ON THE EXISTENCE OF SOME TYPES OF LP-SASAKIAN MANIFOLDS

Absos A. Shaikh, Kanak K. Baishya, and Sabina Eyasmin

Abstract

The object of the present paper is to provide the existence of LP-Sasakian manifolds with η-recurrent, η-parallel, ϕ-recurrent, ϕ parallel Ricci tensor with several non-trivial examples. Also generalized Ricci recurrent LP-Sasakian manifolds are studied with the existence of various examples.

1. Introduction

In 1989 K. Matsumoto ([4]) introduced the notion of LP-Sasakian manifolds. Then I. Mihai and R. Rosca ([6]) introduced the same notion independently and obtained many interesting results. LP-Sasakian manifolds are also studied by U. C. De, K. Matsumoto and A. A. Shaikh ([2]), I. Mihai, U. C. De and A. A. Shaikh ([5]), A. A. Shaikh and S. Biswas ([8]) and others.

Recently A. A. Shaikh and K. K. Baishya ([7]) introduced the notion of LPSasakian manifolds with η-recurrent, ϕ-parallel and ϕ-recurrent Ricci tensor which generalizes the notion of η-parallel Ricci tensor, introduced by M. Kon ([3]) for a Sasakian manifold.

In the present paper the existence of such notions on LP-Sasakian manifolds are ensured by several non-trivial examples both in odd and even dimensions. Section 2 is concerned with basic identities of LP-Sasakian manifolds. Since the notion of Ricci η-recurrent is the generalization of Ricci η-parallelity, natural question arises does there exist LP-Sasakian manifolds with η-recurrent but not η-parallel Ricci tensor? The answer is affirmative as shown by several examples in section 3. In section 4, we obtain various examples of LP-Sasakian manifolds with (i) ϕ-parallel Ricci tensor, (ii) ϕ-recurrent but not ϕ-parallel Ricci tensor, (iii) ϕ-parallel but not η-parallel Ricci tensor. In ([1]) De et. al introduced the notion of generalized Ricci recurrent Riemannian manifolds. The last section deals with generalized Ricci recurrent LP-Sasakian manifolds and proved that such a manifold is Einstein and the associated 1-forms of the manifold are

[^0]of opposite direction. Also the existence of generalized Ricci recurrent LPSasakian manifold is ensured by several non-trivial examples constructed with global vector fields.

2. LP-Sasakian manifolds

An n-dimensional differentiable manifold M is said to be an LP-Sasakian manifold $([7],[6])$ if it admits a $(1,1)$ tensor field ϕ, a unit timelike contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\eta(\xi)=-1, \quad g(X, \xi)=\eta(X), \quad \phi^{2} X=X+\eta(X) \xi \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \quad \nabla_{X} \xi=\phi X \tag{2.2}\\
\left(\nabla_{X} \phi\right)(Y)=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.3}
\end{gather*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g. It can be easily seen that in an LP-Sasakian manifold, the following relations hold :

$$
\begin{equation*}
\phi \xi=0, \quad \eta(\phi X)=0, \quad \operatorname{rank} \phi=n-1 \tag{2.4}
\end{equation*}
$$

Again, if we put

$$
\Omega(X, Y)=g(X, \phi Y)
$$

for any vector field X, Y then the tensor field $\Omega(X, Y)$ is a symmetric $(0,2)$ tensor field ([4]). Also, since the vector field η is closed in an LP-Sasakian ([2],[4]) manifold, we have

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\Omega(X, Y), \quad \Omega(X, \xi)=0 \tag{2.5}
\end{equation*}
$$

for any vector field X and Y .
Let M be an n-dimensional LP-Sasakian manifold with structure (ϕ, ξ, η, g). Then the following relations hold ([7]) :

$$
\begin{gather*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y, \tag{2.6}\\
S(X, \xi)=(n-1) \eta(X), \tag{2.7}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{2.8}
\end{gather*}
$$

for any vector field X, Y, Z where R is the curvature tensor of the manifold.

3. LP-Sasakian manifolds with $\boldsymbol{\eta}$-recurrent Ricci tensor

Definition 3.1 ([7]). The Ricci tensor S of an LP-Sasakian manifold is said to be η-recurrent if it satisfies the following :

$$
\begin{equation*}
\left(\nabla_{X} S\right)(\phi Y, \phi Z)=A(X) S(\phi Y, \phi Z) \tag{3.1}
\end{equation*}
$$

for all X, Y, Z where A is a non-zero 1-form such that $A(X)=g(X, \rho), \rho$ is the associated vector field of the 1-form A.

In particular, if the 1 -form A vanishes then the Ricci tensor of the LPSasakian manifold is said to be η-parallel and this notion was first introduced by Kon ([3]) for Sasakian manifolds. Hence the notion of η-recurrent Ricci tensor generalizes the notion of η-parallel Ricci tensor.

In ([7]), A. A. Shaikh and K. K. Baishya also studied various properties of LP-Sasakian manifolds with η-recurrent Ricci tensor. We first construct an example of LP-Sasakian manifold with global vector fields whose Ricci tensor is η-parallel.
Example 3.1. We consider a 4-dimensional manifold $M=\left\{(x, y, z, u) \in R^{4}\right\}$, where (x, y, z, u) are the standard coordinates of R^{4}. Let $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ be linearly independent global frame on M given by

$$
E_{1}=e^{u} \frac{\partial}{\partial x}, \quad E_{2}=e^{u} \frac{\partial}{\partial y}, \quad E_{3}=e^{u} \frac{\partial}{\partial z}, \quad E_{4}=\frac{\partial}{\partial u}
$$

Let g be the Lorentzian metric defined by

$$
\begin{gathered}
g\left(E_{1}, E_{3}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{4}\right)=g\left(E_{2}, E_{4}\right)=g\left(E_{3}, E_{4}\right)=g\left(E_{1}, E_{2}\right)=0 \\
g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=g\left(E_{3}, E_{3}\right)=1, \quad g\left(E_{4}, E_{4}\right)=-1
\end{gathered}
$$

Let η be the 1 -form defined by $\eta(U)=g\left(U, E_{4}\right)$ for any $U \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi E_{1}=-E_{1}, \phi E_{2}=-E_{2}, \phi E_{3}=-E_{3}, \phi E_{4}=0$. Then using the linearity of ϕ and g we have $\eta\left(E_{4}\right)=-1, \phi^{2} U=U+\eta(U) E_{4}$ and $g(\phi U, \phi W)=g(U, W)+\eta(U) \eta(W)$ for any $U, W \in \chi(M)$. Thus for $E_{4}=\xi$, (ϕ, ξ, η, g) defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$
\left[E_{1}, E_{4}\right]=-E_{1}, \quad\left[E_{2}, E_{4}\right]=-E_{2}, \quad\left[E_{3}, E_{4}\right]=-E_{3}
$$

Taking $E_{4}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\begin{array}{ccc}
\nabla_{E_{1}} E_{4}=-E_{1}, & \nabla_{E_{2}} E_{2}=-E_{4}, & \nabla_{E_{3}} E_{4}=-E_{3} \\
\nabla_{E_{1}} E_{1}=-E_{4}, & \nabla_{E_{2}} E_{4}=-E_{2}, & \nabla_{E_{3}} E_{3}=-E_{4}
\end{array}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is an LP-Sasakian structure on M. Consequently $M^{4}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows :

$$
\begin{array}{ccc}
R\left(E_{1}, E_{3}\right) E_{1}=-E_{3}, & R\left(E_{1}, E_{3}\right) E_{3}=E_{1}, & R\left(E_{1}, E_{4}\right) E_{1}=-E_{4} \\
R\left(E_{1}, E_{4}\right) E_{4}=-E_{1}, & R\left(E_{2}, E_{3}\right) E_{3}=E_{2}, & R\left(E_{2}, E_{3}\right) E_{2}=-E_{3} \\
R\left(E_{2}, E_{4}\right) E_{2}=-E_{4}, & R\left(E_{3}, E_{4}\right) E_{3}=-E_{4}, & R\left(E_{3}, E_{4}\right) E_{4}=-E_{3} \\
R\left(E_{2}, E_{4}\right) E_{4}=-E_{2}, & R\left(E_{1}, E_{2}\right) E_{2}=E_{1}, & R\left(E_{1}, E_{2}\right) E_{1}=-E_{2}
\end{array}
$$

and the components which can be obtained from these by the symmetry properties. From the above, we can easily calculate the non-vanishing components of the Ricci tensor S as follows :

$$
S\left(E_{1}, E_{1}\right)=1, \quad S\left(E_{2}, E_{2}\right)=1, \quad S\left(E_{3}, E_{3}\right)=1, \quad S\left(E_{4}, E_{4}\right)=-3
$$

Since $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ forms a basis, any vector field $X, Y \in \chi(M)$ can be written as

$$
X=a_{1} E_{1}+b_{1} E_{2}+c_{1} E_{3}+d_{1} E_{4}
$$

and

$$
Y=a_{2} E_{1}+b_{2} E_{2}+c_{2} E_{3}+d_{2} E_{4},
$$

where $a_{i}, b_{i}, c_{i}, d_{i} \in R^{+}$(the set of all positive real numbers), $i=1,2$. This implies that

$$
\phi X=-a_{1} E_{1}-b_{1} E_{2}-c_{1} E_{3}
$$

and

$$
\phi Y=-a_{2} E_{1}-b_{2} E_{2}-c_{2} E_{3} .
$$

Hence

$$
S(\phi X, \phi Y)=\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right) \neq 0 .
$$

By virtue of the above we have the following :

$$
\left(\nabla_{E_{i}} S\right)(\phi X, \phi Y)=0 \quad \text { for } \quad i=1,2,3,4
$$

This leads to the following:
Theorem 3.1. There exists an LP-Sasakian manifold $\left(M^{4}, g\right)$ with η-parallel Ricci tensor.

We now construct examples of LP-Sasakian manifolds with η-recurrent but not η-parallel Ricci tensor.
Example 3.2. We consider a 3-dimensional manifold $M=\left\{(x, y, z) \in R^{3}\right\}$, where (x, y, z) are the standard coordinates of R^{3}. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be linearly independent global frame on M given by

$$
E_{1}=e^{z} \frac{\partial}{\partial x}, \quad E_{2}=e^{z-a x} \frac{\partial}{\partial y}, \quad E_{3}=\frac{\partial}{\partial z},
$$

where a is non-zero constant.
Let g be the Lorentzian metric defined by $g\left(E_{1}, E_{3}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{2}\right)$ $=0, g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=1, g\left(E_{3}, E_{3}\right)=-1$. Let η be the 1-form defined by $\eta(U)=g\left(U, E_{3}\right)$ for any $U \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi E_{1}=-E_{1}, \phi E_{2}=-E_{2}, \phi E_{3}=0$. Then using the linearity of ϕ and g we have $\eta\left(E_{3}\right)=-1, \phi^{2} U=U+\eta(U) E_{3}$ and $g(\phi U, \phi W)=g(U, W)+\eta(U) \eta(W)$ for any $U, W \in \chi(M)$. Thus for $E_{3}=\xi,(\phi, \xi, \eta, g)$ defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$
\left[E_{1}, E_{2}\right]=-a e^{z} E_{2}, \quad\left[E_{1}, E_{3}\right]=-E_{1}, \quad\left[E_{2}, E_{3}\right]=-E_{2} .
$$

Taking $E_{3}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\begin{array}{lcr}
\nabla_{E_{1}} E_{3}=-E_{1}, & \nabla_{E_{1}} E_{1}=-E_{3}, & \nabla_{E_{1}} E_{2}=0 \\
\nabla_{E_{2}} E_{3}=-E_{2}, & \nabla_{E_{3}} E_{2}=0, & \nabla_{E_{2}} E_{1}=a e^{z} E_{2} \\
\nabla_{E_{3}} E_{3}=0, & \nabla_{E_{2}} E_{2}=-a e^{z} E_{1}-E_{3}, & \nabla_{E_{3}} E_{1}=0
\end{array}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is an LP-Sasakian structure on M. Consequently $M^{3}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor R as follows :
$R\left(E_{2}, E_{3}\right) E_{3}=-E_{2}, \quad R\left(E_{1}, E_{3}\right) E_{3}=-E_{1}, \quad R\left(E_{1}, E_{2}\right) E_{2}=\left(1-a^{2} e^{2 z}\right) E_{1}$, $R\left(E_{2}, E_{3}\right) E_{2}=-E_{3}, \quad R\left(E_{1}, E_{3}\right) E_{1}=-E_{3}, \quad R\left(E_{1}, E_{2}\right) E_{1}=-\left(1-a^{2} e^{2 z}\right) E_{2}$ and the components which can be obtained from these by the symmetry properties. From the above, we can easily calculate the non-vanishing components of the Ricci tensor S as follows :

$$
S\left(E_{1}, E_{1}\right)=-\left(a e^{z}\right)^{2}, \quad S\left(E_{2}, E_{2}\right)=-\left(a e^{z}\right)^{2}, \quad S\left(E_{3}, E_{3}\right)=-2
$$

Since $\left\{E_{1}, E_{2}, E_{3}\right\}$ forms a basis, any vector field $X, Y \in \chi(M)$ can be written as

$$
X=a_{1} E_{1}+b_{1} E_{2}+c_{1} E_{3}
$$

and

$$
Y=a_{2} E_{1}+b_{2} E_{2}+c_{2} E_{3}
$$

where $a_{i}, b_{i}, c_{i} \in R^{+}$(the set of all positive real numbers), $i=1,2$. This implies that

$$
\phi X=-a_{1} E_{1}-b_{1} E_{2}
$$

and

$$
\phi Y=-a_{2} E_{1}-b_{2} E_{2}
$$

Hence

$$
S(\phi X, \phi Y)=-\left(a_{1} a_{2}+b_{1} b_{2}\right)\left(a e^{z}\right)^{2}
$$

By virtue of the above we have the following :

$$
\begin{aligned}
& \left(\nabla_{E_{1}} S\right)(\phi X, \phi Y)=0 \\
& \left(\nabla_{E_{2}} S\right)(\phi X, \phi Y)=-\left(a_{1} b_{2}+a_{2} b_{1}\right)\left(a e^{z}\right)^{3} \\
& \left(\nabla_{E_{3}} S\right)(\phi X, \phi Y)=-2\left(a_{1} a_{2}+b_{1} b_{2}\right)\left(a e^{z}\right)^{2}
\end{aligned}
$$

Let us now consider the 1-forms

$$
\begin{aligned}
& A\left(E_{1}\right)=0 \\
& A\left(E_{2}\right)=\frac{\left(a_{1} b_{2}+a_{2} b_{1}\right)}{\left(a_{1} a_{2}+b_{1} b_{2}\right)}\left(a e^{z}\right) \\
& A\left(E_{3}\right)=2
\end{aligned}
$$

at any point $p \in M$. In our M^{3}, (3.1) reduces with these 1 -forms to the following equations :

$$
\left(\nabla_{E_{i}} S\right)(\phi X, \phi Y)=A\left(E_{i}\right) S(\phi X, \phi Y), \quad i=1, \quad 2,3
$$

This implies that the manifold under consideration is an LP-Sasakian manifold with η-recurrent but not η-parallel Ricci tensor. This leads to the following :

Theorem 3.2. There exists an LP-Sasakian manifold $\left(M^{3}, g\right)$ with η-recurrent but not η-parallel Ricci tensor.

Example 3.3. We consider a 4-dimensional manifold $M=\left\{(x, y, z, u) \in R^{4}\right\}$, where (x, y, z, u) are the standard coordinates of R^{4}. Let $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ be linearly independent global frame on M given by

$$
E_{1}=y e^{-u} \frac{\partial}{\partial y}, \quad E_{2}=y e^{-u} \frac{\partial}{\partial x}, \quad E_{3}=e^{-u} \frac{\partial}{\partial z}, \quad E_{4}=\frac{\partial}{\partial u} .
$$

Let g be the Lorentzian metric defined by

$$
\begin{gathered}
g\left(E_{1}, E_{3}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{4}\right)=g\left(E_{2}, E_{4}\right)=g\left(E_{3}, E_{4}\right)=g\left(E_{1}, E_{2}\right)=0, \\
g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=g\left(E_{3}, E_{3}\right)=1, \quad g\left(E_{4}, E_{4}\right)=-1 .
\end{gathered}
$$

Let η be the 1-form defined by $\eta(U)=g\left(U, E_{4}\right)$ for any $U \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi E_{1}=-E_{1}, \phi E_{2}=-E_{2}, \phi E_{3}=-E_{3}, \phi E_{4}=0$. Then using the linearity of ϕ and g we have $\eta\left(E_{4}\right)=-1, \phi^{2} U=U+\eta(U) E_{4}$ and $g(\phi U, \phi W)=g(U, W)+\eta(U) \eta(W)$ for any $U, W \in \chi(M)$. Thus for $E_{4}=\xi$, (ϕ, ξ, η, g) defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$
\left[E_{1}, E_{2}\right]=e^{-u} E_{2}, \quad\left[E_{1}, E_{4}\right]=E_{1}, \quad\left[E_{2}, E_{4}\right]=E_{2}, \quad\left[E_{3}, E_{4}\right]=E_{3}
$$

Taking $E_{4}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\begin{array}{lcr}
\nabla_{E_{1}} E_{4}=E_{1}, & \nabla_{E_{2}} E_{2}=E_{4}+e^{-u} E_{1}, & \nabla_{E_{2}} E_{1}=-e^{-u} E_{2}, \\
\nabla_{E_{3}} E_{4}=E_{3}, & \nabla_{E_{1}} E_{1}=E_{4}, & \nabla_{E_{2}} E_{4}=E_{2},
\end{array} \nabla_{E_{3}} E_{3}=E_{4} .
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is an LP-Sasakian structure on M. Consequently $M^{4}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows :

$$
\begin{gathered}
R\left(E_{1}, E_{3}\right) E_{1}=-E_{3}, \quad R\left(E_{1}, E_{4}\right) E_{1}=-E_{4}, \\
R\left(E_{1}, E_{4}\right) E_{4}=-E_{1}, \\
R\left(E_{2}, E_{4}\right) E_{2}=-E_{4}, \quad R\left(E_{3}, E_{4}\right) E_{3}=-E_{4}, \quad R\left(E_{3}, E_{4}\right) E_{4}=-E_{3}, \\
R\left(E_{2}, E_{4}\right) E_{4}=-E_{2}, R\left(E_{1}, E_{2}\right) E_{2}=\left(1-e^{-2 u}\right) E_{1}, R\left(E_{1}, E_{2}\right) E_{1}=-\left(1-e^{-2 u}\right) E_{2}
\end{gathered}
$$

and the components which can be obtained from these by the symmetry properties. From the above, we can easily calculate the non-vanishing components of the Ricci tensor S as follows :
$S\left(E_{1}, E_{1}\right)=\left(1-e^{-2 u}\right), S\left(E_{2}, E_{2}\right)=\left(1-e^{-2 u}\right), S\left(E_{3}, E_{3}\right)=1, S\left(E_{4}, E_{4}\right)=-3$.
Since $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ forms a basis, any vector field $X, Y \in \chi(M)$ can be written as

$$
X=\alpha_{1} E_{1}+\alpha_{2} E_{2}+\alpha_{3} E_{3}+\alpha_{4} E_{4}
$$

and

$$
Y=\beta_{1} E_{1}+\beta_{2} E_{2}+\beta_{3} E_{3}+\beta_{4} E_{4}
$$

where $\alpha_{i}, \beta_{i} \in R^{+}$(the set of all positive real numbers), $i=1,2,3,4$. This implies that

$$
\phi X=-\alpha_{1} E_{1}-\alpha_{2} E_{2}-\alpha_{3} E_{3}
$$

and

$$
\phi Y=-\beta_{1} E_{1}-\beta_{2} E_{2}-\beta_{3} E_{3}
$$

Hence

$$
S(\phi X, \phi Y)=\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)\left(1-e^{-2 u}\right)+\alpha_{3} \beta_{3}
$$

By virtue of the above we have the following :

$$
\begin{aligned}
& \left(\nabla_{E_{1}} S\right)(\phi X, \phi Y)=0 \\
& \left(\nabla_{E_{2}} S\right)(\phi X, \phi Y)=-\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) e^{-3 u} \\
& \left(\nabla_{E_{3}} S\right)(\phi X, \phi Y)=0 \\
& \left(\nabla_{E_{4}} S\right)(\phi X, \phi Y)=2\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) e^{-2 u}
\end{aligned}
$$

Let us now consider the 1-forms

$$
\begin{aligned}
& A\left(E_{1}\right)=0 \\
& A\left(E_{2}\right)=-\frac{\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) e^{-3 u}}{\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)\left(1-e^{-2 u}\right)+\alpha_{3} \beta_{3}} \\
& A\left(E_{3}\right)=0, \\
& A\left(E_{4}\right)=\frac{2\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) e^{-2 u}}{\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)\left(1-e^{-2 u}\right)+\alpha_{3} \beta_{3}}
\end{aligned}
$$

at any point $p \in M$. In our M^{4}, (3.1) reduces with these 1 -forms to the following equations :

$$
\left(\nabla_{E_{i}} S\right)(\phi X, \phi Y)=A\left(E_{i}\right) S(\phi X, \phi Y), \quad i=1,2,3,4
$$

This implies that the manifold under consideration is an LP-Sasakian manifold with η-recurrent but not η-parallel Ricci tensor. This leads to the following :

Theorem 3.3. There exists an LP-Sasakian manifold $\left(M^{4}, g\right)$ with η-recurrent but not η-parallel Ricci tensor.

4. LP-Sasakian manifolds with ϕ-recurrent Ricci tensor

Definition 4.1 ([7]). The Ricci tensor S of an LP-Sasakian manifold is said to be ϕ-recurrent if it satisfies

$$
\begin{equation*}
\left(\nabla_{\phi X} S\right)(\phi Y, \phi Z)=A(\phi X) S(\phi Y, \phi Z) \tag{4.1}
\end{equation*}
$$

for all X, Y, Z where A is a non-zero 1-form.
In particular, if the 1 -form A vanishes then the Ricci tensor of the LPSasakian manifold is said to be ϕ-parallel. We note that the condition of Ricci- ϕ-parallelity is much more weaker than Ricci- η-parallelity.

In ([7]), A. A. Shaikh and K. K. Baishya also studied several properties of LP-Sasakian manifolds with ϕ-recurrent Ricci tensor. We first construct an example of LP-Sasakian manifold with global vector fields whose Ricci tensor is ϕ-parallel.

Example 4.1. We consider a 4-dimensional manifold $M=\left\{(x, y, z, u) \in R^{4}\right\}$, where (x, y, z, u) are the standard coordinates of R^{4}. Let $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ be linearly independent global frame on M given by

$$
E_{1}=e^{-u} \frac{\partial}{\partial x}, \quad E_{2}=e^{-u} \frac{\partial}{\partial y}, \quad E_{3}=e^{-u} \frac{\partial}{\partial z}, \quad E_{4}=\frac{\partial}{\partial u}
$$

Let g be the Lorentzian metric defined by

$$
\begin{gathered}
g\left(E_{1}, E_{3}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{4}\right)=g\left(E_{2}, E_{4}\right)=g\left(E_{3}, E_{4}\right)=g\left(E_{1}, E_{2}\right)=0 \\
g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=g\left(E_{3}, E_{3}\right)=1, \quad g\left(E_{4}, E_{4}\right)=-1
\end{gathered}
$$

Let η be the 1-form defined by $\eta(U)=g\left(U, E_{4}\right)$ for any $U \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi E_{1}=-E_{1}, \phi E_{2}=-E_{2}, \phi E_{3}=-E_{3}, \phi E_{4}=0$. Then using the linearity of ϕ and g we have $\eta\left(E_{4}\right)=-1, \phi^{2} U=U+\eta(U) E_{4}$ and $g(\phi U, \phi W)=g(U, W)+\eta(U) \eta(W)$ for any $U, W \in \chi(M)$. Thus for $E_{4}=\xi$, (ϕ, ξ, η, g) defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$
\left[E_{1}, E_{4}\right]=E_{1}, \quad\left[E_{2}, E_{4}\right]=E_{2}, \quad\left[E_{3}, E_{4}\right]=E_{3}
$$

Taking $E_{4}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\begin{array}{ccr}
\nabla_{E_{1}} E_{4}=E_{1}, & \nabla_{E_{2}} E_{2}=E_{4}, & \nabla_{E_{3}} E_{4}=E_{3}, \\
\nabla_{E_{1}} E_{1}=E_{4}, & \nabla_{E_{2}} E_{4}=E_{2}, & \nabla_{E_{3}} E_{3}=E_{4} .
\end{array}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is an LP-Sasakian structure on M. Consequently $M^{4}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows :

$$
\begin{array}{lll}
R\left(E_{1}, E_{3}\right) E_{1}=-E_{3}, & R\left(E_{1}, E_{3}\right) E_{3}=E_{1}, & R\left(E_{1}, E_{4}\right) E_{1}=-E_{4} \\
R\left(E_{1}, E_{4}\right) E_{4}=-E_{1}, & R\left(E_{2}, E_{3}\right) E_{3}=E_{2}, & R\left(E_{2}, E_{3}\right) E_{2}=-E_{3}
\end{array}
$$

$$
\begin{array}{cc}
R\left(E_{2}, E_{4}\right) E_{2}=-E_{4}, \quad R\left(E_{3}, E_{4}\right) E_{3}=-E_{4}, & R\left(E_{3}, E_{4}\right) E_{4}=-E_{3} \\
R\left(E_{2}, E_{4}\right) E_{4}=-E_{2}, \quad R\left(E_{1}, E_{2}\right) E_{2}=E_{1}, \quad R\left(E_{1}, E_{2}\right) E_{1}=-E_{2}
\end{array}
$$

and the components which can be obtained from these by the symmetry properties. From the components of R, we can easily calculate the non-vanishing components of the Ricci tensor S as follows :

$$
S\left(E_{1}, E_{1}\right)=1, \quad S\left(E_{2}, E_{2}\right)=1, \quad S\left(E_{3}, E_{3}\right)=1, \quad S\left(E_{4}, E_{4}\right)=-3
$$

Since $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ forms a basis of the LP-Sasakian manifold, any vector field $X, Y \in \chi(M)$ can be written as

$$
X=a_{1} E_{1}+b_{1} E_{2}+c_{1} E_{3}+d_{1} E_{4}
$$

and

$$
Y=a_{2} E_{1}+b_{2} E_{2}+c_{2} E_{3}+d_{2} E_{4}
$$

where $a_{i}, b_{i}, c_{i}, d_{i} \in R^{+}$(the set of all positive real numbers), $i=1,2$. This implies that

$$
\phi X=-a_{1} E_{1}-b_{1} E_{2}-c_{1} E_{3}
$$

and

$$
\phi Y=-a_{2} E_{1}-b_{2} E_{2}-c_{2} E_{3} .
$$

Hence

$$
S(\phi X, \phi Y)=\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right) \neq 0
$$

By virtue of the above we have the following :

$$
\left(\nabla_{\phi E_{i}} S\right)(\phi X, \phi Y)=0 \quad \text { for } \quad i=1,2,3
$$

Hence the Ricci tensor of the manifold under consideration is ϕ-parallel. Thus we can state the following:

Theorem 4.1. There exists an LP-Sasakian manifold $\left(M^{4}, g\right)$ with ϕ-parallel Ricci tensor.

Example 4.2. We consider a 4-dimensional manifold $M=\left\{(x, y, z, u) \in R^{4}\right\}$, where (x, y, z, u) are the standard coordinates of R^{4}. Let $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ be linearly independent global frame on M given by

$$
E_{1}=e^{u} \frac{\partial}{\partial x}, \quad E_{2}=e^{u-x} \frac{\partial}{\partial y}, \quad E_{3}=e^{u} \frac{\partial}{\partial z}, \quad E_{4}=\frac{\partial}{\partial u} .
$$

Let g be the Lorentzian metric defined by

$$
\begin{gathered}
g\left(E_{1}, E_{3}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{4}\right)=g\left(E_{2}, E_{4}\right)=g\left(E_{3}, E_{4}\right)=g\left(E_{1}, E_{2}\right)=0, \\
g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=g\left(E_{3}, E_{3}\right)=1, \quad g\left(E_{4}, E_{4}\right)=-1
\end{gathered}
$$

Let η be the 1 -form defined by $\eta(U)=g\left(U, E_{4}\right)$ for any $U \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi E_{1}=-E_{1}, \phi E_{2}=-E_{2}, \phi E_{3}=-E_{3}, \phi E_{4}=0$. Then using the linearity of ϕ and g we have $\eta\left(E_{4}\right)=-1, \phi^{2} U=U+\eta(U) E_{4}$ and $g(\phi U, \phi W)=g(U, W)+\eta(U) \eta(W)$ for any $U, W \in \chi(M)$. Thus for $E_{4}=\xi$, (ϕ, ξ, η, g) defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$
\left[E_{1}, E_{2}\right]=-e^{u} E_{2}, \quad\left[E_{1}, E_{4}\right]=-E_{1}, \quad\left[E_{2}, E_{4}\right]=-E_{2}, \quad\left[E_{3}, E_{4}\right]=-E_{3}
$$

Taking $E_{4}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\begin{array}{crr}
\nabla_{E_{1}} E_{4}=-E_{1}, & \nabla_{E_{2}} E_{2}=-E_{4}-e^{u} E_{1}, & \nabla_{E_{2}} E_{1}=-e^{u} E_{2}, \\
\nabla_{E_{3}} E_{4}=-E_{3}, & \nabla_{E_{1}} E_{1}=-E_{4}, \quad \nabla_{E_{2}} E_{4}=-E_{2}, & \nabla_{E_{3}} E_{3}=-E_{4} .
\end{array}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is an LP-Sasakian structure on M. Consequently $M^{4}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows :

$$
\begin{gathered}
R\left(E_{2}, E_{3}\right) E_{3}=E_{2}, \quad R\left(E_{1}, E_{3}\right) E_{3}=E_{1}, \quad R\left(E_{1}, E_{4}\right) E_{1}=-E_{4}, \\
R\left(E_{1}, E_{4}\right) E_{4}=-E_{1}, \quad R\left(E_{2}, E_{3}\right) E_{2}=-E_{3}, \quad R\left(E_{1}, E_{3}\right) E_{1}=-E_{3}, \\
R\left(E_{2}, E_{4}\right) E_{2}=-E_{4}, \quad R\left(E_{3}, E_{4}\right) E_{3}=-E_{4}, \quad R\left(E_{3}, E_{4}\right) E_{4}=-E_{3}, \\
R\left(E_{2}, E_{4}\right) E_{4}=-E_{2}, R\left(E_{1}, E_{2}\right) E_{2}=\left(1-e^{2 u}\right) E_{1}, R\left(E_{1}, E_{2}\right) E_{1}=-\left(1-e^{2 u}\right) E_{2}
\end{gathered}
$$

and the components which can be obtained from these by the symmetry properties. From the above, we can easily calculate the non-vanishing components of the Ricci tensor S as follows:
$S\left(E_{1}, E_{1}\right)=\left(1-e^{2 u}\right), S\left(E_{2}, E_{2}\right)=\left(1-e^{2 u}\right), \quad S\left(E_{3}, E_{3}\right)=1, \quad S\left(E_{4}, E_{4}\right)=-3$.
Since $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ forms a basis of the LP-Sasakian manifold, any vector field $X, Y \in \chi(M)$ can be written as
(4.2) $X=\alpha_{1} E_{1}+\alpha_{2} E_{2}+\alpha_{3} E_{3}+\alpha_{4} E_{4}$ and $Y=\beta_{1} E_{1}+\beta_{2} E_{2}+\beta_{3} E_{3}+\beta_{4} E_{4}$, where $\alpha_{i}, \beta_{i} \in R^{+}$(the set of all positive real numbers), $i=1,2,3,4$. This implies that

$$
\phi X=-\alpha_{1} E_{1}-\alpha_{2} E_{2}-\alpha_{3} E_{3}
$$

and

$$
\phi Y=-\beta_{1} E_{1}-\beta_{2} E_{2}-\beta_{3} E_{3} .
$$

Hence

$$
S(\phi X, \phi Y)=\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)\left(1-e^{2 u}\right)+\alpha_{3} \beta_{3} .
$$

By virtue of the above we have the following :

$$
\begin{aligned}
& \left(\nabla_{\phi E_{1}} S\right)(\phi X, \phi Y)=0, \\
& \left(\nabla_{\phi E_{2}} S\right)(\phi X, \phi Y)=\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) e^{3 u}, \\
& \left(\nabla_{\phi E_{3}} S\right)(\phi X, \phi Y)=0 .
\end{aligned}
$$

Let us now consider the 1-forms

$$
\begin{aligned}
& A\left(E_{1}\right)=0 \\
& A\left(E_{2}\right)=\frac{\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) e^{3 u}}{\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)\left(1-e^{2 u}\right)+\alpha_{3} \beta_{3}} \\
& A\left(E_{3}\right)=0
\end{aligned}
$$

at any point $p \in M$. In our M^{4}, (4.1) reduces with these 1 -forms to the following equations:

$$
\left(\nabla_{\phi E_{i}} S\right)(\phi X, \phi Y)=A\left(E_{i}\right) S(\phi X, \phi Y), \quad i=1, \quad 2, \quad 3
$$

This implies that the Ricci tensor of the manifold under consideration is ϕ recurrent but not ϕ-parallel. This leads to the following :
Theorem 4.2. There exists an LP-Sasakian manifold $\left(M^{4}, g\right)$ with ϕ-recurrent Ricci tensor but not ϕ-parallel.

However, since $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ is a basis of M^{4}, if we consider the vector fields $X, Y \in \chi(M)$ in (4.2) such that $\alpha_{2}=k \alpha_{1}$ and $\beta_{2}=-k \beta_{1}$ where $k \in$ $R-\{-1,0,1\}$, then we have

$$
\phi X=-\alpha_{1} E_{1}-k \alpha_{1} E_{2}-\alpha_{3} E_{3}
$$

and

$$
\phi Y=-\beta_{1} E_{1}+k \beta_{1} E_{2}-\beta_{3} E_{3}
$$

Consequently, we get

$$
\begin{aligned}
& S(\phi X, \phi Y)=\left(1-k^{2}\right)\left(1-e^{2 u}\right) \alpha_{1} \beta_{1}+\alpha_{3} \beta_{3} \neq 0 \\
& \left(\nabla_{\phi E_{i}} S\right)(\phi X, \phi Y)=0, \quad i=1,2,3,4
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nabla_{E_{i}} S\right)(\phi X, \phi Y) & =0 \quad i=1,2,3 \\
& =-2\left(1-k^{2}\right) e^{2 u} \alpha_{1} \beta_{1} \text { for } i=4
\end{aligned}
$$

for all $X, Y \in \chi(M)$ and hence the Ricci tensor S of M^{4} is ϕ-parallel but not η-parallel. This leads to the following :

Theorem 4.3. There exists an LP-Sasakian manifold $\left(M^{4}, g\right)$ with ϕ-parallel Ricci tensor but not η-parallel.

5. Generalized Ricci recurrent LP-Sasakian manifolds

Definition 5.1 ([1]). An LP-Sasakian manifold is said to be generalized Ricci recurrent if its Ricci tensor S of type $(0,2)$ satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=A(X) S(Y, Z)+B(X) g(Y, Z) \tag{5.1}
\end{equation*}
$$

where A and B are two non-zero 1-forms such that $A(X)=g(X, P)$ and $B(X)=g(X, L), P$ and L being associated vector fields of the 1-form.

Theorem 5.1. In a generalized Ricci recurrent LP-Sasakian manifold the associated 1-forms are linearly dependent and the vector fields of the associated 1 -forms are of opposite direction.
Proof. In a generalized Ricci recurrent LP-Sasakian manifold we have the relation (5.1). Setting $Z=\xi$ in (5.1) we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \xi)=[(n-1) A(X)+B(X)] \eta(Y) \tag{5.2}
\end{equation*}
$$

Again

$$
\left(\nabla_{X} S\right)(Y, \xi)=\nabla_{X} S(Y, \xi)-S\left(\nabla_{X} Y, \xi\right)-S\left(Y, \nabla_{X} \xi\right)
$$

which yields by virtue of $(2.1),(2.2)$ and (2.5) that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \xi)=(n-1) g(X, \phi Y)-S(\phi X, Y) \tag{5.3}
\end{equation*}
$$

From (5.2) and (5.3) it follows that

$$
\begin{equation*}
[(n-1) A(X)+B(X)] \eta(Y)=(n-1) g(X, \phi Y)-S(\phi X, Y) \tag{5.4}
\end{equation*}
$$

Replacing Y by ξ in (5.4) we obtain

$$
\begin{equation*}
(n-1) A(X)+B(X)=0 \tag{5.5}
\end{equation*}
$$

This proves the Theorem.
Theorem 5.2. A generalized Ricci recurrent LP-Sasakian manifold is Einstein.

Proof. In a generalized Ricci recurrent LP-Sasakian manifold we have the relation (5.4). Hence setting $Y=\phi Y$ in (5.4) and then using (2.8) we have

$$
\begin{equation*}
S(X, Y)=(n-1) g(X, Y) \tag{5.6}
\end{equation*}
$$

This proves the Theorem.
Example 5.1. We consider a 3-dimensional manifold $M=\left\{(x, y, z) \in R^{3}\right\}$, where (x, y, z) are the standard coordinates of R^{3}. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be linearly independent global frame on M given by

$$
E_{1}=e^{z} \frac{\partial}{\partial y}, \quad E_{2}=e^{z}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right), \quad E_{3}=\frac{\partial}{\partial z}
$$

Let g be the Lorentzian metric defined by $g\left(E_{1}, E_{3}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{2}\right)=$ $0, g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=1, g\left(E_{3}, E_{3}\right)=-1$. Let η be the 1 -form defined by $\eta(U)=g\left(U, E_{3}\right)$ for any $U \in \chi(M)$. Let ϕ be the (1,1) tensor field defined by $\phi E_{1}=-E_{1}, \phi E_{2}=-E_{2}, \phi E_{3}=0$. Then using the linearity of ϕ and g we have $\eta\left(E_{3}\right)=-1, \phi^{2} U=U+\eta(U) E_{3}$ and $g(\phi U, \phi W)=g(U, W)+\eta(U) \eta(W)$ for any $U, W \in \chi(M)$. Thus for $E_{3}=\xi,(\phi, \xi, \eta, g)$ defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$
\left[E_{1}, E_{2}\right]=0, \quad\left[E_{1}, E_{3}\right]=-E_{1}, \quad\left[E_{2}, E_{3}\right]=-E_{2}
$$

Taking $E_{3}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\begin{array}{ccc}
\nabla_{E_{1}} E_{3}=-E_{1}, & \nabla_{E_{1}} E_{1}=-E_{3}, & \nabla_{E_{1}} E_{2}=0, \\
\nabla_{E_{2}} E_{3}=-E_{2}, & \nabla_{E_{2}} E_{2}=-E_{3}, & \nabla_{E_{2}} E_{1}=0, \\
\nabla_{E_{3}} E_{3}=0, & \nabla_{E_{3}} E_{2}=0, & \nabla_{E_{3}} E_{1}=0
\end{array}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is an LP-Sasakian structure on M. Consequently $M^{3}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows :

$$
\begin{array}{r}
R\left(E_{2}, E_{3}\right) E_{3}=-E_{2}, \quad R\left(E_{1}, E_{3}\right) E_{3}=-E_{1}, \quad R\left(E_{1}, E_{2}\right) E_{2}=-E_{1} \\
R\left(E_{2}, E_{3}\right) E_{2}=-E_{3}, \quad R\left(E_{1}, E_{3}\right) E_{1}=-E_{3}, \quad R\left(E_{1}, E_{2}\right) E_{1}=E_{2}
\end{array}
$$

and the components which can be obtained from these by the symmetry properties. From the above, we can easily calculate the non-vanishing components of the Ricci tensor S as follows:

$$
S\left(E_{3}, E_{3}\right)=-2
$$

Since $\left\{E_{1}, E_{2}, E_{3}\right\}$ forms a basis of the LP-Sasakian manifold, any vector field $X, Y \in \chi(M)$ can be written as

$$
X=a_{1} E_{1}+b_{1} E_{2}+c_{1} E_{3}
$$

and

$$
Y=a_{2} E_{1}+b_{2} E_{2}+c_{2} E_{3}
$$

where $a_{i}, b_{i}, c_{i} \in R^{+}$(the set of all positive real numbers), $i=1,2$. Hence

$$
S(X, Y)=-2 c_{1} c_{2} \quad \text { and } \quad g(X, Y)=a_{1} a_{2}+b_{1} b_{2}-c_{1} c_{2}
$$

By virtue of the above we have the following :

$$
\begin{gathered}
\left(\nabla_{E_{1}} S\right)(X, Y)=-2\left(a_{1} c_{2}+a_{2} c_{1}\right), \quad\left(\nabla_{E_{2}} S\right)(X, Y)=-2\left(b_{1} c_{2}+b_{2} c_{1}\right) \\
\text { and }\left(\nabla_{E_{3}} S\right)(X, Y)=0 .
\end{gathered}
$$

Consequently, the manifold under consideration is not Ricci symmetric. Let us now consider the 1 -forms

$$
\begin{array}{ll}
A\left(E_{1}\right)=\frac{\left(a_{1} c_{2}+a_{2} c_{1}\right)}{\left(a_{1} a_{2}+b_{1} b_{2}\right)}, & B\left(E_{1}\right)=\frac{-2\left(a_{1} c_{2}+a_{2} c_{1}\right)}{\left(a_{1} a_{2}+b_{1} b_{2}\right)} \\
A\left(E_{2}\right)=\frac{\left(b_{1} c_{2}+b_{2} c_{1}\right)}{\left(a_{1} a_{2}+b_{1} b_{2}\right)}, & B\left(E_{2}\right)=\frac{-2\left(b_{1} c_{2}+b_{2} c_{1}\right)}{\left(a_{1} a_{2}+b_{1} b_{2}\right)} \\
A\left(E_{3}\right)=0, & B\left(E_{3}\right)=0
\end{array}
$$

at any point $x \in M$. From (5.1) we have

$$
\begin{equation*}
\left(\nabla_{E_{i}} S\right)(X, Y)=A\left(E_{i}\right) S(X, Y)+B\left(E_{i}\right) g(X, Y), \quad i=1, \quad 2, \quad 3 \tag{5.7}
\end{equation*}
$$

It can be easily shown that the manifold with these 1-forms satisfies the relation (5.7). Hence the manifold under consideration is a generalized Ricci recurrent

LP-Sasakian manifold which is neither Ricci-symmetric nor Ricci-recurrent. This leads to the following :

Theorem 5.3. There exists a generalized Ricci recurrent LP-Sasakian manifold $\left(M^{3}, g\right)$ which is neither Ricci-symmetric nor Ricci-recurrent.

Example 5.2. We consider a 4-dimensional manifold $M=\left\{(x, y, z, u) \in R^{4}\right\}$, where (x, y, z, u) are the standard coordinates of R^{4}. Let $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ be linearly independent global frame on M given by

$$
E_{1}=u \frac{\partial}{\partial y}, \quad E_{2}=u\left(\frac{\partial}{\partial x}+z \frac{\partial}{\partial z}\right), \quad E_{3}=u \frac{\partial}{\partial z}, \quad E_{4}=\frac{\partial}{\partial u}
$$

Let g be the Lorentzian metric defined by

$$
\begin{gathered}
g\left(E_{1}, E_{3}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{4}\right)=g\left(E_{2}, E_{4}\right)=g\left(E_{3}, E_{4}\right)=g\left(E_{1}, E_{2}\right)=0, \\
g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=g\left(E_{3}, E_{3}\right)=1, \quad g\left(E_{4}, E_{4}\right)=-1 .
\end{gathered}
$$

Let η be the 1 -form defined by $\eta(U)=g\left(U, E_{4}\right)$ for any $U \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi E_{1}=-E_{1}, \phi E_{2}=-E_{2}, \phi E_{3}=-E_{3}, \phi E_{4}=0$. Then using the linearity of ϕ and g we have $\eta\left(E_{4}\right)=-1, \phi^{2} U=U+\eta(U) E_{4}$ and $g(\phi U, \phi W)=g(U, W)+\eta(U) \eta(W)$ for any $U, W \in \chi(M)$. Thus for $E_{4}=\xi$, (ϕ, ξ, η, g) defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$
\left[E_{2}, E_{3}\right]=-u E_{3}, \quad\left[E_{1}, E_{4}\right]=-E_{1}, \quad\left[E_{2}, E_{4}\right]=-E_{2}, \quad\left[E_{3}, E_{4}\right]=-E_{3}
$$

Taking $E_{4}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\nabla_{E_{1}} E_{4}=-E_{1}, \quad \nabla_{E_{2}} E_{4}=-E_{2}, \quad \nabla_{E_{3}} E_{3}=-E_{4}-u E_{2}
$$

$\nabla_{E_{3}} E_{4}=-E_{3}, \quad \nabla_{E_{1}} E_{1}=-E_{4}, \quad \nabla_{E_{2}} E_{1}=-u E_{2}, \quad \nabla_{E_{2}} E_{3}=-E_{4}$.
From the above it can be easily seen that (ϕ, ξ, η, g) is an LP-Sasakian structure on M. Consequently $M^{4}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows :

$$
\begin{gathered}
R\left(E_{1}, E_{2}\right) E_{1}=-E_{2}, \quad R\left(E_{1}, E_{2}\right) E_{2}=E_{1}, \quad R\left(E_{1}, E_{3}\right) E_{1}=-E_{3}, \\
R\left(E_{1}, E_{3}\right) E_{3}=E_{1}, \quad R\left(E_{1}, E_{4}\right) E_{1}=-E_{4}, \quad R\left(E_{1}, E_{4}\right) E_{4}=-E_{1}, \\
R\left(E_{2}, E_{4}\right) E_{2}=-E_{4}, \quad R\left(E_{3}, E_{4}\right) E_{3}=-E_{4}, \\
R\left(E_{2}, E_{4}\right) E_{4}=-E_{3}, \\
R\left(E_{4}=-E_{2}, \quad R\left(E_{2}, E_{3}\right) E_{3}=\left(1-u^{2}\right) E_{2},\right. \\
R\left(E_{2}, E_{3}\right) E_{2}=-\left(1-u^{2}\right) E_{3}
\end{gathered}
$$ and the components which can be obtained from these by the symmetry properties. From the above, we can easily calculate the non-vanishing components of the Ricci tensor S as follows :

$S\left(E_{1}, E_{1}\right)=1, \quad S\left(E_{2}, E_{2}\right)=\left(1-u^{2}\right), \quad S\left(E_{3}, E_{3}\right)=\left(1-u^{2}\right), \quad S\left(E_{4}, E_{4}\right)=-3$.

Since $\left\{E_{1}, E_{2}, E_{3}\right\}$ forms a basis of the LP-Sasakian manifold, any vector field $X, Y \in \chi(M)$ can be written as

$$
X=a_{1} E_{1}+b_{1} E_{2}+c_{1} E_{3}+d_{1} E_{4}
$$

and

$$
Y=a_{2} E_{1}+b_{2} E_{2}+c_{2} E_{3}+d_{2} E_{4}
$$

where $a_{i}, b_{i}, c_{i}, d_{i} \in R^{+}$(the set of all positive real numbers), $i=1,2$. Hence

$$
S(X, Y)=\left(a_{1} a_{2}-3 d_{1} d_{2}\right)+\left(b_{1} b_{2}+c_{1} c_{2}\right)\left(1-u^{2}\right)
$$

and

$$
g(X, Y)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}-d_{1} d_{2}
$$

By virtue of the above we have the following :

$$
\begin{aligned}
& \left(\nabla_{E_{1}} S\right)(X, Y)=-2\left(a_{1} d_{2}+a_{2} d_{1}\right) \\
& \left(\nabla_{E_{2}} S\right)(X, Y)=-2\left(b_{1} d_{2}+b_{2} d_{1}\right) \\
& \left(\nabla_{E_{3}} S\right)(X, Y)=-\left(u^{2}+2\right)\left(c_{1} d_{2}+c_{2} d_{1}\right) \\
& \left(\nabla_{E_{4}} S\right)(X, Y)=-2 u^{2}\left(b_{1} b_{2}+c_{1} c_{2}\right)
\end{aligned}
$$

This implies that the manifold under consideration is not Ricci symmetric. Let us now consider the 1 -forms

$$
\begin{aligned}
& A\left(E_{1}\right)=\frac{2\left(a_{1} d_{2}+a_{2} d_{1}\right)}{2 a_{1} a_{2}+\left(u^{2}+2\right)\left(b_{1} b_{2}+c_{1} c_{2}\right)}, \\
& B\left(E_{1}\right)=-\frac{6\left(a_{1} d_{2}+a_{2} d_{1}\right)}{2 a_{1} a_{2}+\left(u^{2}+2\right)\left(b_{1} b_{2}+c_{1} c_{2}\right)}, \\
& A\left(E_{2}\right)=\frac{2\left(b_{1} d_{2}+b_{2} d_{1}\right)}{2 a_{1} a_{2}+\left(u^{2}+2\right)\left(b_{1} b_{2}+c_{1} c_{2}\right)}, \\
& B\left(E_{2}\right)=-\frac{6\left(b_{1} d_{2}+b_{2} d_{1}\right)}{2 a_{1} a_{2}+\left(u^{2}+2\right)\left(b_{1} b_{2}+c_{1} c_{2}\right)}, \\
& A\left(E_{3}\right)=-\frac{\left(u^{2}+2\right)\left(c_{1} d_{2}+c_{2} d_{1}\right)}{2 a_{1} a_{2}+\left(u^{2}+2\right)\left(b_{1} b_{2}+c_{1} c_{2}\right)}, \\
& B\left(E_{3}\right)=\frac{3\left(u^{2}+2\right)\left(c_{1} d_{2}+c_{2} d_{1}\right)}{2 a_{1} a_{2}+\left(u^{2}+2\right)\left(b_{1} b_{2}+c_{1} c_{2}\right)}, \\
& A\left(E_{4}\right)=\frac{2 u^{2}\left(b_{1} b_{2}+c_{1} c_{2}\right)}{2 a_{1} a_{2}+\left(u^{2}+2\right)\left(b_{1} b_{2}+c_{1} c_{2}\right)}, \\
& B\left(E_{4}\right)=-\frac{6 u^{2}\left(b_{1} b_{2}+c_{1} c_{2}\right)}{2 a_{1} a_{2}+\left(u^{2}+2\right)\left(b_{1} b_{2}+c_{1} c_{2}\right)}
\end{aligned}
$$

at any point $x \in M$. From (5.1) we have

$$
\begin{equation*}
\left(\nabla_{E_{i}} S\right)(X, Y)=A\left(E_{i}\right) S(X, Y)+B\left(E_{i}\right) g(X, Y), \quad i=1,2,3,4 \tag{5.8}
\end{equation*}
$$

It can be easily shown that the manifold with the 1 -forms under consideration satisfies the relation (5.8). Hence the manifold under consideration is a generalized Ricci recurrent LP-Sasakian manifold which is neither Riccisymmetric nor Ricci-recurrent. This leads to the following :

Theorem 5.4. There exists a generalized Ricci recurrent LP-Sasakian manifold $\left(M^{4}, g\right)$ which is neither Ricci-symmetric nor Ricci-recurrent.

References

[1] U. C. De, N. Guha, and D. Kamilya, On generalized Ricci recurrent manifolds, Tensor, N. S. 56 (1995), 312-317.
[2] U. C. De, K. Matsumoto, and A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Mat. de Messina, al n. 3 (1999), 149-156.
[3] M. Kon, Invariant submanifolds in Sasakian manifolds, Mathematische Annalen, 219 (1976), 277-290.
[4] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci. 12 (1989), 151-156.
[5] I. Mihai, U. C. De, and A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Korean J. Math. Sciences 6 (1999), 1-13.
[6] I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifold, Classical Analysis, World Scientific Publi., Singapore (1992), 155-169.
[7] A. A. Shaikh and K. K. Baishya, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Rommanie Tome 49 (97) (2006), no. 2, 197-205.
[8] A. A. Shaikh and S. Biswas, On LP-Sasakian manifolds, Bull. Malaysian Math. Sci. Soc. 27 (2004), 17-26.

Absos A. Shaikh
Department of Mathematics
University of Burdwan, Golapbag
Burdwan-713104, West Bengal, India
E-mail address: aask2003@yahoo.co.in
Kanak K. Baishya
Department of Mathematics
University of Burdwan, Golapbag
Burdwan-713104, West Bengal, India
Sabina Eyasmin
Department of Mathematics
University of Burdwan, Golapbag
Burdwan-713104, West Bengal, India

[^0]: Received January 2, 2007.
 2000 Mathematics Subject Classification. 53C15, 53C25.
 Key words and phrases. LP-Sasakian manifolds, Ricci generalized LP-Sasakian manifolds, η-parallel Ricci tensor, ϕ-parallel Ricci tensor, ϕ-recurrent Ricci tensor, η-recurrent Ricci tensor.

