear-elasticity-with-1q9b8imi9o
https://twitter.com/intent/tweet?text=On%20the%20existence%20of%20solution%20in%20the%20linear%20elasticity%20with%20surface%20stresses&url=https://typeset.io/papers/on-the-existence-of-solution-in-the-linear-elasticity-with-1q9b8imi9o
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-existence-of-solution-in-the-linear-elasticity-with-1q9b8imi9o
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-existence-of-solution-in-the-linear-elasticity-with-1q9b8imi9o
https://typeset.io/papers/on-the-existence-of-solution-in-the-linear-elasticity-with-1q9b8imi9o


HAL Id: hal-00824093
https://hal.archives-ouvertes.fr/hal-00824093

Submitted on 21 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the existence of solution in the linear elasticity with
surface stresses

Holm Altenbach, Victor Eremeyev, Leonid Lebedev

To cite this version:
Holm Altenbach, Victor Eremeyev, Leonid Lebedev. On the existence of solution in the linear elasticity
with surface stresses. Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte
Mathematik und Mechanik, Wiley-VCH Verlag, 2010, 90 (3), pp.231-240. ฀hal-00824093฀

https://hal.archives-ouvertes.fr/hal-00824093
https://hal.archives-ouvertes.fr




Let C
(2)
0 be the set of all functions from C(2)(V̄ ) taking zero value on Ω1. Problem (1) is equivalent to the following

variational problem:

Given f, ϕ, find u ∈ C
(2)
0 that minimizes the functional

J(u) = E(u) − A(u)

on C
(2)
0 . Here

E(u) =
1

2

∫

V

(∇u)2 dV +
1

2

∫

Ω2

α

(

∂u

∂s

)2

dΩ and A(u) =

∫

V

fu dV +

∫

Ω

ϕu dΩ.

J(u) is the total energy functional for the membrane. The first integral in E(u) corresponds to the “volume strain energy”

and the second integral corresponds to the ”surface strain energy” in the problems for an elastic body with surface stresses

that will be considered in what follows. As for the strain energy for an elastic body with surface stresses, we need the E
to be non-negative. For the membrane problem this implies that the “module” α must be non-negative that we demonstrate

with the following example.

Let V = {(x, y) ∈ [0, 1]× [0, 1]}, u = 0 on three square sides Ω1 = ([0, 1]× {0})∪ ({0}× [0, 1])∪ ({1}× [0, 1]) and

α < 0. We show that the value of E(u) that is now

2E(u) =

∫ 1

0

∫ 1

0

[

(

∂u

∂x

)2

+

(

∂u

∂y

)2
]

dxdy + α

∫ 1

0

(

∂u

∂x

)2
∣

∣

∣

∣

∣

y=1

dx

is unbounded from below. Indeed, let ukn = yn sin πkx, where n, k are integers. We get

E(ukn) =
(πk)2

4

(

α +
1

2n + 1

)

+
1

4

n2

2n − 1
.

For α < 0 we find such an n∗ that

α +
1

2n∗ + 1
< 0.

It is seen that E(ukn∗) → −∞ as k → ∞.

To solve the minimum problem for J , we reduce it to the solution of the following integro-differential equation for u

δJ(u) ≡

∫

V

(∇u · ∇δu − fδu) dV +

∫

Ω2

(

α
∂u

∂s

∂δu

∂s
− ϕδu

)

dΩ = 0 (2)

that must be valid for any δu ∈ C
(2)
0 . Eq. (2) is applied to the weak setup of the boundary value problem (1). We denote by

H the completion of C
(2)
0 with respect to the energy norm

‖u‖2
H ≡

∫

V

∇u · ∇u dV +

∫

Ω2

α

(

∂u

∂s

)2

dΩ.

The elements of space H belong to Sobolev’s space W 1,2(V ). By the trace theorem, the elements belong to W 1/2,2(Ω2).

However the presence of the member
∫

Ω2

α (∂u/∂s)
2

dΩ in the norm of H implies higher regularity of u on Ω2, namely

u ∈ W 1,2(Ω2). So H is not a closed subspace of W 1,2(V ).
A weak solution to the problem (1) is u ∈ H satisfying Eq. (2) for any δu ∈ H . We underline again the smoothness

properties of u on the boundary of V are different from the ones of a weak solution in the classical membrane theory,

see [1,6,13]. The weak setup of the problem makes sense for some wide classes of loads f , ϕ. If the boundary is sufficiently

regular and α > 0 it can be demonstrated both the existence and uniqueness of the weak solution. Note the limit point of

the approximations by the finite element method is a weak solution of the problem under consideration.

When the displacements of the membrane boundary are not constrained, that is when Ω2 = Ω, the equilibrium problem

has a solution if and only if

∫

V

f dV +

∫

Ω

ϕdΩ = 0.



A solution of this problem is uniquely defined up to the constant c that is an analogue to small free motions for a free elastic

body.

The goal of this paper is to study the initial-boundary and boundary value problems of linear elasticity for bodies with

surface stresses. We will investigate the properties of the spectrum of elastic bodies in this theory. Sect. 2 presents the

governing relations of the linear elasticity with regard to surface stresses. Here we used the direct tensor notations as

in [12].

The weak setup of equilibrium problems is presented in Sect. 3. We introduce the setup of the problems in energy spaces

and prove the theorem of uniqueness and existence of the weak solution in Sect. 4. In Sect. 5 we establish some properties

of the eigenvalue problems and apply them to dynamic problems in Sect. 7. Last, but not least, we present the Rayleigh

principle for bodies with surface stresses in Sect. 6.

2 Basic equations of linear elasticity with surface stresses

From now we change the meaning of the notations of Sect. 1 to three dimensions. For example, V is a bounded domain in

R
3 with sufficiently regular boundary that a body occupies.

First we consider the problems with mixed boundary conditions. Suppose Ω1, a nonempty part of the boundary surface

Ω of V , to be fixed: u|Ω1
= 0. On the rest part Ω2 = Ω\Ω1 it is defined the stress vector t expressed through a given load

ϕ and tS (the stress vector due the surface stresses) by the formula

t = ϕ + tS ,

where tS is determined through the surface stress tensor τ [4, 5, 8, 9, 17]. So

∇ · σ + ρf = ρü, x ∈ V, (3)

u|Ω1
= 0, n · σ|Ω2

= t, x ∈ Ω, (4)

where σ is the stress tensor, ∇ the 3D gradient operator (3D nabla operator), ρ the body density, f the density of the

volume forces, n the external unit normal to Ω, and the dot over a quantity denotes its partial derivative with respect to t.
The surface stress vector is defined by

tS = ∇S · τ , (5)

where τ is the surface stress tensor on Ω and ∇S is the nabla operator on the surface Ω that relates with ∇ by the formula

∇S = ∇− n
∂

∂z
,

and z is the coordinate along the normal to Ω.

In addition, we consider the problem when the static conditions are given on the whole boundary

n · σ|Ω = t, x ∈ Ω. (6)

For simplicity, we restrict ourselves to an isotropic material. The constitutive equation for the material is the Hooke’s

law

σ = 2µε + λItr ε with ε = ε(u) ≡
1

2

(

∇u + (∇u)T
)

. (7)

For the surface stresses we assume the following constitutive equation [4, 5]

τ = 2µSǫ + λSAtr ǫ with ǫ = ǫ(v) ≡
1

2

(

∇Sv ·A + A · (∇Sv)T
)

, (8)

where v is the displacement of the film point x of Ω2. Here I and A ≡ I − n ⊗ n are the three- and two-dimensional unit

tensors, respectively, λ and µ are Lamé’s coefficients of the bulk material whereas λS and µS are the elastic characteristics

of the surface film Ω2 (they are the surface analogues of Lamé’s moduli), ε is the small strain tensor, u is the displacement

vector, and ǫ is the surface strain tensor. Following [8, 17], we use the non-separation condition

u|Ω2
= v.

This explicitly states that the displacements of the surface film Ω2 coincide with the body displacements on the boundary.

There are more general relations for the surface stresses that include residual stresses, anisotropy and other factors, cf.

[8, 9, 17].



3 Equilibrium problems

In equilibrium, the dynamic Eq. (3) changes to

∇ · σ + ρf = 0. (9)

Thus the equilibrium boundary value problem for an elastic body with surface stresses consists of Eq. (9) and the boundary

conditions

u|Ω1
= 0, (n · σ −∇S · τ )|Ω2

= ϕ, (10)

where σ and τ satisfy relations (7) and (8), respectively. In Eq. (8) we set

ǫ = ǫ(u) ≡
1

2

(

∇Su ·A + A · (∇Su)T
)

∣

∣

Ω2

.

If Ω2 = Ω then part Ω1 is absent.

With respect to the constitutive Eqs. (7) and (8) the boundary value problem (9), (10) takes the variational form similar

to the Lagrange’s principle.

Theorem 3.1. A stationary point u of J(u) = E(u)−A(u) on the set of admissible sufficiently smooth displacements,

that is they satisfy the condition u
∣

∣

Ω1

= 0, Ω1 �= ∅, is a solution of the equilibrium Eqs. (9) for the elastic body in the

volume V together with the boundary condition (10), and vice versa. Here

E(u) =

∫

V

W (ε) dV +

∫

Ω2

U(ǫ) dΩ, A(u) =

∫

V

ρf · u dV +

∫

Ω2

ϕ · u dΩ,

W (ε) ≡
1

2
λtr 2ε + µε : ε, U(ǫ) ≡

1

2
λStr 2ǫ + µSǫ : ǫ,

where W is the strain energy of the isotropic elastic body, U is the surface strain energy, and : means the scalar product of

two second-order tensors, i.e. α : β = tr (α · βT ).

P r o o f. The stationary condition for J leads to the variational equation

δJ ≡

∫

V

(σ : δε − ρf · δu) dV +

∫

Ω2

(τ : δǫ − ϕ · δu) dΩ = 0 (11)

for any sufficiently smooth δu such that δu|Ω1
= 0. Applying the Gauss–Ostrogradsky theorem to the integral

∫

V

σ : δε dV

and noting δu|Ω1
= 0 we get

∫

V

σ : δε dV =

∫

V

σ : (∇δu)T dV = −

∫

V

(∇ · σ) · δu dV +

∫

Ω

n · σ · δu dΩ

= −

∫

V

(∇ · σ) · δu dV +

∫

Ω2

n · σ · δu dΩ.

Transforming the second integral in (11) together with the surface version of the Gauss–Ostrogradsky theorem [8] we get
∫

Ω2

τ : δǫ dΩ =

∫

Ω2

τ : (∇Sδu)T dΩ = −

∫

Ω2

(∇S · τ ) · δu dΩ +

∫

Γ

ν · τ · δu ds,

where ν is the external unit normal to the boundary contour Γ of Ω2, ν lies in the tangent plane to Ω, that is ν · n = 0. On

Ω1 admissible displacement δu = 0 so by continuity, δu = 0 on Γ as well. If Ω2 = Ω the contour integral is absent. Thus

the following formula for the first variation of J can be stated

δJ = −

∫

V

(∇ · σ + ρf) · δu dV +

∫

Ω2

(n · σ −∇S · τ − ϕ) · δu dΩ. (12)

From (11) we derive Eqs. (9) and (10); when Ω2 = Ω, condition (10) changes to (6).

To prove the second part of the theorem we suppose u to be a solution of the problem (9), (10). Dot-multiplying (9) by

δu and integrating the results over V we then repeat the above transformations in the reverse order. This brings us to the

necessary variational equation δJ = 0.



Suppose W and U to be positive definite functions of their arguments, that is there exist positive constants c1, c2 such

that

W (ε) ≥ c1ε : ε, U(ǫ) ≥ c2ǫ : ǫ, c1, c2 > 0 (13)

for any ε, ǫ. For an isotropic homogeneous material this leads to the inequalities

3λ + 2µ > 0, µ > 0, λS + µS > 0, µS > 0. (14)

We should note that if U can be negative for some deformations then, as for the problem (1), it can be shown that E is not

bounded from below that contradicts to the physical meaning of the strain energy.

Let u◦ be a solution of the problem. Then J(u) can be represented in the form

J(u) = J(u − u◦) − J(u◦).

From this and the positivity assumptions (13) it follows

Theorem 3.2. Let the assumptions (13) hold and Ω1 �= ∅. On the set of admissible smooth displacements u satisfying

u|Ω1
= 0, a stationary point of J(u) is a point of minimum of J(u).

4 Weak solutions to the equilibrium problems

Let us introduce the energy space in which we will seek a weak solution. We start with the set C
(2)
0 of vector functions u

that take values in R
3 such that each of its Cartesian components belongs to C(2)(V̄ ) and u|Ω1

= 0. On C
(2)
0 we introduce

the inner product

〈u, v〉e =

∫

V

[λtr ε(u)tr ε(v) + 2µε(u) : ε(v)] dV +

∫

Ω2

[λStr ǫ(u)tr ǫ(v) + 2µSǫ(u) : ǫ(v)] dΩ (15)

and the corresponding energy norm ‖u‖2
e = 〈u, u〉e that is the double strain energy of the body 2E(u). Suppose the

conditions (13) are fulfilled. Then on C
(2)
0 form 〈u, v〉e possesses all the properties of the inner product. However C

(2)
0

with this inner product is not complete.

Definition 4.1. The completion of C
(2)
0 with respect to the norm ‖u‖e is called the energy space E.

By Korn’s inequality on C
(2)
0 , cf. for example [1, 6, 11], it is easily seen that

‖u‖W 1,2(V ) ≤ C1 ‖u‖e

with some constant C1 that does not depend on u ∈ E. To prove this inequality, we should suppose some regularity of

the boundary of V , for example, it should satisfy the cone property [1, 6, 11, 13, 14]. So we can use the properties of the

Sobolev space W 1,2(V ) for the elements of space E. Note that the Sobolev norm for the vector functions on the domain V
is defined by the formula

‖u‖2
W 1,2(V ) =

∫

V

(

|u|2 + ∇u : ∇uT
)

dV.

Let Ω2 consists of a finite number of sufficiently smooth surfaces with smooth boundaries. Using the techniques of the

shell theory, cf. [2, 19], it is easy to prove an analogue of Korn’s inequality on Ω2,

‖u‖W 1,2(Ω2) ≤ C2 ‖u‖e

with some constant C2 that does not depend on u ∈ E. Here

‖u‖2
W 1,2(Ω2) =

∫

Ω2

(

|u|2 + ∇Su : ∇SuT
)

dΩ.

Again as for the membrane, u of E is an element of W 1,2(V )3 and so by the trace theorem, it belongs to W 1/2,2(Ω2)
3.

However the presence of the member given on Ω2 in the norm of E implies that u ∈ E possesses higher regularity, namely

u ∈ W 1,2(Ω2)
3.



Now we introduce:

Definition 4.2. A weak solution of the problem (9), (10) is u ∈ E that satisfies Eq. (11) for any δu ∈ E.

Let us formulate:

Theorem 4.3. Let f ∈ L6/5(V )3 and ϕ ∈ Lp(Ω2)
3 for some p > 1. There exists a weak solution of the problem (9),

(10) by Definition 4.2 that is unique.

P r o o f. By the properties of the Sobolev space W 1,2, functional A(δu) is linear and continuous in E; it can be

proved in a similar manner to the proof of this fact for the work functional in linear elasticity, cf. [1, 6, 13]. By the Riesz

representation theorem for a linear continuous functional in a Hilbert space we have

A(δu) = 〈u0, δu〉e ,

where u0 is a uniquely defined element of E. So Eq. (11) reduces to the equation

〈u, δu〉e = 〈u0, δu〉e

for any δu ∈ E. This equation has the unique solution u = u0 that completes the proof.

Using the techniques for the equilibrium problem for a free body under load in the classic linear elasticity [11, 13], we

can prove the following theorem for a body free of geometrical constraints. Now Ω2 = Ω.

Theorem 4.4. Let f ∈ L6/5(V )3 and ϕ ∈ Lp(Ω2)
3 for some p > 1 and the external forces be self-balanced, that is

∫

V

f dV +

∫

Ω

ϕ dΩ = 0,

∫

V

x × f dV +

∫

Ω

x × ϕ dΩ = 0.

There exists a weak solution of the problem (9), (10) by Definition 4.2 that is unique up to the infinitesimal rigid body

motions a + x × b, where a, b are constant vectors and x is the position vector of a body point.

To solve the equilibrium of solids with surface stresses they use the method of finite elements. We briefly discuss some

features of the conforming version of the method [3]. In this version we generate the sequence of the finite-dimensional

subspaces Eh of the space E and find the approximate FEM solutions uh ∈ Eh. By Céa’s lemma [3] we have the bound

for the error

‖u − uh‖e ≤ C inf
uh∈Eh

‖u − uh‖e,

where u ∈ E is the weak solution, and C a constant. This estimate depends on the error of the approximation in the volume

and on the approximation error on the surface Ω2.

5 Eigenvalue problems in the theory of elasticity with surface stresses

Let us consider an important case of dynamical problems: the eigenoscillation problem for an elastic body with surface

stresses. In this problem we seek solutions to the homogeneous dynamic equation in displacements (f = 0, ϕ = 0) in the

following form:

u = u(x, t) = w(x)eiωt.

Substituting this into (3), (10) expressed in displacements and canceling the factor eiωt, we get

∇ · σ = −ρω2w in V, w
∣

∣

Ω1

= 0, (n · σ −∇S · τ )
∣

∣

Ω2

= 0. (16)

In the last Eqs. σ and τ are given by the relations (7) and (8) with ε = ε(w), ǫ = ǫ(w).
Eqs. (16) constitute an eigenvalue problem: we should find positive values ω, called eigenfrequencies of the elastic body

with surface stresses, for which problem (16) has a non-trivial solution w that is called an eigenoscillation. A normed w

will be called the oscillation eigenmode. Let us note that for the boundary value problems with boundary condition (10),

the minimal eigenfrequency is positive. Indeed, for ω = 0 the problem (16) is described by the equilibrium equations, and

by the uniqueness of the solution of this equilibrium problem we have the only solution w = 0. For the second boundary

value problem with condition (6) that is when Ω2 = Ω, there corresponds to the “frequency” ω = 0 a non-trivial solution

that represents infinitesimal translations and rotations of a rigid body

w = a + b × x

with arbitrary but constant vectors a and b. Let us restrict ourselves to the case of positive eigenfrequencies ω.

We present the following theorem.



Theorem 5.1. For the oscillation eigenmodes w1 and w2 corresponding to distinct eigenfrequencies ω1 and ω2, re-

spectively, the relation
∫

V

ρw1 · w2 dV = 0 (17)

holds true. Moreover,

〈w1, w2〉e = 0. (18)

Eq. (17) is called the orthogonality relation, and (18) – the generalized orthogonality relation for w1 and w2.

P r o o f. Let eigenmodes w1 and w2 correspond to different eigenfrequencies, so that

∇ · σ1 = −ρω2
1w1 in V, w1

∣

∣

Ω1

= 0, n · σ1

∣

∣

Ω2

= ∇S · τ 1

and

∇ · σ2 = −ρω2
2w2 in V, w2

∣

∣

Ω1

= 0, n · σ2

∣

∣

Ω2

= ∇S · τ 2,

where σk and τ k are defined by (7) and (8). Denote εk = ε(wk) and ǫk = ǫ(wk). Dot-multiply the first equation given

on V by w2 and integrate over V . Applying the Gauss–Ostrogradsky theorem we get

−

∫

V

σ1 : ε2 dV −

∫

Ω2

τ 1 : ǫ2 dΩ + ω2
1

∫

V

ρw1 · w2 dV = 0. (19)

Similarly, one obtains

−

∫

V

σ2 : ε1 dV −

∫

Ω2

τ 2 : ǫ2 dΩ + ω2
2

∫

V

ρw2 · w1 dV = 0.

Subtract these two equations. Since σ1 : ε2 = σ2 : ε1 and τ 1 : ǫ2 = τ 2 : ǫ1, we get

(ω2
1 − ω2

2)

∫

V

ρw1 · w2 dV = 0.

ω1 �= ω2, so the relation (17) follows immediately. Substituting (17) into (19) we obtain (18).

Now we represent Eq. (16) in the weak form

〈w, v〉e = ρω2

∫

V

w · v dV (20)

that must hold for any v ∈ E. We seek a weak solution of this so w ∈ E. Let us transform Eq. (20) to an operator equation.

For any fixed w ∈ E the functional ρω2
∫

V
w · v dV is linear and continuous in v ∈ E. By the Riesz representation

theorem for a linear continuous functional in a Hilbert space there is an unique element w0 ∈ E such that
∫

V

w · v dV = 〈w0, v〉e

for any v ∈ E. The correspondence w to w0 defines a linear operator w0 = Bw. This operator possesses the properties

of the analogous operator in the classical linear elasticity, that is it is linear, selfadjoint, compact and positive definite,

cf. [1, 6, 13]. By a general theorem of functional analysis, we now can formulate other properties of the spectrum and

eigensolutions of the problem under consideration, cf. [1, 6, 13]. We present it as:

Theorem 5.2. The eigenvalue problem under consideration has a discrete spectrum which contains only eigenfrequen-

cies ωk that possess the following properties

• All ωk are positive, ωk ≥ ω > 0.

• The set {ωk} is infinite and does not contain a finite limit point.

• To each ωk there corresponds no more than a finite number of linearly independent eigensolutions which are assumed

to be orthonormalized.

• The set of all these eigenmodes {wk} is a complete orthonormal system in the energy space E. Besides the set {ωkwk}
is a complete orthonormal system in L2(V ) with the scalar product

(w, v) =

∫

V

ρw · v dV.



6 Rayleigh variational principle

On the orthogonality of the eigensolutions established in Theorem 5.1 practical applications of the Rayleigh variational

principle can be grounded.

Theorem 6.1. Eigenmodes are stationary points of the energy functional

E(w) =

∫

V

W (ε(w)) dV +

∫

Ω2

U(ǫ(w)) dΩ

on the set of displacements satisfying the boundary conditions w|Ω1
= 0 and subject to the constraint

1

2

∫

V

ρw · w dV = 1. (21)

Conversely, all the stationary points of E(w) on the above set of displacements are eigenmodes of the body that correspond

to its eigenfrequencies.

P r o o f. Let us write down the stationarity condition for E(w). Using the same reasoning as in the Theorem 3.1, we

get

δE = −

∫

V

(∇ · σ) · δw dV +

∫

Ω2

(n · σ −∇S · τ ) · δw dΩ = 0. (22)

Using the Lagrange multipliers method, the stationarity of E implies two simultaneous equations

δE − ℓ

∫

V

ρw · δw dV = 0,
1

2

∫

V

ρw · w dV − 1 = 0. (23)

From the first equation in (23) we get

−

∫

V

[(∇ · σ) · δw + ℓρw · δw] dV +

∫

Ω2

(n · σ −∇S · τ ) · δw dΩ. (24)

It follows from this integral equation for arbitrary δw that

∇ · σ = −ρℓw, n · σ
∣

∣

Ω2

= ∇S · τ .

If we change ℓ to ω2, these equations coincides with (16). Hence, ℓ is equal to the squared eigenvalue ω. Thus the stationarity

condition for E(w) is valid on eigensolutions of the problem (16).

We omit the proof of the converse statement of the theorem as we should only repeat the proof above in the reverse

mode.

We will change the form of Rayleigh’s principle to the one frequently used in applications. In the new formulation, one

needs not stipulate separate integral restrictions on the set of w.

Theorem 6.2. On the set of admissible vector-functions satisfying the condition w|Ω1
= 0, the oscillation eigenmodes

are stationary points of the functional

R(w) =
E(w)

K(w)
where K(w) =

1

2

∫

V

ρw · w dV.

R(w) is called Rayleigh’s quotient. Conversely, a stationary point of R(w) is an eigenmode that corresponds to some

eigenfrequency; the value of R(w) on an eigenmode is the squared eigenfrequency

R(w) = ω2. (25)

Property (25) allows to estimate the eigenvalues using some approximation for the eigenmodes.



7 On dynamic problems in elasticity with surface stresses

In the dynamic theory under consideration the initial boundary value problem is given by the equations

∇ · σ + ρf = ρü in V, (26)

u|Ω1
= 0, (n · σ −∇S · τ )|Ω2

= 0,

u|t=0 = u0, u̇|t=0 = v0,

and relations (7) and (8), where u0 and v0 are given initial values for the displacements of the points of V and their

velocities. Here we consider the weak setup of the problem as well. It differs from the static statement as the displacements

depend on time t.
To derive the necessary integro-differential equation on the time interval [0, T ] we dot-multiply Eq. (26) by the “virtual”

sufficiently smooth displacement δu that satisfies the condition δu|Ω1
= 0 and besides δu|t=T = 0. Integrating the result

over V and repeating the transformations done for the equilibrium problem we get

∫

V

(σ : δε − ρf · δu) dV +

∫

Ω2

τ : δǫ dΩ = −

∫

V

ρü · δu dV. (27)

Now we integrate this with respect to t over [0, T ] and then integrate by parts in the term containing ü. Using δu|t=T = 0

we get the following equation

∫ T

0

〈u, δu〉edt =

∫ T

0

∫

V

ρf · δu dV dt +

∫ T

0

∫

V

ρu̇ · ˙δu dV dt +

∫

V

ρv0 · δu dV (28)

that is used for the weak formulation of the problem.

Let us introduce the energy space that is appropriate for the weak setup.

Definition 7.1. E(0, T ) is the completion of the set of all the vector functions u(r, t) ∈ (C(2)(V × [0, T ]))3 that vanish

on Ω1 with respect to the norm induced by the energy scalar product

〈u, δu〉E(0,T ) =

∫ T

0

〈u, δu〉edt +

∫ T

0

∫

V

ρu̇ · ˙δu dV dt.

DT
0 is the subspace of E(0, T ) that is the result of the completion of the subset (C(2)(V × [0, T ]))3 of the vector functions

that are zero on Ω1 and take zero value at t = T .

The set of the elements of E(0, T ) can be considered as a subspace of (W (1,2)(V × [0, T ]))3 with some additional

properties on the surface Ω2, cf. [1, 6, 11] so we can use the properties of this Sobolev space [14].

Now we introduce:

Definition 7.2. u ∈ E(0, T ) is called a generalized solution of the dynamic problem of the body with surface stresses

if it satisfies Eq. (28) with any δu ∈ DT
0 and the initial condition u|t=0 = u0 in the sense of L2(V ), that is

∫

V

|u(r, 0) − u0(r)|2dV = 0.

Note the condition for the initial velocity enters to Eq. (28).

Theorem 7.3. Suppose that

• u0 ∈ E and u0 = 0 on Ω1,

• v0 ∈ (L2(V ))3,

• f ∈ (L2(V × [0, T ]))3.

There exists (in the sense of Definition 7.2), a generalized solution to the dynamic problem for the elastic body with surface

stresses, and it is unique.

We only sketch the proof as it mimics the proof for the dynamic problem for a clamped membrane in [11] (see also [14]).

First we apply the Faedo–Galerkin method to find an approximate solution of the problem. We seek an approximation

solution in the form

un(r, t) =

n
∑

k=1

ck(t)ϕk,



where {ϕk} is a complete system in the space E. In particular, for {ϕk} we can use the orthonormal system of the

eigensolutions {wk} from Theorem 5.2. Next, using Eq. (27) we construct a linear system of ordinary differential equations

for unknown coefficients ck. The equations are of the second order. Using the orthonormal basis {wk}, the system splits

into n separate equations. Supplying ck with initial values, we prove the initial value system has a solution. Next we should

establish an a priory estimate for the approximated solution un that follows from the energy inequalities and prove that the

limit point of the sequence {un} is a generalized solution. Its uniqueness is demonstrated separately, as it is done in [11,14].

8 Conclusions

The mathematical properties of initial and boundary value problems of linear elasticity with surface stresses are presented

and discussed. The theorems of existence and uniqueness of the solutions of the static and dynamic problems in energy

spaces are formulated and proven. Some properties of the spectrum of the problems are derived. Solutions of the problems

under consideration are more smooth on the boundary surface than solutions of corresponding problems of the classical lin-

ear elasticity. The considered weak statements of the initial and boundary problems constitute the mathematical foundation

for some numerical methods in particular, for the finite element method.
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