
On the existence of special metrics 

in complex geometry 

b y  

M. L. MICHELSOHN 

State University of New York, 
Stony Brook, N.Y., U.S.A. 

Dedicated to Marcel Friedmann on the occasion of his 80th birthday 

Table  o f  Contents  

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261 
1. Hermitian geometry: torsion and its trace . . . . . . . . . . . . . .  264 
2. The relationship to Dirac operators . . . . . . . . . . . . . . . . .  270 
3. Conformal changes of metric . . . . . . . . . . . . . . . . . . . .  273 
4. The characterization theorem . . . . . . . . . . . . . . . . . . . .  275 
5. Families of varieties over a curve . . . . . . . . . . . . . . . . . .  281 
6. Balanced 3-folds which are not K~ihler . . . . . . . . . . . . . . .  292 

0. Introduct ion 

Every  complex manifold X admits a smooth hermitian metric and, in fact, a huge space 

of  them. To study the manifold it is often useful to pick from this collection a 

particularly nice metric.  For  example,  if X is algebraic, one can always choose the 

metric to be K/ihlerian, and often to be Kahler-Einstein (cf. Yau [15]). 

The  topological and analytic consequences  of  the existence of  a K~hler metric are 

strong and have been well unders tood for some time. Recently a characterizat ion of  

which complex manifolds admit such metrics has been given [8]. However ,  relatively 

little is known about  how to choose a good metric in general, and this paper  represents  

a first step towards understanding this question. We shall here define and characterize 

a class of  complex manifolds which admit a special type of  hermitian metric. This class 

contains the K/ihler manifolds as well as many important categories of  non-K~ihler 

manifolds, including, for  example: 1-dimensional families of  K~ihler varieties, the 

" twis tor  spaces"  constructed from self-dual riemannian 4-manifolds, and complex 

solvmanifolds. We shall carry out an extensive analysis of  this class of  manifolds. It is 

hoped that our  results will be important  in the further study which now seems clearly 

worthwhile.  
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We approach the problem via the torsion. Recall that each hermitian metric h on X 

has an associated canonical hermitian connection with a torsion tensor Th. This can be 

thought of as a (2, 0)-form with values in the tangent bundle TX, or alternatively, as a 1- 

form with values in endomorphisms of TX. It is a classical fact that h is K/ihlerian if and 

only if Th=O, and in general such metrics do not exist. 

Therefore, it is natural in the general case to search for metrics whose torsion 

satisfies some weaker condition. Invariant theory suggests the following. Associated to 

h is a real-valued 1-form rh=trace (Th) obtained by taking the trace of the endomor- 

phism-valued 1-form Th. This will be called the torsion 1-form of h. Metrics, h, for 

which rh=0 will be called balanced, and the existence of such metrics will be the 

principal concern of this paper. 

We remark that any hermitian metric h has an associated positive (1, 1)-form ~Oh 

called the Kiihlerform of h. (The forms h and tnh are essentially equivalent.) It is well 

known that 

h is K~ihlerian iff dO)h=O. 

In this spirit we have that 

h is balanced iff d*ho)h=O. 

Here d *h is the formal adjoint of d in the metric h; hence the equation d*htoh=O is non- 

linear in h. 

In complex dimension two the conditions of being balanced and K/ihlerian are 

equivalent. However, in all dimensions >13 there exist compact balanced manifolds 

which carry no Kahler metric. This is true, for example, of certain complex solvmani- 

folds. (See section 6.) 

The condition of being balanced is, in a strong sense, dual to that of being K~ihler, 

and this duality appears over and over again in our work. A simple example of this is 

the following. It is classical and easy to prove that i fX is Kfthlerian and if there exists a 

holomorphic immersion f:  Y - , X ,  then Yis K~ihler. The dual statement is also true. That 

is, i f  X is balanced and i f  there exists a holomorphic submersion f: X ~ Y, then Y is 

balanced. (This is proved in w 1.) Thus, the K~ihler property is induced on sub-objects 

and the balanced (or "co-K~ihler") property projects to quotient objects. 

The beginning of this paper is devoted to discussing the basic properties of 

balanced manifolds. In section 2 we examine the relation of K~ihlerian and balanced 

metrics to the complex Dirac operators ~ and ~ introduced in [11]. It is shown that 



ON THE EXISTENCE OF SPECIAL METRICS IN COMPLEX GEOMETRY 263 

h is K~ihlerian iff 9 2 = 0  

h is balanced iff ~ = 9 "  

where 9"  denotes the formal adjoint of 9. 

In section 3 we analyze the behavior of the torsion form under conformal changes 

Of metric. This is particularly relevant to the study of metrics whose torsion form is 

closed. We show (under mild hypotheses) that in the conformal class of each such 

metric there is a uniquely determined metric whose torsion (1,0)-form (the (1,0)- 

~omponent of Th) is 0-closed and holomorphic. 

In section 4 we formulate and prove one of the main results of the paper: a 

complete intrinsic characterization o f  those compac( complex manifolds which admit 

balanced metrics. Not every complex manifold X carries a balanced metric. This can 

be seen as follows. If a~ is the K~ihler form of such a metric, and if n=dim(X), then 

d(~on-~)=0. It follows that every compact complex hypersurface in X must represent a 

non-trivial class in H2n_2(X;R ). Thus, for example, Calabi-Eckmann manifolds 

S 2p+l • 2q+l, p+q>0 ,  are not balanced. This necessary condition is easily strengthened 

as follows. Every d-closed positive (n -  1, n -  1)-current (which is not zero) represents a 

non-zero class in H2n_2(X; R). In fact, every closed deRham current of dimension 2n-2  

whose (n-1,  n-D-component  is positive and non-zero represents a non-zero class in 

Hzn_2(X; R). (See w 4 for definitions.) A complex n-manifold with this last property is 

called homologically balanced. The principal result is the following. 

THEOREM A.  A compact complex manifold X admits a balanced metric i f  and 

only i f  it is homologically balanced. 

This result will be used, in a forthcoming paper, to prove that the set of balanced 

manifolds is open i.e., in a family or "moduli space", the subset o f  those manifolds 

which admit balanced metrics is open. 

The second main result concerns the problem of inductively constructing balanced 

metrics (cf. w 5). The statement is as follows. 

THEOREM B. I ra  compact complex manifold X admits an essential holomorphic 

map with balanceable fibers onto a complex curve, then X can be balanced. 

A map f: X ---~C (with irreducible fibers) is essential if the generic fibre is not an 

(n -  1, n -  l)-boundary, or dually, if the F- image of a fundamental cocycle on C is not a 

(1, 1)-cob0undary. Very often (and always in dimension 2) this simply means that the 

F- image of the fundamental cohomology class of C is not zero. 
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The hypothesis t h a t f b e  essential is necessary as one can easily see from the Hopf 

surface S 1 • 3 which admits a holomorphic map onto S 2 but is not balanceable. 

Since in complex dimension 2 balanceable is equivalent to K~ihler, we have the 

following, which is also proved in [8]. 

COROLLARY. A compact complex surface which admits an essential holomorphic 

map onto a complex curve, is Kiihlerian. 

Here "essential" means basically that the generic fibre is not homologous to zero, 

i.e., that the F - image  of the fundamental cohomology class of the curve is not zero. 

We point out that in Theorem B and its corollary, the maps need not be submer- 

sions. The fibers can degenerate to singular fibers. 

Theorem B indicates an area where balanced manifolds are natural and important, 

namely in the study of families of varieties. Given a I-parameter family of K~thler 

manifolds, it is not always true that the total space of the family is K~ihlerian (even 

when the family is topologically trivial). From a construction of E. Calabi (cf. w 6), one 

obtains a family of complex tori over a curve, which is topologically a product, and 

which admits no Kahler metric. Nevertheless, it does carry a balanced metric by 

Theorem B. Thus, balanced metrics seem naturally adapted to the study of curves in 

moduli spaces. 

The author would like to thank Reese Harvey for a number of useful communica- 

tions during the course of this work. 

1. Hermitian geometry: torsion and its trace 

Suppose X is a compact complex manifold and let J: TX-->TX denote its almost 

complex structure. We consider on X a riemannian metric g with the property that at 

each point x E X, 

g(V, W) = g(JV, JW) (1.1) 

for all V, WE TxX. Such a metric will be called hermitian. Associated to it is an exterior 

2-form 

w(V, W) = g(V, JW) (1.2) 

called the K~ihler form of g. Combining these gives the standard complex hermitian 

metric 

h = g+ito (1.3) 
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which has the property that h(JV, W)=ih(V, W ) = - h ( V ,  JW). 

We view a connection on X in the customary way as a differential operator 

D: F(TX)---~F(T*X| with the property that 

B y ( f  W) = (Vf) W+fOv  W (1.4) 

for all vector fields V, WE F(TX) and all functionsfE C=(X). Associated to each such D 

is its torsion tensor TD EF(A2T*X| 

T~, w = Dv W - D w  V-[V ,  W] (1.5) 

for V, WE F(TX). 

The tensors above will be extended complex multilinearly to the complexification 

of TX. We recall the natural decomposition 

TX | C = T 1'~ O)T 0'1 (1.6) 

into the +i and - i  eigenbundles of J, and note that for VE TX, 

V1'~189 and V~189 (1.7) 

In a local complex coordinate system (Z 1 . . . . .  Z n) on X a (l,0)-vector field q~E F(T 1'~ 

can be expressed as 

~ =  a~az J 
j=l 

(1.8) 

where al . . . . .  an are local complex-valued functions. Such a (1,0)-field is said to be 

holomorphic if these functions are holomorphic. 

A given connection D on X is said to preserve the riemannian metric g if D(g)=0, 

i .e. ,  if 

Ug(V, W ) = g ( D u V ,  W)+g(V, D u W )  (1.9) 

for all vector fields U, V, W. The connection is said to preserve the complex structure if 

D(J)=0, i.e., if 

for all vector fields V, W. 

S .  

Dv(JW) = J(Dv W) (1.10) 

There are two connections canonically associated to a given hermitian metric g on 

The first is simply the riemannian connection V ~ 'which is characterized by 

18-822908 Acta Mathematica 149, Imprim~. le 25 Avril 1983 
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requiring that it preserve g and that its torsion vanish. The second is the hermitian 

connection V, which is characterized by requiring that it preserve g and J and that the 

(1, l)-part of  the torsion vanish, i.e., 

~v,  Jw = ~ , w  (1.11) 

for all V, W. It is a standard result (el. [14]) that (1.11) is equivalent to requiring that 

~7V0,1 ~/9= 0 (1.12) 

for all local holomorphic vector fields q) (and arbitrary (0, 1)-directions V ~ 1), This can 

be rewritten as 

V jvq~ = iVvc p (1.12) 

for all fp holomorphic and V real. 

When the canonical riemannian and hermitian connections coincide, the metric is 

called Ki~hler. This property is equivalent to the condition that TV--0. As we shall see 

in a moment,  it is also equivalent to the condition 

dto = 0. (1.13) 

It is not difficult to see that for some X, there is no K~ihler metric. 

This leads one to ask whether  there is a weaker condition which is always satisfied 

by some hermitian metric on each compact  complex manifold. It is natural to try to 

formulate such a condition in terms of the torsion tensor T v. 

We begin by computing the torsion in a local complex coordinate system 

(z ~ . . . .  ,zn). Suppose the complex hermitian metric is given in these coordinates by 

h= hij dzi | hid= h - ~ ,  ~z j (1.14) 

and write the hermitian connection as 

7-7 ~oj~ |  (1.15) 
8z k" 

By condition (1.12) the complex-valued 1-forms wjk are all of type (1,0); and from 

condition (1.9), dhjk=Ea(toi,~h,~+hjc~,~k) for all j ,  k. Hence, writing dhjk=Ohik+Shjk 

and identifying types, we retrieve the standard result that 
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where 

where Tjk I =i Za T~] hat. Then 

' = ~ ~ Ohka h al-ahja hat1 (1.17) 
L--oS- ~z ~ J 

and where ((hJk)) denotes the inverse o f  the matrix ((hj~)). 

Proof. This is a direct consequence of (1.15) and (1.16). 

COROLLARY 1.2. Let  h and T be as in Proposition 1.1, and consider the exterior 

(2, 1)-form 

"r = ~ T i J z  ~ A d z  ~ A d~ t 

dto= T+i" (1.18) 

where ~o = i 2 hj~ dz i A ds k is the  Ki~hler f o rm  associated to h. 

Note that (1.18) is equivalent to the two equations: 

0 to=T and 0to=T. (1.19) 

Clearly T=0 (i.e., the metric is K~ihler) if and only if dw=O. 

We are now prepared to enunciate one of the central concepts of the paper, 

Definition 1.3. The torsion (1, O)-form of the complex hermitian metric h is defined 

as r=  r, rk dz k where 

rk---- Z T~ (1.20) 
J 

and where the TJk are given by (1.17). 

to= O H ' H  - l  (1.16) 

where W=((%k)) and H=((h~)). 

The torsion T v, considered as a TX-valued 2-form, has no (1,1)-component, and 

(since it is real) its (2, 0) and (0,2) components are complex conjugates of one another. 

PROPOSITION 1.1. The (2, O)-component o f  the torsion associated to the canonical 

hermitian connection o f  the metric h-=2 hj~dzJ|163 ~ can be written as 

T= ^ | ! 
j ,  k, t ,OZ I 
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It is sometimes useful to consider the real form r ~ = r + f  which we shall call the 

torsion 1-form of h. This is clearly obtained by contraction of the torsion tensor. 

Definition 1.4. A hermitian metric on a complex manifold is said to be balanced if 

its torsion (1,0)-form vanishes identically. 

PROPOSITION 1.5. Let h be a complex hermitian metric with torsion (1, O)-form r 

and Ki~hler form to. Then 

ir = 0*to (1.21) 

where J* denotes the formal hermitian adjoint of  the operator 0 with respect to the 

metric h. 

Proof. A straightforward computation using, say, [10, p. 97] gives the result. 

Note that since to is real, equation (1.21) is equivalent to: - i f = a ' t o ,  and also to the 

real equation: 

where dC=-i(O-O). 

rR = (dC) * to (1.22) 

Since 0"=--x-0-x- and since -Ycto=ton-l/(n--1)!, we conclude the following. 

THEOREM 1.6. Let h be a complex hermitian metric with Kiihler form to on an n- 

dimensional complex manifold. Then the following are equivalent. 

(1) The metric h is balanced. 

(2) P ' to=0  where P* is any of  the operators 0", 0", (dC) *, or d*. 

(3) P(ton-l)=0 where P is any of  the operators O, O, d c, or d. 

Note that when n=2, -x-to=to and so the conditions of  being balanced and Kiihler 

coincide. Moreover, condition (3) of Theorem 1.6 gives the following general restric- 

tion on the existence of balanced metrics. 

COROLLARY 1.7. Suppose X is an n-dimensional complex manifold which admits 

a balanced metric. Then every compact complex subvariety of  dimension n -1  in X 

represents a non-zero class in H2n_z(X; R). 

Proof. Let V be such a subvariety and observe that 

ton-i = volume (V) 4= O. 
( n - l )  ! vv 



ON THE EXISTENCE OF SPECIAL METRICS IN COMPLEX GEOMETRY 269 

Example 1.8. Consider the complex structures introduced by Calabi and Eckmann 

[3] o n  S 2p+l x S  2q+l. These have the property that the product of the Hopf mappings 

~r: S 2p+~ • S 2q+~ -~ P~ • Pq(c) 

is holomorphic. Hence, there are plenty of compact complex submanifolds of codimen- 

sion-one. (Take ~-1 of such an object in PP(C)xPq(C).) Since the homology is zero in 

dimension 2p+2q, we see that these manifolds support no balanced metrics. 

Corollary 1.7 can be strengthened to include all positive, d-closed currents 

TE ~'n_l,n_l(X). (See Section 4.) 

This seems an appropriate place to record some of the "'functorial" properties of 

being balanced. (For convenience, we shall say a complex manifold is "balanced" if it 

admits a balanced metric.) 

PROPOSITION 1.9. Let X and Y be complex manifolds. 

(i) I f  X and Y are balanced, then the product~X• Y is balanced. 

(ii) I f  X is balanced and Oe there exists a proper holomorphic submersion of  X onto 

Y, then Y is balanced. 

Proof. Suppose X and Yeach admit balanced hermitian metrics, and let wx and wr 

denote the respective K~hler forms of these metrics. Then W=Wx+Wr is the K~hler 

form of the product metric on X• Y; and if n--dim (X) and m=dim (Y), then 

By Theorem 1.6 we have that d(w"+m-~)=O and so Xx Y is balanced. This proves (i). 

Suppose now that X is balanced and that f-X--~ Y is a proper holomorphic 

submersion onto Y. Let O~x be the K~hler form of a balanced metric on X and consider 

the closed form ~x=W~ -1. Since f is proper, we can consider the 'push-forward" 

f2r--f.(f~x) of g2x considered as a current of dimension 2, Then ~)r is simply the 

(2m-2)-form obtained by integration over the fibers off.  Since f .  commutes with d and 

since d~)x=O, we have that d~r=O. 

Now •x is a strictly positive (n -  1, n -  1)-form; that is, with respect to any C-basis 

81, . . . ,  g n of any complex cotangent space T~'~ we have that 

Qx=i  ~-' ~ aj, elAe, A...A'I~jAejA...Ae, Ae'~A...Ae~Ae. 
j,k=l 
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where ((ayk)) is a positive definite matrix. Fur thermore ,  since f is a holomorphic 

submersion, the push forward f2r  is a strictly positive ( m -  1, m -  1)-form on Y. This can 

be seen as follows. Fix y E Y and fix a C-basis el . . . . .  e,n for Ty ~'~ Y. At each point x in the 

fibre F = f - l ( y )  we can lift the forms el . . . . .  em and complete to a basis e~ . . . . .  en of  

T~x'~ We can do this so that v=in-rn~m+lA~m+lA...AEnA~ n, when restricted to F,  is 

any given smooth volume element.  Then ~ y at y is written as 

~y=i m-I ~ Ct#EIAglA"'A'~jAgjA'"AekAfA-kA"'AemAgm 
j,k=l 

where 

ajk = fFajk V 

for each j,  k. Note  that ((ajk))~k=l is again positive definite. 
m - I  

It is shown in w 4 that f~r can therefore  be written uniquely as ~2r=o9 r , where 

wr is a strictly positive (1, 1)-form. (See 4.8 forward.)  Of course,  w r  uniquely deter- 

mines the hermitian metric hr=g+iwr on Y by the formula g(V, W)=wr(JV, W). This 

completes the proof.  

Remark 1.10. Note  that in (ii) above,  the (proper) map f:  X---> Y need not be a 

submersion. It is only necessary  that the J a c o b i a n f ,  be surjective at some point along 

each fiber o f  the map. 

Note  also that if f :  X---> Y is a finite covering map, then X is balanced if and only Y is 

balanced. 

2. The relationship to Dirac operators 

When a manifold is K/ihlerian, we know (cf. [11]) that there are complex Dirac 

operators ~ and ~ defined, with the useful properties that ~2=0=~2 and that ~ is the 

formal adjoint of  9 .  These  operators  may be defined for any manifold with a hermitian 

metric by using the canonical hermitian connect ion V. We will see that the first 

property,  namely that ~2=~2=0, is equivalent to the proper ty  that the metric be 

K/ihlerian. As we shall see, ~ is the adjoint of  ~ if and only if the metric is balanced. 

Le t  X be a hermitian manifold. In order  to define complex Dirac operators for X 

we introduce the complex Clifford bundle associated to X (cf. [11]). This is the bundle 

CI(X) associated to TX, which at a point x is 

Cl (X)x = C1 (TxX) | C 
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where C1 (TxX) is the Clifford algebra associated to the real vector  space TxX with the 

quadratic form given by the underlying real inner product.  If  e l ,Je l  . . . . .  en, Jen is a 

(real) orthonormal basis for TxX, then a multiplicative basis for Cl(x)~ is 1 and 

e k = �89 , 

ek = ~(ek+/Jek)" 

These basis elements all anti-commute with one-another except that 

ekgk+gkek = -- I. 

These are the only relations. The connection V extends canonically to sections of CI(X) 

as a derivation. The Dirac operators @ and ~ are defined on sections of  CI(X) by the 

formulas 

= Z 6k �9 ~Tgk 

~ =  Z g k "  Vek 

where �9 denotes  Clifford multiplication. 

PROPOSITION 2.1. The fol lowing s tatements  are equivalent. 

(i) X is Kiihlerian. 

(ii) ~02=0. 

(iii) ~2=0.  

Proof. It was proved in [11] that (i) implies (ii) and (iii). We shall show that (ii) 

implies (i). (The case (iii) =,- (i) is similar.) N o w  at a point x we have that 

~z = Z eJ ekV~j,~, (2.1) 

where for tangent vectors  U and V, Vu, v is the invariant second covariant derivative 

which is defined by 

Vu, v = VoV~-Vvo ~, 

for  arbitrary local vector  fields 0 and 17 which extend U and V. This is independent of  

the choice of  local extensions.  It follows from (2. I) that 
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j<k 

= E R~j, ~k-V%.~ 

Then if ~ 2 = 0 ,  w e  have 

Therefore,  to prove Proposit ion 2.1, for a given I we let f be a function such that at a 

given point x 

Ve, f =  1 

Ve~f= 0 i f j . l .  

~,~j~kTj~= ~2(f"  l)  = 0 
j<k 

holds for any l. But (e jek: j<k}  are linearly independent.  So 

TJk=O 

for all j ,  k, l, and therefore, X is K~ihler. 

for all U, V. So we have 

LEMMA 2.2. 

92 - - E  6JEkVT~),~ k = 2 
j<k j,k,l 

where R is the curvature tensor defined by 

Ra, ~ = V o ~ , - V ~  Vo-V[o, ~ 1 

for U, $7 as before. The last equality follows because the curvature is of  type (1, 1), i.e., 

it satisfies 

Rjv, jv = Ru, v 
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PROPOSITION 2.3. A hermitian metric on a complex manifold is balanced if  and 

only if  ~ and ~ are formal adjoints o f  one another. 

Proof. Fix a point x E X  and choose ej-'s as above with the property that Vej=0 at x 

for eachj. Let s and s' be sections of CI(X), and let (., .) denote the complex hermitian 

inner product naturally induced in this bundle. A straightforward computation as in [11] 

shows that at the point x, we have 

(~s, s')-(s, ~s') = ~ g~(ejs, s'). 

Let V ~ denote the canonical riemannian connection for the metric on X, and set 

A=V~ Let W be the complex tangent vector field (of type (1,0)) of X defined by the 

requirement that 

(v ,  w)  = (Vs; s') 

for all (1,0) vectors V on X. Straightforward computation now shows that at the point 

x, we have 

div Og r) = Z(Ae j  ej+AsejJej, W)+2 2 gj(ejs, s'), 

and 

Z (Aejej+AjejJeJ' W) = - 2  E (Tr162 ~j, gj) = -2f(r~).  
J J 

Consequently, we have that 

(~s, s ' ) -(s ,  ~s') =- f('lir (mod divergences). 

This completes the proof. 

3. Conformal changes of metric 

It is certainly natural to ask how the torsion form behaves within the conformal class of 

a given hermitian metric. The basic result is the following. 

PROPOSITION 3.1. Suppose the hermitian metrics tt and h are conformally related 

by f~=eUh, where u is a smooth real-valued function. Then the corresponding torsion 
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(1, O)-forms are related by the equation 

f =  r + ( n - 1 )  au, (3.1) 

where n is the complex dimension o f  the manifold. In particular, we have that 

fR = r R + ( n -  1) du. (3.2) 

COROLLARY 3.2. The class o f  the torsion form [rR] in the space 

~I(x)R/d~~ is a conformal invariant o f  the metric. 

Proof o f  Proposition 3.1. We express /~ and h in local complex coordinates 

(z I . . . . .  z") as in Proposition 1.1 Then hjk=e"hji and ~k=e"h Jk for all j , k .  Applying 

equation (1.17), we find that 

L!k= au ak,- 
azj az k J J (3.3) 

for all j ,  k, I. It follows immediately that for rj---E k T~kwe have 

~j= (n- 1)-~-+rj. 
oz. (3.4) 

This completes the proof. 

Note that if a metric can be chosen so that 

dra = 0, (3.5) 

then the cohomology class [rR] 6 Hi(x ;  R) is a conformal invariant. It is an interesting 

question whether such metrics exist. 

It would be stronger to require that dr=0,  since 2drR=d(z+f), This is equivalent to 

0 r = 0  and J r = 0 ,  (3.6) 

i.e., to the requirement that r be a a-closed holomorphic 1-form. 

PROPOSITION 3.3. Suppose X is a compact complex manifold such that 

Hi(X; ~ ) = 0 ,  where ~ denotes the sheaf o f  germs o f  pluriharmonic functions. (One 

could assume, for example, that Hi(x;  (7)=0.) Then in the conformal class o f  each 

hermitian metric which satisfies (3.5), there is a unique metric (up to homothety) which 

satisfies (3.6). 

Proof. Let rR=~(r+f ) be the torsion 1-form o f a  hermitian metric h, and suppose 
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drR=O, Then taking (p, q)-components, we have that 

a t = 0  and Re (J r )=0 .  (3.7) 

Let h=e"h be a conformally related metric with torsion (1,0)-form f= r+ (n -1 )Ou  (cf. 

Proposition 3.1). Clearly ar and furthermore we have J r=0 if and only if 

ddCu 2iaOu 2i jrdefw = = = �9 (3.8) 
n -1  

(We assume that n> 1 since the case n= 1 is trivial.) From (3.7) we know that dw=O and 

that w is real. Furthermore, there is an isomorphism 

Hi(X; X') = (wE ~1' I(X)R: dw = 0}/ddC~~ 

which follows from the fine resolution 

0--'> ~" ' -> % '  "--> ~ - ' - ->  ( ~ I ' 2 ) R - - - >  . . .  

of the sheaf ~.  Since Hi(H; ~ ) = 0 ,  we see that w=ddCu for some u E C=(X). Since the 

kernel of dd c on Ca(X) is the constants, this conformal change by e u is unique up to a 

multiplicative constant (i.e., a homothety). This completes the proof. 

Note that if Hi(X; (7)=0, then the condition ar=0 immediately implies that r=au0 

for some Uo, and so ~z=aaUo, and the proof proceeds as above. 

Note also that uniqueness up to homothety is really uniqueness if, say, we 

normalize the total volume of X to be I. 

As we saw in Section 1, balanced metrics, i.e., metrics with the property that 

(dC)*w=0, do not always exist (and the existence of metrics satisfying (3.5) is, at the 

moment, an open question). However, it seems appropriate to point out here that 

metrics with the property that (ddC)*w=0 can always be constructed. 

THEOREM 3.4 (Gauduchon [5]). Let X be a compact complex manifold o f  dimen- 

sion >>-2. Then each hermitian metric on X is conformally equivalent to a unique metric 

(up to homothety) whose Kiihler form w satisfies the conditon 

(ddC)* og = O. 

4. The characterization theorem 

In order to enunciate our main theOrem, we must sharpen the necessary conditions 

presented in Section 1 (Cor. 1.7). ~ To do this we recall some basic facts from geometric 
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measure theory. Let X be a compact complex manifold and let ~P(X) denote the space 

of smooth, complex-valued exterior p-forms on X with the standard C~-topology. The 

topological dual ~p(X)- = ~P(X)' is called the space of p-dimensional (deRham) currents. 

Note that the Dolbeault decomposition ~P(X)=O~§ ~'s(X) of forms determines a 

corresponding decomposition 

~p(X)= ~ ~:,,(X) (4.1) 
r+s=p 

of currents. The elements in W, s(X) are called currents o f  bidimension (r, s). 

Each operator d, d c, 8, and 8 on ~*(X) induces an adjoint operator (again denoted 

d, d c, 8, and ~ respectively) on the space ~.(X). These operators continue of course, to 

satisfy the standard identities: d2=82=82=0, d=a+8 ,  etc. It is a classical result of 

deRham that there exists an isomorphism 

H,( ~,(X), cO = H,(X, C) (4.2) 

for each p. 

Suppose we now consider the space CP(X) of all continuous complex-valued p- 

forms on X with the standard topology. The topological dual space ~p(X)c ~(X) is 

called the space of p-currents which are represented by integration (or which are of 

finite mass) on X. There is again a decompostion ~p(X)= @r+s=p ~r,  s (s)"  Suppose we fix 

a hermitian metric on X. Then associated to each TE~p(X) there is a Radon measure 

11711 on x ,  and a field T of unit complex p-vectors (i.e., a measureable section of 

APTX| defined II/ll-almost everywhere, so that T=T. 11711, That is, 

= rq)(f.x) dllZll (x) (4.3) T(qo) 
.Ix 

for all continuous p-forms cp. 

We consider now the spaces ~p(X) = ( T E d~p(X): dT E M~,_ t(X) ) for p >10. Then it 

is a basic result of Federer and Fleming [4] that there exist natural isomorphisms 

Hp(.a, (X), d) --- H,,(X; c) (4.4) 

for each p. 

We now recall the notion of a positive (r, 0-current. Fix a point x EX and consider 

a complex (i.e., J-invariant)r-plane L in the tangent space TxX. Choose el . . . . .  erEL 

such that (el, Je~ .....  er, Jer} forms a (real) orthonormal basis of L. Then the vector 
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~L = el AJel A...A erAJer 

is independent of the choice of the ej's, and up to positive multiples, it is independent of 

the choice of hermitian metric. Note that ~L is real and contained in N'~T~X. We call 

~L the (r, r)-vector associated to L. The positive cone pr'r~N'~TxXgenerated by all 

r ,  r �9 such vectors, is called the cone o f  positive (r, r)-vectors at x, Thus we have ~EP~ if 

and only if 

~=  Z cJ~Ls (4.5) 

where cs>~0 and Lj is a complex r-dimensional subspace of TxX for eachj .  

Suppose now that to is the K/ihler form of any hermitian metric on X. Then it is 

easy to see that tor(~L)>0 for each complex r-dimensional subspace L c T x X .  Hence, 

by (4.5) we conclude that 

tor(~) > 0 for each non-zero ~ r'~ EP x . (4.6) 

The key concept of this section is the following. 

Definition 4.1. A current TE Mr, r(X) is said to be a positive (r, r)-current if 

T x E ~  

for II/l[-a.a.x. The set of positive (r, r)-currents will be denoted ~r.r(X). 

Note that any current TE ~r,r(X) is real, i.e., T=T. Furthermore, from (4.6) we 

immediately conclude the following. 

PROPOSITION 4.2. Let to be the Ki~hler form o f  any hermitian metric on X. Then 

T(to r) > 0 

for each non-zero TE ~r, r(X). 

Example 4.3. Let M be a compact complex manifold of dimension r in X, and 

define [MJE~tr, r(X) by [M](qg)=SMq~ for each continuous r-form qg. Then 

[M] E ~r, r(X). Furthermore, by Stokes' theorem we know that d[M] =0. 

This generalized to r-dimensional complex subvarieties of X. (See [7], for exam- 

ple.) 

Example 4,4. Let WE ~l'l(X) be a positive (I, D-form, i.e., locally ~0 can be 



278 M. L. MICHELSOHN 

written as ~p= E aiAz)dzJAds k where A(z)-((aj~(z))) is a non-negative hermitian sym- 

metric matrix at every point z. Define a current [~p]E~._L._I(X) by setting 

[~p] (qo)= fx  ~P A q0 for each continuous (2n-2)-form tp. Then [~p] E ~._ ~, ._ I(X) and d[~p] = 0 

if and only if d~p=0. 

We are now in a position to state a general condition necessary for the existence of 

a balanced metric. Let  err,,: 0)~,,~,(X)--~,,(X) be the natural projection, and set 

d~,r=JL,,~ 

PROPOSITION 4.5. Let X be an n-dimensional complex man~fold which admits a 

balanced metric. Then 

d._l,._ , ~._I(X) f~ ~n_,,._l(X)= {0), (4.7) 

or equivalently, every d-closed current T$  ~._2(X), such that :r._l,._ 1T is non-zero 

and positive, represents a non-zero class in H2._z(X; C). 

Proof. Let w be the Kfihler form of the balanced metric, and recall from Theorem 

1.6 that 

d(~on- l) = 0. 

Suppose now that TE ~n_E(X) satisfies: 04:vr~_l,~_ 1TE ~n_l,~_l(X). Then by Proposi- 

tion 4.2 

T(o~ "-1) = (Jr,_l,,_ 1 T) (0~"-*) > 0. 

(We can replace Tby  sty_l,,_ 1T since (0"-~ E ~"-1'~-1(X).) Hence, if dT=0, then T must 

represent a non-zero homology class. 

Definition 4.6. A complex n-manifold X which satisfies (4.7) is said to be homologi- 

cally balanced. 

Note from the examples above that on a homologically balanced manifold, every 

compact complex hypersufface and every closed positive (I, D-form must represent a 

non-trivial homology class. 

THEOREM 4.7. ,4 compact complex n-manifold can be given a smooth balanced 

metric i f  and only i f  it is homologically balanced. 

An analogous result is proved in [8] for K~ihler metrics. These results coincide in 

dimension two where the notions of being K~ihler and balanced are equivalent. 
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Proof. It remains only to show that if X is homologically balanced, then we can 

construct a balanced metric. 

Throughout the proof we shall work with the spaces of real currents and real- 

valued exterior forms, which we denote by ~p(X)l~ and ~P(X)R respectively. We begin 

with the observation that the cone ~n_1,n_I(X)c~',_I,,_I(X)R has a compact base in the 

weak topology. Indeed, if we fix a metric on X, then the set 

B=(TE~n_I,,_1(X):IITII(X)=I } is clearly compact in the weak topology on 

~/,_I,,_~(X)R and therefore also in the weak topology on ~'n_~,,_l(X)a. Furthermore, we 

have the following fact whose proof we postpone. 

LEMMA 4.8. The space l)=-dn_l,n_l ~ n _ l ( S ) R  is weakly closed. 

By the hypothesis (4.7) we know that DNB=O. Hence, by the Hahn-Banach 

separation theorem (see Schaeffer [12, p. 65]), there is an element g)E ~"-~'n-t(X)R 

such that 

(i) (f2, T)=0  for all TED, 

(ii) (ff~, T )>0  for all nOn-zero TE ~n_l,n_l(X). 

Condition (i) means that (dS)(f~)=S(df~)=0 for all S E ~n_~(X)a, and therefore, 

(i)' dQ=0.  

To interpret conditon (ii) we fix x E X  and let ~=~LEP~ -l'n-~ be a simple vector 

corresponding to a complex hyperplane LcTxX. We define a current TE ~n_~,,_l(X) 

by setting T(q~)=qg(~L). Condition (ii) implies that T(f2)=~(~L)>0 for all such L; that is, 

in standard terminology, 

(ii)' f2 is a strictly positive (n - l , n -1 ) - fo rm.  

We now observe that a strictly positive (n-1 ,  n-1)-form f~ can be written as 

f~ = con-1 (4.8) 

where co is a strictly positive (1, 1)-form. To see this it suffices to observe that the 

(n-1)st  power map: c,0---~q~ "-1, from A2T~x X to A2n-2"I~X, carries the cone of strictly 

positive (I, 1)-forms bijectively onto the cone of strictly positive ( n - l ,  n - l ) - forms at 

each point x E X. 

This is simply a question of multi-linear algebra. Let (V, J) be a complex vector 

space of complex dimension n, and for convenience introduce on V a real, J-invariant 
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inner product. Then for every real (1, 1)-form q0 there exists a "unitary" orthonormal 

basis el,Jel ..... en, Jen and real numbers (2j-} so that 

qo = ~  2jej A Jej. (4.9) 
j=l 

The form q~ is strictly positive if and only if 2j>0 for each j. In a similar fashion each 

(n-1 ,  n-1)-form q~ has a diagonalization: 

2 ~ =  Aje lAJe lA . . .Ae jAJe jA . . .AenAJe  n (4.10) 
j=l 

in some unitary basis, and ~ is strictly positive if and only if Aj>0 for eachj.  We now 

observe that given a strictly positive rp as in (4.9), the form ~ = ( 1 / ( n - l ) ! ) ~  n-I is 

expressed as in (4.10) with the same basis and with 

21 ...2~ 
A j -  2j (4.11) 

for each j. The injectivity is now clear. Furthermore, setting A=2! ... 2n, we see that 

A l . . .  A n - - A  ~-1. Consequently, given poitive A/s  we set 

(A 1 ... A,) 1/("-1) 

2j= At 

and thereby construct a positive preimage. Hence, the map q~---~qJ"-~ is a bijection 

between strictly positive cones as claimed. 

The form w given by (4.8) is the K~hler form of a unique hermitian metric g on X. 

Since d(o/'-~)=0, we know from Theorem 1.6 that g is a balanced metric, and our 

argument is concluded. 

Note. This type of application of the Hahn-Banach theorem was first made by 

Sullivan [13]. 

Proof of  Lemma 4.8. The operator d,_1,,_1: ~n_l(S)R-'~tn_l,n_l(S)R is the adjoint 

of the operator d: ~"-I'"-~(X)R--o~Z"-1(X)R, and by [12, Chapter IV, w 7] one of these 

operators has closed range if and only if the other does. We recall that when the range 

of a continuous linear operator has finite codimension, it is a closed subspace. Thus, 

B=-d~Z"-2(X)g is closed in Z-~2"'l(x)Rnker(d),  and therefore B is closed in 

~2"-I(X) R. (Recall that since X is compact, all cohomology groups are finite dimension- 
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al.) Furthermore, if we can prove that Bo-d(~"-l'n-l(X)R) has finite codimension in B, 

then B0 will be closed in B (hence in ~2n-l(X)a), and we will be done. 

Every element cp in ~zn-2(X) R can be written uniquely as 

= x+q~o+g 

for xE ~n'~-2(X) (and ~E ~n-2'~(X)) and 90 E ~-L~-1(X) w Since the Dolbeault group 

~n-2'n(X) is finite dimensional, there is a finite dimensional subspace Vc*~-2'~(X) 

such that every x E ~n-2,~ can be written as 

X = X o + ~ a  

for x 0 E V and for some a E ~-2"n-I(X). Since d=O+b, we see that 

~0 = (x0+Sa)+q%+(a~0+0a) = (Xo+~a+.~o)+d(a+dO (4.12) 

where qb0=<P0-(aa+~d)E~"-t'n-t(X)R. It follows immediately from (4.12) that 

dq~=dc~o+d(xo+.~o), and therefore B=Bo+d(Vn). In particular, we conclude that 

dimR (B/Bo) <~ dimR (V) < ~,  

and the proof is complete. 

5. Families of  varieties over a curve 

In this section we present a method for inductively establishing the conditions of being 

balanced. The theorem concerns families of varieties and should be useful in the study 

of deformations and moduli spaces. Roughly speaking, the result says that a compact 

manifold which admits a holomorphic map onto a curve such that the fibres are 

balanced, is itself balanced. However, this statement as it stands is not completely true. 

For example, the Hopf surface S1xS 3 admits a holomorphic submersion onto 

pI(C)=S/ (with Kfihler fibres), but is not balanced. It is not balanced because, as 

pointed out in w l, the fibres of the map are homologically trivial. 

This restriction is general. Suppose X is a compact complex n-manifold Which 

admits a holomorphic map f: X---,C onto a curve C. Assume for simplicity that the 

fibres o f f  are irreducible. Then each of the fibres f - l (p) ,p  E C, is a pos!tive d-closed 

( n - I ,  n-D-current .  Consequently, if X is balanced, no fibre can be homologous to 

zero. In fact, no fibre can be the (n -  1, n -  1)-part of a boundary in X. When this last 

19-822908 Acta Mathematica 149. Imprim6 le 25 Avril 1983 
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condition is satisfied, we say that the map f is essential. If f satisfies the weaker 

condition that no fibre is homologous to zero, we say that f is topologically essential. 

Before proceeding to the main result we take some time to examine these condi- 

tions. 

LEMMA 5.I. Let tocCH2(C;R) denote the fundamental class o f  the complex 

curve C. Then the map f:X---~C is topologically essential if and only if f*o)c~=O in 

H2(X; R). 

Proof. Let pCC be any regular value o f f ,  and let Fp-f-~(p) denote the fibre 

above p. Then the class [Fp] E Hzn-2(X;R) is the Poincar6 dual off*toc. (To see this, 

represent toc by a 2-form to with support in a small neighborhood of p and with 

fc to=l .  Then if a is a smooth cycle transversal to Fp, we see that (a,f*toc) = 

fof*to = the intersection number of a and Fp. Thus [Fp] is the Poincar6 dual off*toc.) 

It therefore follows that f*toc4=O in H2(X;R) if and only if [Fp]=~0 in H2n_2(X;R) for 

all regular values p. Since f is holomorphic and dimc(C)=l ,  and since the fibres 

are irreducible, the conclusion actually holds for all p ~ C. This is because, under 

these hypotheses, any multiple fibre Fp can be written as a limit 

Fp=lim ((1/m)Fp) in ~,_l,,_l(X), where m is some positive integer (the multiplicity of 

the fibre) and where {Pj}Y=1 is a sequence of regular values converging to p. Conse- 

quently, for any multiple fibre Fp of multiplicity m, we have that m[Fp] = the Poincar6 

dual off*toc,  and the lemma is proved. 

Lemma 5.1 can be restated by saying that a map f: X--,C is topologically essential 

if and only if for some volume form to on C with fcto+O, we have that f ' t o  ~ d~l(X)R, 

i.e.,f*to~=da for any real 1-form a on X. There is a similar characterization of essential 

maps. Let ~r 1' l: ~2(X)___~, I(X ) denote the standard projection. 

LEMMA 5.2. Let to be a volume form on C with non-zero integral. Then the map 

f:X---~C is essential if  and only i f  f*to~=ar l' ida for any real 1-form a on X. 

Proof. Let p E C be a regular value o f f  and consider the fibre Fp as a current of 

bidegree (1, 1) (and bidimension (n-1 ,  n-1)).  The argument for Lemma 5.1 shows that 

if we renormalize to to have integral one, the f ' t o  is cohomologous to Fp, i.e., 

f ' t o  = Fp+da (5. I) 

for some real current a of degree 1. Since both f ' t o  and Fp are of bidegree (1, 1), we can 

rewrite (5.1) as 
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f*w = Fp+~7"l 1' Ida. (5.2) 

Now, if f is not essential, then Fp=Jr ~' ida for some real current a of degree 1. (Recall 

that "degree  1" means "dimension 2 n - 1 " ,  and thatJrl'l=Jrn_l,n_l.)Hence, we have 

f*~o=Fp+~r 1'1 da=~r~'l(da+da)=Jrl'ld(a+a). Since the cohomology of currents agrees 

with that of smooth forms, we see that we can rewrite d(a+a)=dA where A is a smooth 

1-form, and so f*o9 =~r 1' 1 dA. 

Conversely, suppose f*w=erl'ldA for some smooth 1-form A. Then by (5.2) 

Fp=f*og-erl'lda=ztl'ld(A-a), and so each non-singular fibre is the degree (1, 1)- 

component (or dimension ( n - l ,  n-1)-component) of a boundary. However, as ob- 

served above, a singular fibre Fp, of multiplicity m is homologous over R to (1/m)Fp. 

Hence, we have that mFp,=Fp+db=Fp+:rl'ldb for some real current b of degree 1. 

Thus, if one fibre is a (I, 1)-component of a boundary, then all the fibres are. This 

completes the proof. 

It is clear that "essential" implies "topologically essential". In fact, very often, 

(and perhaps always) the two conditions are equivalent. For our first result, we 

consider the spaces F(Q p) of global holomorphic p-forms on X. These form a complex, 

f2", under a: 

0 0 
0"--~ l"(~r~ 1) L I'~(~'~ 2) ~ F(Q 3) ~ . . .  

whose pth cohomology group we denote by/-F(~ ' ) .  

PROPOSITION 5.3. Let f: X---~C be a holomorphic map with irreducible fibres from 

a compact complex manifold onto a curve. Suppose that either of the following 

conditions holds: 

o r  

(i) dimc (X)=2 

(ii) H2(fV)=0. 

Then f is essential if and only if it is topologically essential. 

Proof. Suppose that f is not essential, and fix a volume form w on C. By Lemma 

5.2, we have f*w=Jr 1' l doW for some smooth real 1-form 5 ~. If we write ~=S+~r where 

~r ~~ then, since d=O+O, we have that 

f*w = gS+OS 
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and so 

f*~o-dSe= cp+cp (5.3) 

where qg-aS E ~2'~ Since d(f*to)=0, it follows from (5.3) and the independence of 

bidegrees that 

aq~ = gq~ = 0, (5.4) 

i.e., q~ is a a-closed holomorphic 2-form. Note that if we change S by a holomorphic 

1-form, i.e,, if we replace S by S '=S+o where Jo=0,  then setting 6e'=S'+~r we have 

f*to-dSe' =qg' +q~' where 

cp' = q0+acr. 

Consequently, if HZ(t2")=0, we can assume that cp=0 in equation (5.3). 

On the other hand if dimc(X)=2, then by (5.3) and Stokes' theorem we have that 

O= fx(f* )2 = 2 ^ r 

and so q0=0. 

In either case we obtain the fact that f*to=dre, and so f is not topologically 

essential by Lemma 5.1. This completes the proof. 

There is another simple criterion for a map to be essential. 

PROPOSITION 5.4. Let f:X---~C be as in Proposition 5.3. I f  there exists a holomor- 

phic map g: C---~X such that f o  g is not constant, then f is essential. 

Proof: Supposef i s  not essential. Then equation (5.3) holds, and so, pulling down 

by g, we have 

( f  o g)*w-d(g* 3 ~) = g*cp+ (g*cp) = O, 

since there are no (2, 0)-forms on a complex curve. It follows that 

d e g ( f o g ) f c ~ O = f c ( f ~  *o9=0, 

and so the holomorphic map f o  g: C--->C must be constant, contrary, to assumption. 

We now come to the main result of this section. The proof we are about to give is 

fairly general, so we broaden our definition to cover what is actually established. Given 
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a holomorphic m a p j q X ~ C  onto a curve and a point p E C, the fibre Fp=f-l(p) may, 

of course, be reducible. Thus, in the general situation we say that f is essential if no 

positive linear combination of components of fibres lies in the image of d,_~,,_l. That 

is, no finite sum E cj[Fs], where cj>~0 and F; is an irreducible component of a fibre off ,  

can be the (n -  1, n -  1)-component of a boundary. If no such finite sum is a boundary, 

the map is called topologically essential. 

Proposition 5.3 continues to hold in this general case, that is, Proposition 5.3 

remains true without the assumption that the fibres are irreducible. 

Our main theorem is the following. 

THEOREM 5.5. Suppose X is a compact complex (connected) manifold which 

admits an essential holomorphic map f: X---~C onto a complex curve. C. I f  the non- 

singular fibres o f f  are balanced, then X'is balanced. 

Proof. Suppose dime (X)--n and consider TE ~,_ll,_l(X)with the property that 

T= et,_l,n_ 1 dS (5.5) 

for some SE ~,_I(X). We want to prove that T=0. 

We shall first use the hypothesis on the fibres by "slicing" the current T. Fix a 

point p E C and let z, ]z[<l, be a local cordinate chart on C with zfp)=0. Assume p is a 

regular value o f f  and let A=([z[<e0} be a sufficiently small disk that N---f-l(A) be a 

tubular neighborhood of the fiber Fp=f-l(p) .  We now choose a C a product structure 

g: N--~ AxFp (5.6) 

on this tubular neighborhood with the property that the complex structure makes 

"infinite order contact with the A-factors along {0}• By this we mean the 

following. Let J denote the almost complex structure on the manifold N and consider J 

to be carried over to A •  by the diffeomorphism g. Let J0 denote the natural product 

almost complex structure on AxFp.  Then we want the tensor J-Jo  to be zero to 

infinite order at all points of {0). xFp. This can be done by exponentiating the normal 

bundle of Fp with any hermitian (i.e. V J=0) connection on N. 

We consider now an approximate indentity on C at the point p. That is, we 

consider the family of positive (1, 1)-forms qg, on C, given by 

~ = t-z__ ~ dz A d~ (5. 7) 
e ~ 
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where qn ECo(-1  , 1) is of the form 

~(t) 

/ 
i 

- 1  I t 

and where 

fcg, = I. 

We then define the currents 

Te ~f*q~  A T 

S~ ~-f*qo~ A S 

and note that T, is a positive (n-2 ,  n-2)-current with compact support in N for all 

e<eo. Furthermore, since df*qJ,=f*dq~=O, we see that d~C,=f*cp~AdS, and since f 'q% 

is of bidegree (1, 1), we have that ~t,_2,,_ 2 dS,=f*q0,Aar,_l,,_l dS=f*cp, A T= T~. That is, 

L = '7"('n-2, n-2 riSe. (5.9) 

The masses of the currents in the family T~ are not necessarily uniformly bounded, 

Hence, we set 

m~ -- max { 1, M(L)} 

where M ( ) denotes mass norm, and define 

T~=- -~ /~  and S~=I--Lg 
m e  e" 

Of course we still have that 

T~ = ~t,_2.,_ 2 dS~ (5.9)' 

We now observe that the family T, consists of positive (n-2 ,  n-2)-currents with 

bounded supports and bounded mass. Hence, by general compactness theorems, see 
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[4], we know that for any sequence e~--->0, there is a subsequence {e,.) such that 

TF-T%--~T= (weakly) where T= is a positive (n-2 ,  n-2)-current with support in Fp. 

Furthermore, by positivity, 

lim M(T s) = M(T=) (5.10) 
J 

(since M(T,)= T~(~o"-Z/(n -2 )  !)). 

LEMMA 5.6. For any sequence Tj as abooe, the limit T~o=limj Tj=0. 

COROLLARY 5.7. lim,__,0 T~=0. 

Proof of Lemma 5.6. Consider that C = retraction ~: N~Fp given by the composi- 

tion Ng-~AxFp P~Fp, Since the currents T, and S~ have compact support in N (for e 

small) we can consider the push-forward currents Q,T~ and o,S~. Note that 

Q, T==Too because suppT=cFp and T= is tangent to Fp at [IT=ll-a.a. point. From 

equation (5.9) we have 

~.-2,.-2Q* T~ = .715n_2,n_20 , dn_2,n_ 2 S e 

=~n_2, n_2O, ( dSe-r~,s ~r, sdSe} (5.11) 

=ar._~,._2 d(p. S~)+E~ 

where E. is a sum of terms of the form ~.-2,.-2 O. zrr, s(dS,) for r4=s. (Here Ur, s denotes 

projection onto the subspace of (r, s)-currents.) 

Suppose we can show that E,j---~0. Then since 

o. Tj---, p. T= = T= 

and since the subspace of (n-2 ,  n-2)-components of boundaries in F v is closed 

(Lemma 4.8), we conclude that T==er._z,._ 2 dS for some real (2n-3)-current S on Fp. 

Since the fibre F v is balanced, this implies that T~o=0 as claimed. 

It now suffices to prove that lim._.o@.=0 where @~ is any family of currents of 

the form 

~ e  ~" '7[n-2, n-2 ~*('Tgr, S dS~) 

"~" Ygn_2,n_2Q,(Jgr+l,s+l d S  /~ ~ge) 
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where r~=s, r+s=2n-4, and r Le t  ~p be a smooth ( n - 2 ,  n -2 ) - fo rm on Fp, and 

let q3=O*~0. Then 

= dS[  A 

= dS[r  A 

= s [ r  A 

and so it suffices to show that 

in the C ~ topology on N. This is an easy consequence of the following fact. 

LEMMA 5.8. The differential form y~r,s~) is zero to infinite order at all points of 

FpcN (i.e., all coefficients of err's~ are zero to infinite order at points of Fp). 

Proof. Note  that :rr's~=Z~r'~*~O=arr'sp*Z~n-2'n-2~, and so it suffices to note that the 
n - 2 , n - 2  operator  :r r's oQ* osr n-E,n-2 (for r~=s) is zero to infinite order  along Fp. Let  :r 0 

denote  the corresponding projection for the " p r o d u c t "  complex structure J0 on 

N=A• Then we have that p* O~rn--2'n-2=arff--2'n--200 * and so it suffices to show that 

er ̀ 's o ~  -z'n-2 dies to infinite order  at points of  Fp (when rr This is now a straight- 

forward consequence  of  the fact that J-Jo dies to infinite order  along Fp. To see this, 

one should note  that zc ~'s is pointwise projection onto the i(r-s)-eigenspace of  J ,  

extended as a derivation to A* |  In particular, Jr "-2'n-2 is just  projection onto the 

kernel of  this extended J. Since the extended J-Jo (on A ' |  dies to infinite order  at 

points of  Fp, the claim follows easily. This completes the proof  of  Lemmas 5.6 and 5.8. 

We have proved that for  any approximate identity q0, at any regular value P E C, 

the currents 

T~ = 1 (TAf*~p~)---)O 
m e 

on X. From this and from 5.10 we conclude that, in fact, the currents 

T Af*q0~ ~ 0 

in the mass-norm on X. From this we conclude the following. Set 
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Xr = f - 1 ( C - Z )  

where Z is the set of non-regular values off .  (Note that by compactness and complex- 

analyticity the set Z c C  is finite.) Let co denote a volume from on C. Then the current 

TAf*co~-0 

in Xr. This is equivalent to the statement that ~x=Fx--the tangent ( n - l ,  n-D-vector  

to the fibre through x, for IITII-a.a. x in ,Yr. 

That is, 

T= FIITII in X,. (5.12) 

As remarked before, this representation depends to a certain extent on a choice of 

metric on X. However, if we contract T=~  with [[/][, considered as a 2n-form on X, we 

view T as a (generalized) (1, 1)-form on X with measure coefficients. This representa- 

tion is canonical (i.e., independent of metrics) and is a standard way to view currents. 

In this representation the condition (5.12) can be rewritten as 

T= g(f*co) in Xr, (5.13) 

where g is a positive generalized function on Xr. 

NOW the condition (5.5) can be reexpressed by saying that 

T = 0So+aS0 (5.14) 

for some S o E ~'n_l,,(X). From (5.14) it is clear that T satisfies the condition 

a J r  = o. (5.15) 

Applying this equation to (5.13), we see that the function g is pluriharmonic, and 

therefore constant, in each fibre. It follows that T has the form 

T =f*(~) in Xr. 

where/~ is a positive density on C - Z  (i.e., p=m~o where m is a Radon measure on 

C-E. )  We extend # in the obvious way to all of C, and observe that 

~ T- f*~u)  

is a positive ( n - l ,  n-1)-current on X with support in the complex hypersurface 
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~ - f - l ( Z ) .  From (5.15) we see that 7" satisfies the equation 

a02r = 0. (5.16) 

As a consequence we have the following fact whose proof we postpone. 

LEMMA 5.9. The current T is of the form 

f '= y_., cjt j] (5.17) 

for constants cj~O, where T-1 ..... ~N are the irreducible components of the divisor ~. 

Consequently, we have that 

(5.18) 

Now any two densities on C with the same total mass are cohomologous, and so are the 

corresponding inverse images on X. Hence, if we modify T by an appropriate boundary 

dS', we have 

T - d S ' =  <*to+ cj[• 

where c=/t(C)~0, and where to is a smooth volume form on C with fcto=l. As we saw 

in the proof of Lemma 5.2, the form f ' t o  is cohomologous to a non-singular fibre Fp 

(=f*(rp to)). Consequently, 

r - d S " =  

for constants c, cj>~O. Since T-dS" is in the image of dn_l,n_l, and since the map is 

essential, we conclude that c=/t(C)=0 and cj=O for all j. It follows tha t / t=0 ,  and 

therefore by (5.18) that T=0. This completes the main argument. 

Proof of Lemma 5.9. We follow the proof given in [8] for the case of dimension 

two. Let x be a regular point of E and choose local coordinates (Zl . . . . .  zn) in a 

neighborhood U ofx  so that Un~,={z: z~=0}. Since T is a positive current with support 

in ~, we can write ~ in the form 

T= ~ tt~ idza A d~# 

where t h e / t ~ ' s  are measures supported in ~, and /~a/~=/i#a. In particular, we can 

write 
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= (~o(Zl) ~ ~a~(Z2 . . . . .  Zn) idz~ A d2r 

From the fact that 007"=0 and 1" is real, we see that 

0=  E 0260 
~,~2 aZl as176 dzl A d21 A dz~ A d~  

+2Re  ~,,,> ~z,  .-7- az lAd~Adz~Ad~#  

a, fl 

From the independence of the derivatives of 6o we conclude that/ta~=0 for all a, fl~>2 

(and/~al is holomorphic for a~>2). Positivity implies tha t /~ ,~=/~=0 for a~2.  Hence, 

1"----/~11 t~0(Zl) idZl A ds 1 

where ktzj =/~H(zl .... , z,) is a non-negative pluriharmonic function. This representation 

holds at all regular points of the divisor Y.. This can be reinterpreted as follows. Let [Y.] 

be the current corresponding to integration over the regular points ~(Y.) of Z. Then 

away from the singular locus of Z, we have that 

= ~o[~:] 

where q~ is a positive pluriharmonic function ~(Z). It follows (by lifting to a desingulari- 

zation of Z) that q9 is a constant cj~>0 on each component Z j. of Z. 

The current T-----T-E cj[~j] is now a positive ( n - l ,  n-D-current  supported in the 

singular locus of Z (a variety of dimension ~<n'2). It is, furthermore, a~-closed. 

Regular points of  the singular locus are contained locally in the intersection of two 

hyperplanes {zl=0} and {z2=0}. Applying the argument above to each plane shows 

that T=0 at such points. Continuing down the singular strata, we conlude that 1"=0. 

This completes the proof of the lemma and the theorem. 

Our main result has the following corollary which also appears in [8]. 

COROLLARY 5.8. A compact complex surface which admits a topologically 

essential holomorphic map onto a complex curve is KiJtiler. 

The main Theorem 5.5 can of course be applied inductively to any manifold which 

decomposes into a sequence of fibrations. A good example of such a manifold is a 

complex solvmanifold. We shall examine such a variety in the next section. 
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6. Balanced  3-folds which  are not  Kiihler 

This seems a good time to point out that in all dimensions >2, there exist non-K~hler 

manifolds which are balanced. The first construction here is due to Calabi [2]. 

His first observation was the following. Let O------R 8 denote the Cayley numbers and 

consider a smooth oriented hypersurface M6o~R7=Im (O), the imaginary Cayley num- 

bers. Then there is a natural almost complex, structure J: TM-->TM induced by Cayley 

multiplication: 

Jx(e) -- Vx'e 

where v is the unit normal vector field to M. He shows that this structure is integrable if 

and only if J anticommutes with the second fundamental form of M. 

He then writes Im(O)=Im(H)@H=R3~R 4 (where H=the  quaternions), and  he 

considers a hypersurface of the type 

M 2 x R 4 (Wgd) R3 = R4" 

In this case the almost complex structure J is integrable if and only if the immersion 

/if: M2q-~R 3 is minimal. The complex structure so obtained is invariant by all transla- 

tions in the Rn-directions. 

Calabi then constructs compact complex manifolds as follows. Let C be a compact 

Riemann surface which admits 3 holomorphic differentials ~v~, q92, ~v3 such that 

~c~=O a n d  ~ l ~ l  2>0. 

Then lifting q0-(q01, ~2, (~93) to the universal covering C---~C, we obtain a conformal 

minimal immersion ~p: C--~R 3 by setting 

If g: C--~C denotes a covering transformation, then lp(gz)=lp(z)+tg for some vector 

tg E R 3. It follows that the complex structure induced on C x R 4 by the immersion v 2 x Id 

is invariant by the covering group of C and so descends to C X R  4. We can further divide 

by a lattice A of translations of R 4, and thereby produce a compact manifold XA which 

admits a holomorphic .projection f:XA--~C. The fibres of this map are complex tori. 

Furthermore, since the natural inclusions C x { x } ~ . C x R  ~ are holomorphic (for any 
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x E R 4 ) ,  w e  see that the bundle f'.X---~C has holomorphic cross-sections. Thus, we 

conclude from Theorem 5.5 that 

The manifolds XA are balanced. (6.1) 

This will also be true of XA• Y for any K~ihler manifold Y. 

However, Calabi proves in [2] that the manifolds XA cannot be K~ihler. His 

argument applies equally well to XA•  where T is any complex toms, and thus 

provides examples in all dimensions. 

Note. AI Gray has proved by direct computation [6] that the manifolds XA carry 

balanced matrics. 

An interesting collection of examples suggested by the referee arises from Pen- 

rose's twistor spaces. Given an oriented riemannian 4-manifold, X, there is associated a 

6-manifold, r, the socalled twistorspace of X.'This is an S 2 bundle o~,er X 4 whose fibre, 

Cx, over a point xEX 4 is the set of all almost complex structure J: TxX---~TxX such 

that J is orthogonal and compatible with the orientation. Note that Cx=SO4/U2=S 2. 

The twistor space, r, has a canonical almost complex structure which is integrable if 

and only ifX 4 is self-dual [1]. The natural metric on r is balanced, however, Hitchin has 

shown [9] that the only compact twistor spaces which are Kahler are those associated 

to S 4 and PZ(C); namely P3(C) and the manifold of flags in C 3, F3(C), respectively. An 

interesting special case is the twistor space for S ~ • 3. The referee points out that this 

gives a counterexample to the converse of Theorem 5.5. That is, the projection 

rs,• 2 is a holomorphic map which is essential by Proposition 5.4. However, rsl• 3 

is balanced although the fibres of the map, S~xS 3, cannot be balanced. 

Another natural example, which is also known to Gray, is given by the complex 

Heisenberg manifold X=G/F where 

G= 1 c :a,b, cEC  

0 1 

F is the subgroup where a,b,  and c are Gaussian integers. The map and 

f: X--~C=--C/Z[i], given by setting 

f 1 = a  

0 

is a holomorphic surjection whose fibres are easily seen to be K~ihler. The map 
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a---> 1 

0 

gives a holomorphic cross-section to f ,  and so by Theorem 5.5 the manifold X is 

balanced. 

Nevertheless, this manifold is not Ki~hler. This can be seen as follows. Direct 

calculation shows that 

{(, o 1 [G, G] = 0 1 :b f iC  

0 0 

and that [F, F]c[G, G] is the subgroup with b E Z[i]. Thus, the exact sequences 

0--o [G, G]---~ G---~ G/[G, G]---~ 0 

0--,. [F, F]-~ F--, r/[r', F]--, 0 

give rise to a fibration 

i F 
T--} X---~ T• T 

where T=C/Z[i] and where F(a, b, c)=(a, c) and i(b)=(0, b, 0). The subgroup [G, 6~ is 

central in G, and so the quotient group To=[G, G]/[F, F] acts freely on X preserving the 

fibres of F. (F is a principal fibration.) 

We now claim that the fibres of F are homologous to zero in X and so X cannot be 

K~hler. Note that F=JtdX), and since HI(X)=~(X)/[~q(X),~I(X)], we conclude that 

the map 

i,: Hl(T)---~ Hi(X) 

is zero. Let 7o=R/Z and 71=,R/Z be the two canonical generators of ~q(T). Write 

T=yoX)q and note that the inclusion i can be written as 

i(yoX70 = i(70)" i0q) 

where �9 comes from the action described above. Now since i ,=0  on H~, we see that 

i(7o)=a(Y.) where Z is a 2-chain in X. It follows immediately that 

i(7o) "i(yO = O(Z) i0'0 = O(Z. i(~q)) 

and so the fibre is null-homologous as claimed. 
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