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This paper describes an experimental investigation of steady-state resonant waves.

Several co-propagating short-crested wave trains are generated in a basin at the State

Key Laboratory of Ocean Engineering (SKLOE) in Shanghai, and the wavefields

are measured and analysed both along and normal to the direction of propagation.

These steady-state resonant waves are first calculated theoretically under the exact

resonance criterion with sufficiently high nonlinearity, and then are generated in the

basin by means of the main wave components that contain at least 95 % of the wave

energy. The steady-state wave spectra are quantitatively observed within the inherent

system error of the basin and identified by means of a contrasting experiment. Both

symmetrical and anti-symmetrical steady-state resonant waves are observed and the

experimental and theoretical results show excellent agreement. These results offer

the first experimental evidence of the existence of steady-state resonant waves with

multiple solutions.
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1. Introduction

The study of the resonance mechanism in water waves is of fundamental importance,

as the nonlinear interactions between different wave components may result in energy

transfers in the spectrum. When the frequency of a tertiary component equals the

frequency of a free infinitesimal wave of the same wavenumber, Phillips (1960)

found that the amplitude of the tertiary component grows linearly with time. After

the pioneering work of Phillips (1960), resonant interaction theory became one of

the principle catalysts for the rapid expansion in the understanding of nonlinear wave

phenomena (Hammack & Henderson 1993). For example, the source function of the

nonlinear transfer in a random ocean wavefield derived by Hasselmann (1962) is

one of the milestones of modern modelling of ocean waves (Komen et al. 1996).

Benney (1962) established the evolution equations of wave mode amplitudes, and
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demonstrated the well-known time-dependent periodic exchange of wave energy when
the Phillips resonance criterion is fully or nearly satisfied.

Another aspect of fundamental importance is the study of progressive waves with
persistent two-dimensional surface patterns, as it provides a more realistic description
of the ocean waves compared with the study of Stokes waves. Short-crested waves,
as probably the simplest waves of permanent form that are two-dimensional, have
received growing interest in experimental (Hammack, Scheffner & Segur 1989;
Hammack et al. 1995; Kimmoun, Branger & Kharif 1999; Hammack, Henderson
& Segur 2005; Henderson, Patterson & Segur 2006; Henderson, Segur & Carter
2010), analytical (Roberts 1983; Bryant 1985; Madsen & Fuhrman 2006, 2012) and
numerical (Chen & Liu 1995; Craig & Nicholls 2002; Fuhrman & Madsen 2006;
Fuhrman, Madsen & Bingham 2006; Nicholls & Reitich 2006; Xu & Guyenne 2009)
investigations in recent years.

The main feature of short-crested waves is, however, the occurrence of harmonic
resonance. For certain combinations of frequencies and wavenumber vectors,
the perturbation theory may break down due to the singularities in the transfer
functions (Madsen & Fuhrman 2012). Harmonic resonance in short-crested waves
was first identified by Roberts (1983). Ioualalen et al. (2006) found that the
harmonic resonance introduces non-uniqueness with several steady solution branches
connected through a turning point. Also, the non-uniqueness of Zakharov’s kernels
T(ka, kb, ka, kb) for gravity waves in water of finite depth was resolved by Stiassnie
& Gramstad (2009).

To overcome the restrictions and limitations of perturbation techniques, Liao
(1992, 1997, 2004, 2012) developed an analytic approximation approach for highly
nonlinear problems, namely the homotopy analysis method (hereinafter, HAM).
Unlike perturbation techniques, the use of the HAM does not involve the existence of
small/large physical parameters. In particular, different from other methods, the HAM
provides a simple way to guarantee the convergence of solution series by means
of introducing the so-called ‘convergence-control parameter’, which has no physical
meaning so that its optimal value can be determined by the minimum of the residual
error of governing equations. Besides, the HAM provides great freedom to choose
the equation type of related linear equations for high-order approximations. With
these advantages, the HAM has been successfully applied to solve many nonlinear
problems (Liao & Tan 2007; Liao 2012).

Recently, by introducing the resonant components into the initial guess in the
framework of the HAM, Liao (2011) successfully obtained the ‘steady-state’ resonant
waves in deep water with multiple solutions. The so-called ‘steady-state’ resonant
waves correspond to a state such that, when the resonance criterion is exactly satisfied,
all of the amplitudes ai, the wavenumbers ki and the nonlinear frequency σi of the
wave system are constant, i.e. independent of time, so that the spectrum of wave
energy is also independent of time. Liao (2011) found that multiple steady-state
resonance waves exist for a special quartet in deep water and Xu et al. (2012)
confirmed their existence in water of finite depth. Liu & Liao (2014) further
extended the existing results for steady-state resonance from a special quartet to
more general and coupled quartets, together with consideration of higher-order
resonant interactions. The significant role of the near resonance was revealed. It
was found that all near-resonant components as a whole contain more and more wave
energy, as the wave patterns tend from two-dimensional to one-dimensional, or as the
amplitudes of the steady-state resonant wave system increase, as pointed out by Liu
& Liao (2014).
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Note that these steady-state resonant waves (Liao 2011; Xu et al. 2012; Liu &
Liao 2014) are obtained in the framework of an inviscid fluid. However, water in
practice has viscosity. Do the so-called steady-state resonant waves indeed exist in
practice? Recalling that no direct experimental evidence of the existence of these
steady-state waves has ever been reported and that the early skepticism of Phillips’
view was dispelled unequivocally by experiments presented in Longuet-Higgins &
Smith (1966), McGoldrick et al. (1966) and Hammack & Henderson (1993), an
experiment is urgently needed to verify the theories on steady-state resonance.

The primary objective of this work is to experimentally confirm the existence of
the multiple steady-state resonance waves in deep water. These steady-state resonant
waves are first calculated theoretically under the exact resonance criterion with
high enough nonlinearity. Then for each case several co-propagating short-crested
wave trains that contain at least 95 % of the wave energy are generated in a basin.
The wavefields are measured and analysed both along and normal to the direction
of propagation. The steady-state wave spectra are quantitatively observed within
the inherent system error of the basin and identified by means of a contrasting
experiment.

This paper is outlined as follows. The theoretical results are briefly introduced in § 2
for steady-state resonant waves formed by several short-crested waves. Experimental
facilities and procedures to generate composite waves are described in § 3. Variances
of amplitudes are then introduced to quantify the amplitude uniformity in space.
Detailed experimental results are presented in § 4, together with the comparisons of
experimental and theoretical results. Finally, conclusions are summarized in § 5.

2. Summary of theoretical framework

The theory of steady-state resonant waves is based on the classic initial/boundary-
value problem for water waves in an inviscid fluid. Under the assumption of
incompressible fluid and neglect of surface tension, the governing equation for
the velocity potential φ(X, Y, z, t) and the free-surface displacement η(X, Y, t) in
water of infinite depth requires

∇2φ = 0 in −∞ < z < η(X, Y, t), −∞ < X, Y < ∞, (2.1)

∂2φ

∂t2
+ g

∂φ

∂z
+

∂ |∇φ|2

∂t
+ ∇φ · ∇

(
1

2
|∇φ|2

)
= 0 on z = η(X, Y, t), (2.2)

gη +
∂φ

∂t
+

1

2
|∇φ|2 = 0 on z = η(X, Y, t), (2.3)

∂φ

∂z
= 0 as z → −∞, (2.4)

where g is the acceleration due to gravity, t is the time, and (X, Y, z) denotes the
spatial coordinate with the z axis upward and the X, Y axes horizontal.

Taking steady-state resonant waves composite of two trains of short-crested waves
as an example, Phillips’ linear resonance condition requires

k1 + k3 = k2 + k4, ω1 + ω2 = ω3 + ω4, (2.5a,b)

where ki is the wavenumber and ωi =
√

g|ki| is the linear frequency. The nonlinear
frequency σi, which depends on the wavenumber ki and amplitude ai of all
components in the wavefield, satisfies the nonlinear resonance condition

k1 + k3 = k2 + k4, σ1 + σ3 = σ3 + σ4. (2.6a,b)
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FIGURE 1. Wavevector configuration of steady-state resonance waves formed by short-
crested waves. Here only two trains of short-crested waves are shown for simplicity.

Figure 1 shows the wavevector configuration, which requires

k1,X = k2,X, k3,X = k4,X, k1,Y = −k2,Y = −k3,Y = k4,Y(=: kY). (2.7a−c)

Here it is assumed that k1,X < k3,X and kY > 0. Due to the symmetry in wavevectors,
Phillips’ linear resonance condition (2.5) is automatically satisfied and the composite
wave pattern has a wavelength of π/kq in the Y direction. For simplicity, it is further
assumed that σ1/ω1 ≡ σ2/ω2 = ε1 and σ3/ω3 ≡ σ4/ω4 = ε3 such that the nonlinear
resonance condition (2.6) is automatically satisfied, too. For components travelling in
the same direction, as considered in this experiment, the nonlinear frequency σi is
bigger than the related linear frequency ωi due to contributions of generalized Stokes’
corrections (that is εi > 1, as shown later in table 2).

The above fully nonlinear governing equations (2.1)–(2.4) together with the
resonance criteria (2.5) and (2.6) are solved by the HAM. Briefly, the solution
expressions for the free-surface elevation and velocity potential are

η =
+∞∑

m1=0

+∞∑

m2=−∞

+∞∑

m3=−∞

Cη
m1,m2,m3

cos(m1ξ1 + m2ξ2 + m3ξ3), (2.8)

φ =
+∞∑

m1=0

+∞∑

m2=−∞

+∞∑

m3=−∞

Cφ
m1,m2,m3

sin

(
3∑

i=1

miξi

)
exp

(∣∣∣∣∣

3∑

i=1

miki

∣∣∣∣∣ z

)
, (2.9)

where Cη
m1,m2,...,mκ

and Cφ
m1,m2,...,mκ

are constants to be determined, and ξi = ki,XX +
ki,YY − σit for the progressive wave component. In the framework of the HAM, the
initial guesses for the free-surface elevation and velocity potential are

η0 = 0, (2.10)
φ0 = A0,1 sin(ξ1) exp(|k1|z) + A0,2 sin(ξ2) exp(|k2|z)

+ A0,3 sin(ξ3) exp(|k3|z) + A0,4 sin(ξ1 + ξ2 − ξ3) exp(|k1 + k2 − k3|z), (2.11)

where the unknown constant coefficients A0,i is determined in such a way that the
secular terms on the right-hand side of the first-order deformation equation are
avoided. Forty-eight algebraic solutions are obtained for A0,i, which are divided
into three groups as shown in table 1. The amplitudes in the first two groups are
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FIGURE 2. Perspective plot of the free surface of steady-state resonant waves formed
by several trains of short-crested waves. The vertical scale is exaggerated two times.
(a) Symmetrical group (case S1); (b) anti-symmetrical group (case S3).

Number Amplitude Phase

Symmetrical group 1 |A0,1| = |A0,3|, |A0,2| = |A0,4|
No phase shift or two

components out of phase
Anti-symmetrical group 1 |A0,1| = |A0,3|, |A0,2| = |A0,4| One component out of phase

Asymmetrical group 4 |A0,1| 6= |A0,3|, |A0,2| 6= |A0,4| One component out of phase

TABLE 1. Classification of steady-state resonant waves formed by short-crested waves.

symmetrically distributed within each short-crested waves. Here a negative A0,i is
regarded as an 180◦ phase shift of the ith component. Based on the number of
components that have phase shift, the first two groups are further divided into
symmetrical and anti-symmetrical groups. This phase shift of components results
in different wave patterns, as shown in figure 2. The other 32 solutions, as the
amplitudes are non-uniformly distributed within each short-crested wave, belong to
the asymmetrical group. Two asymmetrical groups are trivial owing to the symmetry
of the wavevector. The sign and magnitude of A0,i in the potential function is directly
related to that of amplitude ai in free-surface elevation. Thus, our analysis is based
on A0,i for the sake of simplicity. For detailed solution procedures, please refer to
Liao (2011), Xu et al. (2012) and Liu & Liao (2014). Based on these theoretical
results, it is easy to obtain the corresponding wave spectrum and to find out which
wave components contain sufficiently large wave energy and thus must be considered
in experiment.

As the dimensionless frequencies ε1 and ε3 increase, i.e. the amplitudes of all
four related components increase, more components are involved in the resonant
interactions (Liu & Liao 2014). The amplitudes of some additional components
increase so greatly that they should be included in experiments for the generation of
the composite wave groups, as shown in table 2. Compared with the asymmetrical
group, the wave energy in the symmetrical and anti-symmetrical groups has a more
uniform distribution so that all non-trivial components can be measured by wave
gauges. Besides, as shown in figure 2, a symmetrical amplitude distribution leads to
specific and easily observed wave patterns. Therefore, we focus on the symmetrical
and anti-symmetrical groups of the steady-state resonant waves that are composite of
short-crested ones in this paper.
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Case k1,X(k2,X) k3,X(k4,X) kY k5,X(k6,X) k5,Y(−k6,Y) k7,X(k8,X) k7,Y(−k8,Y)

S1 1.20 2.50 0.26 2.50 0.78 3.80 −0.26

S2 1.20 2.50 0.13 2.50 0.39 — —

S3 1.20 2.50 0.26 — — — —

S4 1.20 2.50 0.13 2.50 0.39 — —

S5 1.85(1.20) 1.85(2.50) 0.26 — — — —

Case ε1 ε3 a1k1(a2k2) a3k3(a4k4) a5k5(a6k6) a7k7(a8k8)

S1 1.0230 1.0280 0.0234 0.1211 −0.0353 0.0372

S2 1.0180 1.0250 0.0254 0.1226 −0.0422 —

S3 1.0110 1.0260 0.0360 0.1250(−0.125) — —

S4 1.0125 1.0270 0.0375 0.1314(−0.1314) −0.0241(0.0241) —

S5 — — 0.1000 0.1000 — —

TABLE 2. Theoretical parameters in the experimental cases. Here k5 = 2k1 − 2k2 + k3,
k6 =−k1 + k2 + k3, k7 =−k2 +2k3, k8 = k1 −2k2 +2k3, kY = k1,Y =−k2,Y =−k3,Y = k4,Y , and
a negative aiki means a 180◦ phase shift in that component. Case S5 is an non-steady-state
near resonance. Symbol ‘—’ means that the related value is small enough to be neglected.

Let (x, y, z) represent the spatial coordinates in the laboratory frame, as shown in
figure 3. The variables in the theoretical framework can be expressed in the laboratory
coordinates as follows:

X =
√

2

2
(x + y) , Y =

√
2

2
(−x + y) . (2.12a,b)

For short-crested waves in deep water, Hammack et al. (2005) experimentally
demonstrated that it looks like a rectangular cell with a Y-length scale corresponding
to half the Y-length of each long-crested wave. Due to the symmetry in wavevectors,
the final composite wave groups have wavelength π/kY in the Y direction. For
simplicity, the cases of kY = 0.26 and kY = 0.13 are considered such that the composite
wavefield is periodic in the Y direction every 12 m or 24 m, which covers either
half or the whole of the truss (which is 24 m long) of the basin at the State Key
Laboratory of Ocean Engineering (SKLOE).

As pointed out by Liu & Liao (2014), the primary and resonant wave components
contain a smaller percentage of the total wave energy as wave amplitudes increase.
So, for resonant waves with large amplitude, not only the primary and resonant
components but also some high-order resonant ones should be considered. Table 2
shows the physical parameters of wave components of the five cases considered in our
experiments. These parameters are chosen based on the theoretical computations (Liao
2011; Xu et al. 2012; Liu & Liao 2014) and are used for the wavemaker to generate
the most important wave components, which as a whole contain at least 95 % of the
wave energy of the resonant wave system. Case S1 corresponds to a symmetrical
group, with k1,X = k2,X = 1.20, k3,X = k4,X = 2.50 and kY = 0.26, such that the angle of
each component satisfies 30◦ 6 θi 6 60◦. In case S2, the wavelength in the Y direction
is doubled with kY = 0.13. Cases S3 and S4 belong to anti-symmetrical groups of
steady-state resonant waves, and have the same wavevectors as those in cases S1 and
S2, respectively. In all of these four cases, different combinations of ε1 and ε3 are
properly chosen so that a3k3 = a4k4 > 0.12 holds, which guarantees that the related
dimensionless scaled variable X = ǫ2k0x introduced by Shemer, Kit & Jiao (2002)
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FIGURE 3. Schematic view of the wave basin, showing its two-sided segmented
wavemakers (��) and locations of wave gauges and absorbers; denotes the place where
images were taken.

reaches 1.5 at the ninth wave gauge, corresponding to a high enough nonlinearity
of the considered waves, where k0 denotes the wavenumber of the component with
the largest amplitude. For each case, the number of wave components generated by
the wavemaker is determined in such a way that they in total contain more than
95 % of the wave energy, and also only wave components satisfying aiki > 0.02 are
considered in the experiments. Note that we had to generate four additional wave
components in case S1, and two additional ones in cases S2 and S4, respectively.
Case S5 corresponds to a non-steady-state resonant wave, with k1,X = k3,X = 1.85,
k2,X = 1.20, k4,X = 2.50 and a1k1 = a2k2 = a3k3 = a4k4 = 0.1, which provides us with a
contrasting experiment to verify the steady-state resonant waves.

Figure 2 shows the perspective view of the theoretical solutions for symmetrical
and anti-symmetrical groups of the steady-state resonant waves, respectively. With all
crests keeping parallel to each other, the crests in figure 2(a) are wrapped by several
nodal lines along the direction of propagation, while in figure 2(b) the nearby ones are
wrapped and connected by saddle-like regions with smaller amplitudes to form several
global long crests. The phase shift among different wave components is responsible
for different wave patterns for the symmetrical and anti-symmetrical groups. Each pair
of symmetrical and anti-symmetrical groups has qualitatively similar wave patterns as
shown in figure 2, and different pairs simply correspond to the different length scales
in the Y direction.

As discussed by Henderson et al. (2006), many issues may arise when generating
periodic wave trains of permanent form in a basin. For two-sided segmented
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wavemakers, Li et al. (2012) found that the propagation direction of waves is the
key issue affecting the simulation quality. Li et al. (2012) suggested that the angle
θ between the propagating wave and the positive y-axis should satisfy 30◦ 6 θ 6 60◦.
Note that within this restriction of angle, the criterion (4.15) in Fuhrman & Madsen
(2006) is satisfied, which indicates that the third-order components should be included
in the wave generation for short-crested waves. Otherwise, a number of rather
pronounced unsteady features may appear in the basin (Hammack et al. 2005). So,
to find the origin of the unsteadiness in the basin, the final composite wave groups
are generated in such a way that more components are considered in our experiments,
step by step, starting from the simplest oblique long-crested wave.

Due to the symmetries of wavevectors and amplitudes, the wave components
cos(m1ξ1 + m2ξ2 + m3ξ3) and cos((m2 + n)ξ1 + (m1 − n)ξ2 + m3ξ3) share the
same amplitude and frequency for some integers n. Also, the wave components
cos(m1ξ1 + m2ξ2 + m3ξ3) and cos((m1 + n)ξ1 + (m2 − n)ξ2 + m3ξ3) share the same
frequency, where n is an arbitrary integer. So, for wave groups composite of several
trains of short-crested waves, one frequency in the spectrum may contain many
different components. For the convenience of quantitative analysis of the spectrum,
we introduce the dominant frequency fd, at which the amplitude is the largest at the
first gauge site. Then, the variance of wave amplitudes at the dominant frequency
among wave gauges distributed in the first gauge array (along the direction of
propagation of wave groups) represents the degree of amplitude uniformity of the
whole wavefield in space.

3. Experimental facilities and procedures

Experiments are conducted at the Deep Ocean Engineering Basin, SKLOE, in
Shanghai Jiao Tong University.

3.1. Overview of facilities

The schematic layout of the laboratory facilities is shown in figure 3. The basin is
50 m in length and 40 m in width, with a movable floor so that the water depth
can be adjusted from 0 to 10 m. The effective water depth of 8 m is used in the
current experiment. Two reservoirs and arc-type sloping beaches are located opposite
to the two-sided segmented wavemakers (Liang, Yang & Yang 2006). The satisfactory
performance of the wave-absorbing beaches will be verified later. The basin has a
controlled, x, y, z positioning trailer that rides over the basin, which is used to support
wave gauges through a 24 m truss at any desired position and angle.

The wave simulation system with the two-sided segmented wavemakers driven by
electric servomotors is composite of 222 flap wave generators on two adjacent sides of
the basin. There are 122 paddles on the long side and 100 paddles on the short. Each
paddle is 0.4 m wide and 1.2 m high under water, and is driven by a servomotor so
that it can generate waves independently. The wave simulation system can generate
regular waves, and long-crested and short-crested irregular waves. For more details
about the equipment and simulation performance, please refer to Li et al. (2012).

The primary method of wave measurement is a linear array of nine wave gauges on
a rigid frame. Supported by the trailer, the frame can rotate 360◦ around the middle
gauge. Each gauge was fixed on the frame 3 m apart. The gauge array was first
arranged along the direction of propagation of the composite waves (along the X axis)
using gauges numbered from 1 to 9. After each case was conducted once, the gauge
array was rotated 90◦ counterclockwise around the middle gauge. Then, each case was
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conducted again with the gauge array arranged normal to the direction of propagation
(along the Y axis) using gauges numbered from 10 to 18, as shown in figure 3. Before
and after the rotation, a laser target designator was used to fix the middle gauge
20 m away from both the long and short sides of the basin. All wave gauges were
calibrated in a quiescent basin, and continuous-time signals for 300 s were obtained
in two directions. The analogue signals from these gauges were digitized to produce
25 Hz discrete-time data (filtering with 2.5 Hz cutoff).

The images were taken by a D80 Cannon camera above the point denoted
in figure 3. With lights pointing vertically downward towards the free surface,
photos captured against the direction of wave propagation show dark front faces
and light back faces (the wave gauges were removed during photography). In
addition, videos were made of the typical experiment cases to show the evolution
of the composite wave patterns (see the supplementary movies available online at
http://dx.doi.org/10.1017/jfm.2014.658): movies 1 and 2 for case S1, movies 3 and 4
for S3 and movie 5 for S5).

3.2. Generation of oblique long-crested waves

When an oblique long-crested wave is made by two-sided segmented wavemakers,
each paddle is used as an independent wave generator. In the laboratory-coordinates
system, the control signal of the paddles on the two sides can be expressed by

η((101 − j)b, n1t) =
a

T(w, θ)
cos(nw1t − k( j − 1)b sin θ), 1 6 j 6 100, (3.1)

η( jb, n1t) =
a

T(w, 90 − θ)
cos(nw1t − k( j − 99)b sin(90 − θ)), 101 6 j 6 222,

(3.2)

where a is the amplitude, b is the width of each paddle, θ is the angle between
the propagating wave and the positive y-axis, and T(w, θ) is the transfer function
of wavemakers. Here, the linear wavemaker theory is applied and all angles are in
degrees.

Due to the physical set up of the generators (Sand & Mynett 1987), the amplitude
of even a simple regular oblique wave is non-uniformly distributed over whole
wavefield. Thus, a wave simulation system in a basin has an inherent error, which
is unavoidable. So, to quantify the difference between theoretical and measured
amplitudes of a simple regular oblique wave, we define the absolute error δa,i:

δa,i =
|Ai − A∗|

A∗ , (3.3)

where Ai denotes the measured amplitude at the ith wave gauge, and A∗ denotes the
corresponding theoretical one. For each oblique long-crested wave, the stroke of the
wavemakers was adjusted so that the absolute error of the middle gauge δa,5 6 0.05
in the initial 30 s starting from T = 50 s. Records starting from T = 50 s are used so
as to exclude the quiescent and transient intervals.

Note that the primary objective of this work is to confirm the existence of a steady-
state discrete wave spectrum when the resonance mechanism is triggered. Due to the
inherent error of the wave simulation system, it is necessary to clarify to what extent
the wavefield of an oblique regular long-crested wave keeps its uniformity in space.

http://dx.doi.org/10.1017/jfm.2014.658
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Interval (s) A1 A2 A3 A4 A5 A6 A7 A8 A9 δa,5 δr,2 δr,9

50–80 4.96 5.18 3.97 3.86 4.60 3.91 4.24 3.96 3.96 0.05 0.11 0.11

160–190 5.05 5.57 3.99 3.93 4.40 3.99 4.68 4.18 3.96 0.09 0.12 0.12

270–300 5.38 5.29 4.14 3.98 4.71 3.88 4.75 4.22 3.98 0.02 0.15 0.12

TABLE 3. Wave amplitudes (cm) and related errors for the third wave component in the
first gauge array, for three 30 s intervals, for case S1.

Thus, we define here the two dimensionless spatial variations of amplitude

δr,2 =

√
1

2
[(A1 − Ã)2 + (A9 − Ã)2]

Ã
, δr,9 =

√√√√1

9

[
9∑

i=1

(Ai − Ã)2

]

Ã
, (3.4a,b)

where Ã is the average amplitude of two or all nine wave gauges.
Taking the third wave component in case S1 as an example, table 3 shows the

measured amplitudes for three 30 s intervals at the nine gauge sites in the first array.
In the first interval 50–80 s, we have the absolute error δa,5 = 0.05 (this is used to
adjust the wavemakers) and the spatial variations δr,2 = δr,9 = 0.11 that indicate the
inherent error of the wave simulation system. In the two subsequent 30 s intervals, the
wave amplitude at every gauge site Ai changes slightly (so does the absolute error δa,5),
while the spatial variations, especially δr,9, keep almost constant. This indicates that
the spatial steadiness of oblique long-crested waves is reliable over a long time in the
basin and δr,9 ≈ 0.11 may serve as the inherent system error for a steady-state wave in
the basin. In other words, if the spatial variation δr,9 of a wavefield is approximately
0.11, we may regard it as a steady state.

3.3. Generation of composite short-crested waves

Following Hammack et al. (1989, 2005), we use the following procedure to generate
the steady-state resonant waves. First, the wavemakers were programmed to generate
each oblique long-crested wave separately. Then, two oblique long-crested waves,
which share the same height and period and propagate at an angle to each other,
are generated together. Thereafter, the four components (three components in case
S5) with larger amplitude are generated simultaneously. Finally, the whole composite
wave system is superposed by all the separate signals in each case. The final forcing
signal used for the wavemakers to generate the steady-state resonant waves was given
by

η((101 − j)b, n1t) =
N∑

m=1

am

T(wm, θm)
cos(nwm1t − km( j − 1)b sin θm) (3.5)

for 1 6 j 6 100 and

η( jb, n1t) =
N∑

m=1

am

T(wm, 90 − θm)
cos(nwm1t − km( j − 99)b sin(90 − θm)) (3.6)

for 101 6 j 6 222, where N is the number of wave components finally generated by
the wavemakers in each case.
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Case Amplitude (cm) Period (s)

a1(a2) a3(a4) a5(a6) a7(a8) T1(T2) T3(T4) T5(T6) T7(T8)

S1 1.90 4.83 −1.35 0.98 1.77 1.23 1.23 0.94

S2 2.10 4.90 −1.68 — 1.79 1.24 1.24 —

S3 2.93 4.98(−4.98) — — 1.79 1.23 — —

S4 3.10 5.25(−5.25) −0.95(0.95) — 1.80 1.23 1.23 —

S5 5.35(8.15) 5.35(4.00) — — 1.47(1.81) 1.47(1.27) — —

Direction (deg.)

Case θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

S1 33 57 51 39 28 62 49 41

S2 39 51 48 42 36 54 — —

S3 33 57 51 39 — — — —

S4 39 51 48 42 36 54 — —

S5 37 57 53 39 — — — —

TABLE 4. Parameters for experiments using the linear superposition of oblique long-crested
waves. A negative ai means a 180◦ phase shift in that component and ‘—’ denotes that
the value is not considered.

Five cases were examined. Cases S1, S2 and S3, S4 correspond to the symmetrical
and anti-symmetrical groups of the steady-state resonant waves, respectively, while
case S5 is a non-steady-state near-resonance case that provides us a with contrasting
experiment. For each case, we control the wave amplitude ai, the wave period Ti

and the angle θi of wave propagation, as listed in table 4. These input parameters
are based on the theoretical calculations given in table 2. Note that the third-to-sixth
wave components share the same period T = 1.23 s so that only three or even fewer
significant peaks might appear in the wave spectrum, as shown in § 4. Each case
was conducted twice, with the gauge array first fixed along the direction of the wave
propagation and then normal to it.

4. Analysis of experimental results

Experimental data are first presented to demonstrate the existence of steady-state
resonant waves through quantitative comparisons with the contrasting experiment
for the non-steady-state case. Then, more detailed experimental data are presented
to demonstrate the properties of symmetrical and anti-symmetrical groups of the
steady-state resonant waves. For each experimental case, not only is a qualitative and
quantitative analysis made, but a comparison with the theoretical results is also given.

4.1. Existence of the steady-state resonant waves

To confirm the existence of a steady-state wave spectrum when a resonant wave group
is evolving in space, we investigate the amplitude uniformity along the direction of
wave propagation. Taking the cases S1 and S5 as examples, figure 4 shows the initial
50 s record data obtained from the first gauge array and the corresponding Fourier
transforms during 50–300 s. Most quasi-periodic data records shown in figure 4(a,c)
resemble their time series in case S1 (figure 4a), but not in case S5 (figure 4c). The
wave spectra in figure 4(b,d) show the difference in amplitude distribution along the
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FIGURE 4. 50 s data record from the first gauge array (a,c), with corresponding Fourier
transforms during 50–300 s (b,d). (a,b) Steady-state case S1; (c,d) non-steady-state case
S5. The dominant frequency is denoted fd.

direction of propagation more clearly. In case S1 amplitudes of all frequencies are
almost constant from one gauge site to the next, corresponding to a steady-state wave,
while in case S5 the amplitudes change dramatically among different gauge sites,
especially the amplitude at the dominant frequency, corresponding to non-steady-state
ones.

To further investigate the spatial variation of wave amplitudes in all cases
considered, S1–S5, comparisons (with amplitude in log scale) of wave spectra
between the first and ninth gauge site are shown in figures 5–7. Note that we
first adjust, separately, each oblique long-crested wave component using the criterion
δa,5 6 0.05, and then generate the final resonant wave system, step by step, by
adding more and more wave components as listed in tables 2 and 4. The wave
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FIGURE 5. Fourier transforms of the experimental records in the time interval 50–300 s
at the first gauge site (a–c), and the ninth gauge site (d–f ), for case S1: (a,d) only third
and fourth wave components generated; (b,e) the first four wave components generated;
(c, f ) all eight wave components generated. The dominant frequency is fd = 0.81 Hz.

spectra given by different numbers of wave components generated by wavemakers
in case S1 are shown in figure 5. Figure 5(a,d) corresponds to the spectrum of
waves generated by the third and forth wave components: the wave amplitude at
the dominant frequency fd = 0.81 decreases as the wave propagates from the first
gauge site (A1 = 9.16 cm) to the ninth one (A9 = 6.30 cm), with the spatial variance
δr,9 = 0.17, as listed in table 5. Compared with the inherent system error δr,9 = 0.11
for steady-state waves, the increase of the spatial non-uniformity of amplitude for the
short-crested waves is due to the neglect of the hight-order components. Figure 5(b,e)
shows the spectra of waves generated by the first four components in case S1: the
amplitude at the dominant frequency still decreases from A1 = 7.49 cm at the first
gauge to A9 = 5.00 cm at the ninth one, with the spatial variation δr,9 = 0.18, as
listed in table 5. This is mainly because the first four wave components in case S1
do not contain enough wave energy greater than 95 %. Finally, the spectra of the
resonant wave system generated by the eight wave components listed in tables 2
and 4 are as shown in figure 5(c,f ): the amplitudes of the dominant frequency vary
from A1 = 7.65 cm at the first gauge to A9 = 6.48 cm at the ninth gauge, while the
amplitude spatial variance decreases to δr,9 = 0.08 as listed in table 5, which is even
smaller than the inherent system error δr,9 = 0.11 for steady-state waves. Note that
the generation of the additional four wave components increases the wave energy but
decreases the degree of spatial non-uniformity of amplitude. This is mainly because a
large enough number of wave components of the corresponding resonant wave system
are generated by the wavemaker. All of this supports our conclusion that the wave
spectrum in case S1 corresponds to a steady-state resonant wave.

Similarly, the corresponding spectra for case S5 at the first gauge and the ninth
gauge are shown in figures 6(a–c) and 6(d–f ), respectively. Figure 6(a,d) corresponds
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Case n.c.g. A1 A2 A3 A4 A5 A6 A7 A8 A9 δr,2 δr,9

S1 2 9.16 8.19 6.42 6.26 6.99 5.76 6.14 5.38 6.30 0.19 0.17

4 7.49 6.55 5.28 4.97 5.46 4.43 4.79 4.31 5.00 0.20 0.18

8 7.65 6.73 5.80 6.27 7.26 6.59 7.47 6.45 6.48 0.08 0.08

S2 2 9.25 8.34 6.86 6.97 7.21 6.20 6.26 5.99 5.78 0.23 0.16

4 8.67 7.98 6.61 6.77 7.40 6.54 6.71 6.24 5.90 0.19 0.12

6 7.64 7.80 6.51 6.90 7.57 6.53 6.88 6.56 6.42 0.09 0.07

S3 2 5.65 4.67 4.01 4.45 4.75 3.58 5.04 4.25 4.51 0.11 0.12

4 5.99 5.63 4.93 5.09 5.29 4.26 4.79 3.58 4.07 0.19 0.15

S4 2 8.43 8.18 7.03 6.99 6.52 6.75 6.90 6.12 6.89 0.10 0.10

4 8.80 8.70 7.52 7.56 7.63 7.84 8.27 7.69 8.37 0.03 0.06

6 9.15 9.04 7.83 7.81 7.97 8.04 8.12 7.64 8.09 0.06 0.06

S5 2 12.37 11.38 8.63 8.54 9.53 8.61 9.60 8.77 9.62 0.13 0.13

3 10.72 9.45 7.32 6.37 6.31 5.11 5.21 4.66 4.84 0.38 0.30

4 10.10 8.94 7.14 6.39 6.53 5.55 5.66 4.88 4.80 0.36 0.26

TABLE 5. Amplitudes (cm) at the dominant frequencies and the corresponding spatial
variations based on Fourier transforms of the experimental records at the first gauge array
for all cases. Here, ‘n.c.g.’ is an abbreviation for ‘number of components generated’.

to the spectra of waves generated by the first and third components only, with the
spatial variation of wave amplitude δr,9 = 0.13. Figure 6(b,e) corresponds to the
spectra of waves generated by the first three components: compared to figure 6(a,d),
the amplitude at the dominant frequency decreases remarkably, from A1 = 10.72 cm at
the first gauge to A9 =4.84 cm at the ninth gauge, with the spatial variation δr,9 =0.30.
Figure 6(c,f ) gives the spectra of waves generated by all four components: the wave
amplitude varies greatly from A1 = 10.10 cm at the first gauge to A9 = 4.80 cm at
the ninth one, with the spatial variation δr,9 = 0.26 that is two times larger than the
inherent system error δr,9 = 0.11. Obviously, as more components are generated, the
closer the corresponding wavefield gets to the non-steady-state resonant one for case
S5. The comparison between spectra in figure 6 eliminates other possible reasons
except the nonlinear resonant interactions that result in the loss of steadiness in case
S5. All of this supports our conclusion that the wave spectrum in case S5 belongs to
a non-steady-state one.

For the other three cases S2, S3 and S4, figure 7 shows the comparison of spectra of
waves generated by all components listed in table 2 at the first gauge (figure 7a–c) and
the ninth one (figure 7d–f ). In all three cases the evidence of nonlinear interactions
is obvious. In cases S2 and S4, the amplitudes at the dominant frequency remain
almost constant, with δr,9 = 0.07 and δr,9 = 0.06, respectively, as listed in table 5.
In case S3, the amplitude reduces by one-third from A1 = 5.99 cm to A9 = 4.07 cm,
with the spatial variance δr,9 = 0.15, which is a little larger than the inherent system
error δr,9 = 0.11. This is possibly due to the neglect of high-order components that are
too small to be generated in our basin, since only four components are generated in
case S3. Even though the amplitude uniformity in case S3 is not very well satisfied,
the amplitude variance is much smaller than that in case S5 for the non-steady-state
resonant waves. The case S3 illustrates that it seems impossible to generate steady-
state resonant waves of moderate steepness without including high-order components.
It is necessary to reconsider the case S3 by using better wave simulation systems with
some high-order resonant components.
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FIGURE 6. Fourier transforms of the experimental records for case S5 at the first gauge
site (a–c), and the ninth gauge site (d–f ), during the interval 50–300 s: (a,d) first and third
components generated; (b,e) first three components generated; (c, f ) all four components
generated. The dominant frequency is fd = 0.68 Hz.
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(a) (b)

FIGURE 8. (Colour online) Perspective plot of the free-surface in case S1. Crests in the
middle region are marked as yellow lines. (a) Experimental result; (b) theoretical result.

Table 5 presents the amplitudes of the dominant frequencies at the first nine gauge
sites and the corresponding spatial variations δr,2 and δr,9 for all five cases. Here,
‘n.c.g.’ is an abbreviation for ‘number of components generated’. It is found that,
in cases S1, S2 and S4, when n.c.g. increases to 6 or 8, the spatial variations δr,2

and δr,9 decrease to a value smaller than the inherent system error δr,2 = δr,9 = 0.11,
indicating that the corresponding resonant waves are steady-state. However, in case
S5, the spatial variations δr,2 and δr,9 increase and are respectively three and two times
larger than the inherent system error, which strongly suggests that the corresponding
resonant wave should be not steady-state. Note that the spatial variation in case S3 is
a little larger than the inherent system error. This is possibly because all high-order
resonant components are too small to be neglected in case S3. So, as mentioned above,
case S3 should be reconsidered in the future, using a better wave simulation system
and more accurate measuring equipment together with some high-order resonant
components.

In summary, our experiments support the existence of the steady-state resonant
waves.

4.2. Symmetrical group steady-state resonant waves

For representative symmetrical group steady-state resonant waves, figure 8 shows a
perspective plot of the surface elevation in case S1. Both experimental and theoretical
images are shown. It is found that the experimental wave pattern (figure 8a) matches
well with the theoretical one (figure 8b). The corresponding movies are available
online as supplementary material (movies 1 and 2).

To validate the theoretical solutions, figure 9 shows a comparison between
experimental (black line) and theoretical (grey line, red online) wave profiles at
the first gauge array for cases S1 and S2. The agreement between measured and
theoretical data over 50 s (which covers 27 wave periods) is excellent. The wave
groups evolving with constant amplitudes and frequencies is confirmed further through
the free-surface comparison.

For data at the second gauge array, figure 10(a,c) indicates that the experimental
records (black) agree well with the theoretical ones (grey, red online) for cases
S1 and S2. The final wave patterns are composite of several short-crested waves
with the same Y-length scale; therefore it is found from figure 10(a–d) that the
amplitudes for case S1 (S2) vary periodically within 5 (9) adjacent gauge sites,
with two nodes located between gauges 12 (10) and 16 (18), respectively. Also, a
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FIGURE 9. (Colour online) Comparison of the free surface between the experimental wave
records (black) and the theoretical results (grey, red online) at the first gauge array for case
S1 (a) and case S2 (b).

global symmetry of time series around the middle gauge 14 can also been seen
in figure 10, which indicates the symmetry of the wavefield in space and amplitude.
The symmetrically distributed surface elevations among the nine equally spaced gauge
sites indicate that the wavenumbers are indeed symmetrically distributed along the Y

axis; therefore the linear resonance condition is automatically satisfied. In addition,
the symmetrically distributed amplitudes and phases around gauge 14 indicate that
the nonlinear resonance condition is automatically satisfied, too. Thus, the symmetry
in time series in figure 10 confirms that cases S1 and S2 belong to the symmetrical
steady-state resonant wave groups.

4.3. Anti-symmetrical group steady-state resonant waves

For representative anti-symmetrical group steady-state resonant waves, figure 11
presents a perspective plot of the surface elevation for case S3. Again, both
experimental and theoretical images are shown, and the crests in the middle region
are marked as yellow lines. Different from figure 8, local short crests join together
to form several global long ones. It clearly demonstrates the three-dimensional wave
pattern of the anti-symmetrical group. Also, the experimental wave pattern (figure 11a)
matches well with the theoretical one (figure 11b). The corresponding movies are
available online (movies 3 and 4).

Figure 12 shows comparisons between experimental (black line) and theoretical
(grey, red online) line) wave profiles at the first gauge array for cases S3 and
S4. As the first gauge array is located on the anti-nodal line of the short-crested
waves composite of the first and second components and on the nodal line of
the short-crested waves formed by the rest of the two or four components, the
corresponding time series appear as the uniform signature of a single travelling wave.
The agreement between experimental and theoretical data over 50 s (which covers
27 wave periods) is satisfactory. Thus, the steady-state wave spectrum is further
confirmed through the qualitative comparison of the free surfaces.
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FIGURE 10. (Colour online) Comparison of the free surface between experimental wave
records (black) and theoretical ones (grey, red online) during 50–100 s (a,c), and the
corresponding Fourier transforms on the whole 50–300 s interval (b,d), at the second
gauge array: (a,b) case S1; (c,d) case S2.

Figure 13 shows the time series and related Fourier transforms at the second gauge
array for cases S3 and S4. The theoretical free surfaces are also presented. Due to the
phase shift in components, the time series normal to the direction of wave propagation
in the symmetrical and anti-symmetrical groups behave totally differently. For the anti-
symmetrical group, the amplitudes still change periodically within 5 or 9 adjacent
gauge sites, but no node was found on any gauge sites. Instead, the peak values of
two significant components appear alternatively within every 3 or 5 adjacent gauge
sites.

The experimental data in figure 13(a,c) indicate the symmetry in space and
amplitude around the middle gauge site 14, and the related Fourier transforms
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FIGURE 11. (Colour online) Perspective plot of the free surface for case S3. Crests in the
middle region are marked as yellow lines. (a) Experimental result; (b) theoretical result.
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FIGURE 12. (Colour online) Comparison of the free surface between experimental wave
records (black) and theoretical ones (grey, red online) at the first gauge array for case S3
(a) and case S4 (b).

in figure 13(b,d) show it more clearly. Therefore, the anti-symmetrical groups
automatically satisfy the linear and nonlinear resonance conditions, too. Whenever
the amplitudes at the second significant frequency f = 0.81 Hz are non-trivial in the
spectra, the related time series show anti-symmetry in phase around gauge site 14:
a wave trough/group node at the ith gauge site means a wave crest/group antinode
at the (28 − i)th gauge site. Thus, the time series in figure 13 confirm that cases S3
and S4 belong to the anti-symmetrical steady-state resonant wave groups.

5. Conclusion

Phillips (1960) gave a linear criterion of wave resonance and pointed out that the
amplitude of the tertiary component grows linearly with time when its amplitude is
initially zero. In general cases, Benney (1962) established the evolution equations of
wave mode amplitudes, and demonstrated the well-known time-dependent periodic
exchange of wave energy when the Phillips resonance criterion is fully or nearly
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FIGURE 13. (Colour online) Comparison of the free surface between experimental wave
records (black) and theoretical ones (grey, red online) during the interval 50–100 s (a,c),
and the corresponding Fourier transforms on the whole 50–300 s interval (b,d), at the
second gauge array: (a,b) case S3; (c,d) case S4.

satisfied. However, perturbation methods fail to obtain steady-state resonant waves
without exchange of wave energy, mainly due to the singularities in the transfer
functions, as mentioned by Madsen & Fuhrman (2012). By means of the ‘homotopy
analysis method’ (Liao 1992, 1997, 2004, 2012), an analytic technique for highly
nonlinear problems, multiple steady-state resonant waves in deep water were first
found by Liao (2011) in theory, then investigated theoretically by Xu et al. (2012)
in shallow water and by Liu & Liao (2014) in rather more general cases. In this
paper, we further confirm, for the first time, the existence of the multiple steady-state
resonant waves by physical experiments in the advanced basin of the SKLOE,
Shanghai Jiao Tong University, China.
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First of all, using some experiments on regular waves whose wave spectra should
be time-independent in theory, the inherent system error (δr,9 = 0.11) in the spatial
variation of wave amplitude was determined, which provides a criterion to verify and
check the existence of steady-state resonant waves in this basin. Then, five cases of
resonant waves in deep water are considered: the first four cases (S1–S4) correspond
to steady-state resonant waves, while case S5 relates to an non-steady-state ones that
provides a contrasting experiment. The four resonant waves are obtained theoretically
(Liao 2011; Xu et al. 2012; Liu & Liao 2014) by means of the HAM (Liao 1992,
1997, 2004, 2012). They are chosen in such a way that the related dimensionless
scaled variable X = ǫ2k0x introduced by Shemer et al. (2002) reaches 1.5 at the ninth
wave gauge, corresponding to sufficiently high nonlinearity of the waves considered,
where k0 denotes the wavenumber of the component with the largest amplitude. A
large enough number of wave components (with more than 95 % of the total wave
energy) were generated so that the corresponding wavefields measured in the basin are
close to the theoretical ones. Compared to the inherent system error of the basin and
especially to the contrasting experiment (case S5), our experiments strongly suggest
that the resonant waves in cases S1, S2, S3 and S4 are steady-state, say their wave
spectra are independent of time. Also, both symmetrical and anti-symmetrical steady-
state resonant waves were observed.

It should be emphasized that the so-called steady-state resonant waves were first
found theoretically (Liao 2011; Xu et al. 2012; Liu & Liao 2014) by means of the
HAM (Liao 1992, 1997, 2004, 2012), and then confirmed experimentally in this paper.
This illustrates that the HAM is indeed a new method with great potential, since every
new method should bring something new and/or different.

In summary, our experiments confirm the existence of multiple steady-state resonant
waves in practice. This is helpful to deepen and enrich our understandings about
resonance waves. Obviously, it would be very interesting to confirm the existence of
the steady-state resonant waves in shallow water. This might be done in future, if
possible.
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