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On the Existence of Synchrostates in Multichannel EEG 

Signals during Face-perception Tasks 

 

Abstract: 

Phase synchronisation in multichannel EEG is known as the manifestation of functional brain 

connectivity. Traditional phase synchronisation studies are mostly based on time average 

synchrony measures hence do not preserve the temporal evolution of the phase 

difference. Here we propose a new method to show the existence of a small set of unique 

phase synchronised patterns or “states” in multi-channel EEG recordings, each “state” being 

stable of the order of ms, from typical and pathological subjects during face perception tasks. 

The proposed methodology bridges the concepts of EEG microstates and phase 

synchronisation in time and frequency domain respectively. The analysis is reported for four 

groups of children including typical, Autism Spectrum Disorder (ASD), low and high anxiety 

subjects – a total of 44 subjects. In all cases, we observe consistent existence of these states - 

termed as synchrostates - within specific cognition related frequency bands (beta and gamma 

bands), though the topographies of these synchrostates differ for different subject groups with 

different pathological conditions. The inter-synchrostate switching follows a well-defined 

sequence capturing the underlying inter-electrode phase relation dynamics in stimulus- and 

person-centric manner. Our study is motivated from the well-known EEG microstate 

exhibiting stable potential maps over the scalp. However, here we report a similar 

observation of quasi-stable phase synchronised states in multichannel EEG. The existence of 

the synchrostates coupled with their unique switching sequence characteristics could be 

considered as a potentially new field over contemporary EEG phase synchronisation studies. 

Keywords—Anxiety; Autism Spectrum Disorder (ASD); Continuous Wavelet Transform 

(CWT); Electroencephologram (EEG); face perception; k-means clustering; phase 

synchronisation; synchrostate 

1. Introduction 

The intrinsic organisation of the human brain could be viewed as a dynamic network 

changing its configuration at sub-second level temporal scale depending upon a given 

cognitive task. Phase synchronisation dynamics between different cortical areas is 

fundamental to formulate a mathematical representation of such dynamically reconfiguring 

functional networks (Fell & Axmacher 2011), (Engel et al. 2001). Electroencephalography 

(EEG) is an effective tool for studying such phase synchronisation owing to its high temporal 

resolution and has been applied extensively in the past (Mulert et al. 2011)(Razavi et al. 

2013), for studying such phenomena unearthing useful information about cognitive processes. 

Traditionally, EEG based synchronisation analysis is mostly carried out at a time 

scale of the order of seconds, apart from the well-known microstate analysis (Thomas Koenig 

et al. 2002), where the scalp level distribution of electric field was studied at ms resolution 

level. Recently during a visual perception task it has been shown that at ms time scale there 
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exists a small set of unique phase synchronised patterns, each being stable of the order of ms, 

and then abruptly switching from one to another (Wasifa Jamal et al. 2015). These quasi-

stable phase difference patterns are termed as synchrostates. It was first observed in a single 

adult subject (Wasifa Jamal et al. 2013) and later in group average of typically developing as 

well as autistic children (W Jamal et al. 2013) in their respective EEG γ-bands. Subsequently 

functional connectivity networks were formulated from these γ-band synchrostates and then 

applying graph theoretic characterisation of them it was shown possible to classify autistic 

and typically developing population with high accuracy (Wasifa Jamal et al. 2014). This 

indicates towards the possibility of using synchrostates as a new way for functional 

connectivity network analysis in different populations. However the pertinent question is 

whether the synchrostates consistently exist in individual subjects in the cognition related 

bands (β and γ) and if so, how much inter-subject variability could be expected with respect 

to the population average, as this is fundamental in ascertaining the possibility of classifying 

individual’s pathological conditions using graph theoretic characterization of functional brain 

network formed from the synchrostates.  

Therefore the main aims of this paper are: 1) systematically exploring the existence 

and nature of synchrostates in both the β and γ bands for individuals not only belonging to 

typically developing but also from pathological population, 2) studying variability of 

synchrostates with respect to the number of EEG electrodes used, 3) to elaborate the method 

of synchrostate formulation in step-by-step fashion showing how this method combines the 

existence of time-domain discrete state concept of microstates and frequency domain phase 

synchronisation analysis. The cognitive task selected for our exploration is a set of face-

perception tasks where three types of face-perception related stimuli were given to four 

groups of children - with typical development, diagnosed with ASD, with high- and low-

anxiety scores. Since β and γ bands have consistently shown increased synchrony during 

face-perception tasks (Uhlhaas et al. 2009)(Rodriguez et al. 1999)(Kottlow et al. 2012) and 

prominent response during visual stimuli in general (Wróbel 2000)(Lachaux et al. 2005) we 

mainly concentrated on analysing these two bands. Our exploration showed: 1) the 

synchrostates exist in individual subjects consistently in both the β and γ bands and are 

usually bounded between 3 to 7 whereas in the low frequency bands (θ, α) there is no 

consistent existence of synchrostates; 2) synchrostates exhibit qualitatively similar behaviour 

as that of the EEG microstates in terms of their temporal stability and switching 

characteristics; 3) although the general set of synchrostate topographies are similar for a 

subject group corresponding to different visual perception stimuli, the actual time-courses of 

inter-synchrostate switching sequence are markedly different indicating towards stimulus-

specific dynamics even within the broad category of visual perception task; and 4) using less 

number of electrodes results in greater variability in the number of synchrostates with respect 

to the corresponding population average whereas high density EEG gives more consistent 

result.  

In addition, here we define all the synchrostates according to their topographical 

distribution of average phase difference over the scalp and reassign the class labels of similar 

topoplots with a state label which has been shown to vary little across different stimuli within 
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the same population. We also observed that these synchrostates have different configurations 

in β and γ bands as well as across different subject groups. Also in order to quantify the 

qualitative behaviour of the synchrostate transitions, we calculated the probability of self-

transition implying the degree of relative stability of these states in each combination of 

stimulus, population and frequency band.    

2. Method 

2.1 Background 

Typically synchronisation can be studied from EEG signals in two domains i.e. time 

and frequency. The work reported in (D Lehmann et al. 1987)(Thomas Koenig et al. 2014) 

considered brain electric states with consistent scalp electric field topography and their 

sequence which lead to what is commonly known as EEG microstates. Its most important 

characteristic is that the topography does not change randomly or continuously over time but 

exhibit quasi-stable behaviour in the order of 80 – 120 ms; and abruptly switches from one 

topography to another – the number of unique topographies being small (typically 3 – 10) 

(Thomas Koenig et al. 2002). Another way to study the synchronisation phenomenon is in the 

frequency domain. This is led by the assumption that if two points (i.e. two EEG electrode 

sites) are in coherence (i.e. maintaining constant phase relationship over time), they can be 

considered as functionally synchronised or connected (Fries et al. 2001). Phase coupling has 

been studied in patients with mental disorders (Mulert et al. 2011)(Razavi et al. 2013) and the 

merits of synchrony analysis have been found in the understanding of neurodevelopmental 

disorders (Uhlhaas et al. 2008). Since the method for coherence analysis like Global Field 

Synchronisation (GFS) (Kottlow et al. 2012) use Fourier transform, inherently it does not 

preserve the temporal information of synchronisation. This methodology was later modified 

by several researchers by using Continuous Wavelet Transform (CWT) and Hilbert 

Transform (HT) to compute phase in transformed domains and for deriving associated 

synchronisation indices from the coherence values thus obtained. The mean phase coherence 

measure (Mormann et al. 2000) computes the synchronisation over the whole time series and 

therefore gives an average measure of synchronisation for the whole signal span. Phase 

Locking Value (PLV) although varies with time, measures the inter-trial variability of phase 

difference (Rodriguez et al. 1999) rather than temporal variability. Additionally, various other 

measures of phase synchronisation have been reported in (Quiroga et al. 2002). Although 

useful, such approaches only give insight into the phase synchronisation in a time-averaged 

way over all the frequency bands, rather than capturing the true picture of the temporal or 

transient evolution of phase synchrony in a band-specific way. On the other hand, in 

principle, CWT and HT both being time-frequency transform methods, have potential to 

describe the temporal evolution of phase synchronisation at sub-second resolution level 

which could be more informative to understand the dynamics of the synchronisation 

phenomena from the onset of a given stimulus till the end of the corresponding cognitive 

action. 

As evident from the foregoing discussion the existing frequency domain methods 

compute the phase synchronisation over the entire post stimulus segment of the signal and 

therefore are unable to retain the transient information at finer temporal granularity, whereas 
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the method of microstate finds the unique electric potential patterns and their transients 

during the execution period of the task (Gianotti et al. 2008). Ito et al. studied the dynamics 

of spontaneous transitions between globally phase-synchronised states in the alpha band EEG 

activity (Ito et al. 2007). Their method was applied to explore the phase dynamics of 

individuals with cerebral palsy (Daly et al. 2014). The technique proposed in these articles 

investigate phase dynamics by segmenting the relative phase patterns into global phase 

pattern states by thresholding and using a criterion called the Instantaneous Instability Index 

(III). The GPS pattern vectors are then clustered into 6 centroids. Here we propose a slightly 

different approach for studying the dynamical evolution of phase patterns by using intrinsic 

optimization criterion in the k-means clustering for segmentation of the images to form 

compact clusters or states without any prior thresholds. In this paper we merge two concepts, 

i.e. the concept of temporal switching (transient behaviour) of stable states along with the 

band specific phase locking by considering a joint time-frequency representation of the EEG 

signal.  

2.2 Data and pre-processing 

The data analysis was conducted with four distinct samples of children: 1) with 

typical development, 2) diagnosed with Autism Spectrum Disorder (ASD), 3) diagnosed with 

high-anxiety and 4) with low-anxiety. More specifically, we have used the data acquired 

during the experiments described in (Fabio Apicella et al. 2013) and (Chronaki 2011). For 

more information regarding the data used in this study please refer to the supplementary 

material. The main characteristics of these four populations are summarised in Table 1.  

Table 1: Summary of the subject group and presented stimuli 

Group 

number 
Group type 

Number of 

subjects 

Age 

range 

Number of 

EEG channels 

Stimuli presented 

(types of faces) 

I  
Typical 

development 
12 6 - 13 128 Happy, fear, neutral 

II  ASD 12 6 – 13 128 Happy, fear, neutral 

III  High-anxiety 10 6 – 12 30 
Happy, angry, 

neutral 

IV  Low-anxiety 10 6 – 12 30 
Happy, angry, 

neutral 

  

For group I and II the data was acquired using 128 channel EEG system and was 

segmented into 1000 ms epoch with 150 ms baseline and 850 ms post-stimulus response. 

Epochs over a threshold of 200 µV were rejected as artefacts. Data was baseline corrected 

and band-pass filtered from 0.5 – 50 Hz for removing low-frequency drifts and high-

frequency measurement noise using 5
th

 order Butterworth filter. On the other hand, for group 

III and IV a 30 channel EEG system was used for data acquisition and data was epoched at 

100 ms pre-stimulus to 1000 ms post-stimulus. Collected data was band-pass filtered in the 

range 0.1 – 70 Hz for eliminating the drift and noise as done in the former case.  These pre-

processed EEG signals were then transformed in time-frequency domain using CWT and 
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particularly focussing on the two bands of interest viz. β (13-30 Hz) and γ (30-50Hz). Only 

the response of the frequencies in these two bands of interest is then used for further 

processing. Being band-specific this processing step allows us to compare the response of the 

signals across all the groups on a uniform platform although they were acquired with 

different instruments. The studies in (Nunez et al. 1997)(Schiff 2005) point out that the use of 

average reference for calculating coherency is a good compromise against the effects and 

noise introduced by the reference electrode. In our study, all the signals were re-referenced to 

average reference data (average across all channels) and then were used for our calculation. 

The different data collection protocol adopted for group I - II; and III - IV allows us to 

explore the effect of variability in the number of EEG electrodes. 

2.3 Computation of time-dependent phase difference topography  

It has been observed by researchers that the spectral power of different EEG bands 

significantly changes depending upon the stimulus given (Boiten et al. 1992). As a 

consequence it may be assumed that the temporal stability of instantaneous phase difference 

topographies and hence the overall synchronisation pattern may manifest differently in 

different EEG bands. Therefore it appears to be more logical to study the synchronisation 

phenomenon in a band-specific way. Since CWT decomposes a signal to different scales 

(equivalent frequencies) at each time instant, it is possible to study the temporal evolution 

pattern of phase difference topographies for an isolated frequency band of interest. Therefore 

in our analysis we used CWT as the main analysis tool, more precisely, we have used a 

complex Morlet basis function as shown in (1) for computing the CWT of the EEG data.  

 ( ) ( )2
21 bc

t Fj F t
M

b

t e e
F

π

π
−Ψ =   (1) 

where,{ },b cF F denote the bandwidth parameter and the centre frequency respectively. For 

our purpose we considered 1bF =  and  1.5cF = . 

 

Figure 1: The structure of the phase difference matrix at frequency fk at time t. 

Considering N number of EEG channels placed over the scalp and 

( ) ( ) ( )1 2
, ,  , Nx t x t x t⋯ be the EEG signals acquired at the respective channels, application of 
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complex Morlet CWT on ( ) { }, 1,  2,  ,ix t i N∈ … results in a complex time series ( ),iW a t  at 

the wavelet scale a at time t. ( ),iW a t  can be converted to a function of frequency and time 

( ),iW f t  using the following relation (Addison 2010) in (2). 

 ( )cf F a δ= ⋅   (2) 

where, δ and f are the sampling period and the approximate pseudo-frequency, i.e. the 

frequencies corresponding to the scales, respectively. Subsequently, the instantaneous phase 

φi(f, t) of Wi(f, t) can be computed as (3). 

 ( ) ( )
( )

1
Im ,  

, tan
Re ,  

i
i

i

W f t
f t

W f t
ϕ −

   =  
    

  (3) 

Im[Wi(f, t)] and Re[Wi(f, t)] being the imaginary and the real part of Wi(f, t) respectively. 

Consequently, the instantaneous phase difference , ( , )i j f tϕ∆  between the channels i and j can 

be given by (4). 

 ( ) ( ) ( ), 
,  , , i j i jf t f t f tϕ ϕ ϕ∆ = −   (4) 

 

Figure 2: Computation principle of band-specific phase difference matrix. 

 Computation of , ( , )i j f tϕ∆  at a time instant t1 and frequency f1 for { },  1,  2, ,i j N∈ …

yields a symmetric square matrix [ ]1 1
( , )f tϕ∆  that describes the pairwise relationship of phase 

difference at the frequency f1 for all the EEG channels at t1 time instant as shown in Figure 1. 

For computing the average response within a subject group the individual , ( , )i j f tϕ∆  were 
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averaged over all the subjects to get the average wavelet response for the group in 

consideration.  Therefore, if the frequency band of interest { },B β γ∈  is spanned over the 

frequencies  then the instantaneous phase difference matrix for B at time t as 

shown in Figure 2 can be formulated as (5)-(6). 

 [ ] ( )
1

1
( ) ,

M

B i
i

t f t
M

ϕ ϕ
=

∆ = ∆∑   (5) 

 ( ), ,

1

1
( )  ( ) ( )

B fk

M

i j i j
k

b t a t
Mϕ ϕ∆ ∆

=

= ∑   (6) 

where, ( ),
( )

Bi jb tϕ∆ is the (i, j)th
 element of the matrix [ ]( )B tϕ∆ and ,( ) ( )

fk
i ja tϕ∆  is the (i, j)th

 

element of ( )
kf

tϕ ∆  . Subsequently, [ ]( )B tϕ∆  can be computed at different time instants 

resulting in a set of such matrices  like that 

shown in Figure 3 that describes the complete picture of temporal evolution of the phase 

difference from the onset of a stimulus till the end of the corresponding action in the 

particular frequency band B over all the EEG channels on the scalp. The whole process is 

pictorially depicted in Figure 1-Figure 3. As evident, due the high dimensionality of the 

clustering problem, a simple cluster discrimination through a scatter plot is not possible in the 

present study. In our clustering framework, at each time instant the dimension of the feature 

space, denoting all possible cross-electrode phase information, becomes N2
 and the clustering 

algorithm considers the evolution of each element ( ),i jb t along time. 

 

Figure 3: Computation of band-specific phase difference matrix from the onset of a stimulus 

till the end of the desired time window. 

2.4 Clustering of phase difference matrices into unique set of ‘states’ 

Once all the cross-electrode phase difference matrices for a particular band are 

formulated over the entire duration of a specified time interval – in our case, we are interested 
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to see the temporal evolution of these topographies at subsecond order time interval – the 

next pertinent question is whether there exists any unique ‘spatio-temporal pattern’ of phase 

difference topographies during the execution of the cognitive task. The first step for that is to 

identify all ‘possibly unique’ topographies over the entire time duration of interest. A certain 

class of pattern recognition techniques could be employed for this purpose. The k-means 

clustering is one such unsupervised pattern recognition technique. For a give dataset X, 

{ } [ ], 1, ,pX x p P= ∈ ⋯ , assuming the number of underlying clusters is known, k-means 

algorithm iteratively minimises a cost function given below (7). 

 ( ) 2

1 1

,
m

pq p
p

P

q
pJ U u xθ θ

= =

= −∑∑   (7) 

where, [ ]1
 

T

T Tmθ θ θ= … , ⋅ is the Euclidean distance, qθ is the centre of a cluster and 1pqu =  if 

xp lies closest to θq; 0 otherwise. Initially k centroids are defined and depending on how near 

the data vector is to the centroids, it is assigned to a class. The k centroids are iteratively 

recalculated and the data is reassigned to these new centroids until the data vectors from X 

form compact clusters and the cost function J is minimised. Initially a range [mmin, mmax] is 

defined for possible clusters m for the dataset X. The k-means clustering runs n (n random 

initializations) times for each m within that range and for every n runs the minimum value of 

the cost function Jm (as shown in (7)) is calculated and stored. The cost function Jm 

essentially indicates the sum of distances of the data-points from the nearest cluster mean 

when m clusters are considered. The value of Jm is dependent on the number of clusters and 

also the dataset under consideration whereas a high value of Jm represents a less compact 

cluster. Thus we search for a ‘knee’ in the plot of Jm against m as an indication of the number 

of optimal clusters underlying the data. If the plot of Jm against m shows a significant ‘knee’ 

at m = m1 (say) then it signifies that the number of optimum clusters underlying the dataset X 

is likely to be m1. To be noted that in the plot of Jm versus m it is typical to have multiple 

such knees as m varies within its selected range. In cases, where there is an increase in the Jm 

value, it indicates that the distance between all the data points with respect to the nearest 

mean of clusters has increased. This increase could be due to the splitting of large compact 

clusters into several smaller ones, caused by increasing the value of m. In such a case, one 

need to consider the earliest and the most prominent knee as the characteristic knee and the 

corresponding m as the underlying number of clusters as it explains the dataset with 

minimum complexity. Another important point to note that the absolute value of Jm in the 

plot of Jm against m is not important but the value of m at which Jm attains minimum value 

(the significant knee) is the important parameter indicating the number of underlying clusters. 

This method is also known as incremental k-means or elbow method and is widely used to 

find the optimum number of clusters in a given data-set. 

In a higher dimensional feature space, the landscape of the cost function J(θ) may 

have multiple local minima and there is small probability of finding a higher value of  the 

cost function if a local minima has been found by the optimization process. Since the k-means 

clustering have the problem of getting trapped to local minima, it should be run multiple 

times with different initialization of the cluster means and the best result with the minimum 
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value of the cost function should be considered. Therefore in our method, the best-results of 

the k-means algorithm for each choice of k is considered out of n = 10 different random 

initializations of the cluster means. This way the incremental k-means plots the best cost 

function to obtain the Jm as also suggested in (Theodoridis et al. 2010).  

 

The unsupervised learning technique adopted here is based on the concept of hard 

clustering, i.e. a single data-point corresponding to each time instant should belong to one of 

the clusters, because in a temporal resolution of millisecond, we assume that the brain stays 

only in one state. Other paradigms of soft clustering like fuzzy c-means or similar methods 

(Dimitriadis et al. 2013) where a single data-point can be associated with more than one 

cluster according to its degree of associativity with different classes, could also be applied to 

the present problem. 

 

In our case, X is the dataset of all pairwise EEG instantaneous phase differences

∆ϕ
B

t
1( )



, ∆ϕ

B
t

2( )



, ..., ∆ϕ

B
t

n( )



 , as a function of time. We clustered the dataset X along 

time t, for a chosen frequency band B, to find out unique phase difference patterns. The 

algorithm yields k centroids, jθ  for each cluster or state and a vector of length n with the 

corresponding state or cluster labels for each [ ]( )B tϕ∆  for every time instance over which we 

clustered. The centroids hold average information for each of the clustered states whereas the 

cluster labels signify when in time each state has occurred. Once the phase-difference 

matrices are uniquely clustered over different time instances, the centroids are translated into 

corresponding colour-coded head-map topographies following arbitrary colour coding 

convention. This is done by first calculating the average phase difference seen at a particular 

electrode with respect to the rest of the electrodes i.e. taking row-wise average of ( )[ ]B tϕ∆  

and considering it as the average phase difference at that electrode index corresponding to the 

considered row and assigning a particular colour corresponding to the numerical value of that 

phase difference and finally transforming it to a contour plot. Such head-map topographies 

give a visual representation of the distribution of average phase differences between different 

regions of brain over the scalp. Note that these plots should not be viewed or compared to the 

typical EEG potential plots or the power spectrum plot typically generated in quantitative 

EEG (qEEG) analysis. Here the plots show the gross phase difference between different 

electrodes over the scalp over a particular time window. Higher numerical values represent 

greater gross phase difference of the electrode with all the other electrodes and low values 

indicate that the electrode has relatively less phase difference with all the other electrodes in 

that configuration. We term the set of topography clusters identified using k-means algorithm 

as synchrostates. The state labels are used to construct a transition plot to illustrate the 

switching sequence of the synchrostates over the time of the EEG recording. This is simply 

done by plotting the time labels yielded by the clustering algorithm.  

3. Results 

As mentioned previously, we restrict our study only in the β and γ band since research 

indicated that they are directly related to the cognitive task related to face perception (Wróbel 

2000)(Lachaux et al. 2005). We present the results in two steps: first as a population average 

and then for individual subjects belonging to a population. To study the population average 

we first formulate the average phase difference matrix for each subject by taking the mean of 

the phase difference matrices across all trails. Then we take an average of the phase matrices 

of each subject belonging to that population at every time instant and invoke k-means 

clustering on that set of average matrices as described in Section 2.2 and 2.3. In essence this 
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gives a general picture of temporal evolution of phase relationship between different 

electrode sites for a specific population. Our exploration shows that the cost function for 

clustering does not fall arbitrarily with the increase in the number of clusters confirming the 

existence of a finite number of compact underlying clusters or states during the whole time-

course of the EEG data. The detailed results for the individual groups are furnished in the 

following subsections. 

 

3.1 Typical development  

Figure 4 shows the results of the k-means clustering algorithm in both the bands for 

all the given stimuli from the population average of 12 children with typical development 

(group I). It is clear that the dominant knee of cost function for all the three stimuli appears at 

k = 3 although in some cases after the knee the cost function increases and then again 

decreases. These are the typical situations already discussed in Section 2.4 and accordingly 

where the earliest knee appeared needs to be considered only. This means that in the dataset 

considered, there exist three unique phase difference matrix configurations – synchrostates – 

from the onset of stimulus till the end of an action.  

 
Figure 4: k-means clustering result of β and γ band for the typical group. 

 

In Figure 5, from the corresponding head-plots it is evident that the topographies of 

all the three synchrostates are very similar for all the different stimuli in the β band. A similar 

result is observed for the γ band in Figure 6 where the synchrostate topographic plots are 

similar and more importantly closely resembles to those obtained in the β band although 

differing slightly in the numerical values, in particular in the reddish hue regions. Here, each 

of the colours in the head topographies signify a particular range of phase differences as 

shown in the legend (in a normalized scale with respect to the maximum and minimum phase 

difference amongst all the states). However, an interesting difference is observed in the state 

transition plots shown in Figure 7. Although in both the bands the transitions start from state 

2, the overall transition patterns are markedly different not only between the β and γ band but 

also between different stimuli within a band. This demonstrates the stimulus specific nature 

of the synchrostates. 
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Figure 5: The topographic map for all the three stimuli in β band for the typical group. 

 
Figure 6: The topographic map for all the three stimuli in γ band for the typical group. 
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Figure 7: The time-course plot of synchrostate transitions in β and γ band. 

 

3.2 ASD  

 

Figure 8: k-means clustering result of β and γ band for the ASD group. 

The k-means clustering results for ASD population (Group II in Table 1) is shown in 

Figure 8 for the β and γ bands for all the three applied stimuli i.e. fearful, happy and neutral 

faces. Once again the significant knee appears at k = 3 implying existence of three 

synchrostates similar to the typical case. The corresponding phase difference topographies 

over the scalp are shown in Figure 9-Figure 10 as head plots. It appears that although the 
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stimuli are different the topographies are nearly similar in the β bands (in Figure 9) in 

particular for state 1 and state 3. However topographies corresponding to state 2 are markedly 

different. On the other hand, in γ band the state 1 for happy and neutral stimuli are similar 

while it differs significantly for fear stimulus (Figure 10). State 3 shows close similarity 

under all the three stimuli. The time-course plots of the synchrostate transition are shown in 

Figure 11. In both of the bands the time course plots are markedly different depending upon 

the stimulus and thereby indicating different temporal stability period of the synchrostates at 

different points in time.  

 

Figure 9: The topographic map all the three stimuli in β band for the ASD group. 
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Figure 10: The topographic map for all the three stimuli in γ band for the ASD group. 

 

Figure 11: The time-course plot of synchrostate transitions in β and γ band. 

3.3 Low Anxiety 
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The k-means clustering when run on the population average of the children with low 

anxiety for the β band resulted with four states for all the three stimuli i.e. angry, happy and 

neutral face. This is shown in Figure 12 as all three plots have the earliest significant ‘knee’ 

in the cost function plot at k = 4. However in the γ band the number of states is different for 

the neutral face perception case. The number of states in the γ band for angry and happy face 

remain unchanged at k = 4 whereas for neutral face it is 6. In the head topographies for the β 

band, (Figure 13) although the number of synchrostate is consistently four, their 

characteristics for each different task are quite different. From the γ band head plots in Figure 

14 it can be seen that the states 1, 4, 5 and 6 head plots are almost similar and common for all 

the three stimuli. However the neutral stimulus has two extra states which do not exist in the 

other two stimuli of angry and happy as can be seen from Figure 14. The transition of the 

states in β band is shown for each specific stimulus in Figure 15. It can be observed that 

during the execution of the angry face stimulus the inter-state transition is not as frequent as 

compared to the other two stimuli viz. happy and neutral. The β band state transition shows 

that except for angry stimulus for both the other stimuli the sequence start with state 4, 

whereas for the angry visual stimulus it starts from state 2. In the γ band, the state transitions 

are more frequent in neutral face perception compared to the other two stimuli as shown in 

Figure 15.  

 

Figure 12: k-means clustering result of β and γ band for the low anxiety group. 
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Figure 13: The topographic map for all the three stimuli in β band for the low anxiety group. 

 

Figure 14: The topographic map for all the three stimuli in γ band for the low anxiety group. 
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Figure 15: The time-course plot of synchrostate transitions in β and γ band. 

3.4 High Anxiety 

For the group of high anxiety subjects, as shown in Figure 16, for both the bands the 

number of synchrostates is consistently four for different stimuli. The head plots for the 

average β responses of the children as can be seen from Figure 17 are to some extent similar 

across all the stimuli. This close similarity is even more prominent in the γ band head plots 

depicted in Figure 18. Looking at the transitions of the states in β, shown in Figure 19 we see 

that they end in state 1 for all the three stimuli. Also state 3 is the most occurring state over 

the duration shown for happy and neutral face. This is also the case for γ band state 

transitions for all stimuli as shown in the Figure 19. 

 

Figure 16: k-means clustering result of β and γ band for the high anxiety group. 
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Figure 17: The topographic map for all the three stimuli in β band for the high anxiety group. 

 

Figure 18: The topographic map for all the three stimuli in γ band for the high anxiety group. 
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Figure 19: The time-course plot of synchrostate transitions in β and γ band. 

3.5 Variability analysis for individual subjects 

So far the reported figures for the group-wise analysis highlight subtle changes in the 

average phase difference topographies over the scalp and state transition plots for different 

stimuli. Now the statistical measures like the median, inter-quartile ranges of the inter-person 

variability for the optimal number of synchrostates in both β and γ band are shown in the box-

plots given in Figure 20. The red line in the plot indicates the median and the crosses show 

the outliers. The blue boxes denote the inter quartile range for the data. This is obtained by 

applying k-means clustering on the phase-difference matrices obtained from individual 

subjects at different time instants under different stimuli. The variability in the number of 

synchrostates observed when results from the individual subjects are compared to the 

respective population average is not significant. For the pool of typical children we got 

consistently three states for every child in the γ band but in the β band the number of states 

for the children varies from 3-7. This observation leads us to believe that the number of 

synchrostates is person-specific although this number is bounded within a small range only. 

Also in Figure 20, for ASD group in the β and γ band only few subjects show 5 synchrostates 

whereas the population average result as well as for the other subjects, the number of 

synchrostates is consistently 3. For the low anxiety and high anxiety groups (low-density 

EEG) it is interesting to note that the median of the number of synchrostates varies between 5 

and 6 whereas the median is consistently 3 for the ASD and typical children (high-density 

EEG). The important factor to note here is that only 30 electrodes were used for EEG 

acquisition for the anxiety groups (III and IV). This reduced number of electrodes inherently 

introduced less resolution in computing the phase difference matrix and as a consequence 

may introduce a larger variability in the synchrostate formulation. Therefore it is evident that 

the optimal number of synchrostates largely depends on the number of electrodes and high-

density EEGs (as in the first two groups, Typical and ASD) are more likely to give consistent 

result. Apart from that, the small variability observed in all the four cases is also expected 

because of inter-person and inter-trial variability and possible existence of parallel 

background processes not related to the cognitive task given. 
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Figure 20: Box-plot of the variation in the optimal number of synchrostates in each group of 

subjects. 

3.6 Quantification of the synchrostate transition 

 

Figure 21: Average state transition (across different stimuli) diagrams for the typical and 

ASD group in the β and γ band 

 

We now model the temporal switching sequence of the synchrostates in a probabilistic 

framework for a representative case of the typical and ASD group. This is chosen due to the 

fact that the high-density EEG system used in data acquisition for these two groups resulted 
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into consistent results in synchrostates as mentioned earlier. However without loss of 

generality the same method could be applied for analyzing the anxiety groups as well. We 

construct the transition probability ( ij ij ij
j

P n n= ∑ ) of the synchrostate sequence which show 

the probabilistic nature of each of the state transitions. Here, nij is the number of transitions 

from state i to j. The three probability values - P11, P22, and P33 show how long each state 

remain stable i.e. how stable each of the states ( S
1
,S

2
,S

3
) are in terms of the probability of 

staying in the same state, for different  population groups, as shown in Figure 21. The 

elements of the state transition matrix ( { } [ ], , 1, 2,3ijP i j ∈ ) for different population are more 

informative, although the phase difference topographies for two different populations could 

be similar. Therefore, the average value of the self-transitions ( ( )
1

1
N

ii
i

N P
=
∑ , N being the 

optimal number of synchrostates) for a particular band, can be considered as one of the 

discriminating measure between two groups as shown in Table 2. It is evident from the Table 

2 that in the β band with fear and happy stimuli the ASD group has got a higher probability of 

self-transition than the typical case. On contrary the γ band shows an increase in self-

transition for fear and neutral stimuli. 

 

Table 2: Self-transitions in β and γ band for the typical and ASD group with different stimuli 

Stimuli 
Typical ASD 

β γ β γ 

Fear 0.843293 0.756196 0.880439 0.880439 

Happy 0.834324 0.695356 0.904088 0.674856 

Neutral 0.880439 0.684694 0.757696 0.752797 

4. Discussion 

The results shown in the foregoing section indicate that when observing in the sub-

second order temporal resolution the phase difference topography and hence phase 

synchronisation between EEG electrodes distributed over the scalp for all the four 

populations is bounded within a small number (typically 3 to 7) unique patterns. These results 

are based on the sensor or scalp level EEG synchronisation analysis. It is well known that 

often the scalp level synchronization with zero phase lag could be confounded by the effect 

of volume conduction. Therefore, a similar method for synchrony analysis could be done at 

the source level. Because of the lack of spatial resolution in EEG, source level synchrony 

gives more reliable physiological interpretations. But the very nature of source level 

synchrony analysis suffers from the lack of temporal resolution restricting such methods for 

carrying out transient analysis of brain dynamics at fine temporal granularity level. One way 

to capture this effect is to translate the EEG to the corresponding source level using an 

inverse mapping techniques. However it is well recognized that reconstructing source activity 

from EEG is an ill-posed problem and using EEG alone cannot uniquely determine the spatial 

locations of the underlying sources. Theoretically, only an infinite number of electrodes on 

the scalp would allow the unique determination of the locations of the sources inside (Koles 

1998). Therefore, one has to make some assumptions about the inverse problem, to obtain 

optimal and unique solution which leads to approximate sources (Phillips et al. 2005). 
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4.1 Possible artifact and volume conduction effect 

Before continuing discussion about the implications of this result one needs to 

eliminate possible artefact effect that may bias the observation. Once again we need to 

emphasise that the head plots shown here are fundamentally different from those obtained 

from qEEG analysis where the average power spectrum is plotted over the scalp. Any 

possible artefact in such cases is manifested as strong correlation at the scalp edges. On the 

contrary, the head plots shown here are more like the visualisation of the phase difference 

patterns distributed over the scalp. The bluish hues imply nearly zero phase difference 

whereas the reddish hue implies large phase difference. 

Here, each of the head plots show phase difference topographies existing of the order 

of ms. While processing the data, as mentioned in Section 2, we eliminated the epochs above 

200 µV as possible artefacts. Therefore the data used in our analysis is likely to be artefact 

free in the first place. Secondly, since the synchrostate topographies are constructed in the ms 

order and as the transition diagrams show that the topographies switch from one 

configuration to another and back, in the ms order time interval, in the presence of possible 

artefacts all of the states should exhibit similar phase relation at the scalp edge for all the 

states which is not the case. Therefore while interpreting the results one may eliminate the 

effect of possible artefacts. This argument is also valid for eliminating the effect of volume 

conduction which one may also view as possible artefacts. The synchrostate phenomenon we 

report here cannot be explained by volume conduction since electrical impulses within the 

human brain spread almost instantaneously through any volume. Hence, zero phase lag is a 

characteristic of volume conduction (Thatcher et al. 2008) and phase delays are attributes of 

network formation. Synchrostates do not report zero phase delays and thus suggests the 

synchronies are not artefactual. In addition, the spurious synchronisation phenomena 

typically observed due to the presence of volume conduction does not account for the 

different synchronisation and desynchronisation patterns in the ms order in the switching 

characteristics of the synchrostates as such effect is expected to be present for all the 

synchrostate topographies in that case while in reality the synchrostate topographies for a 

stimulus are different from each other. Synchrony caused due to volume conduction would 

render a constant synchronisation pattern (phase difference) throughout the scalp over the 

observed time-course of the signal. This is not the case in synchrostates as the phase patterns 

change suddenly both in strength and between electrodes over time and again remains stable 

for a finite duration. From these points one may conclude that the results shown in this work 

are not due to possible artefacts but manifestation of the phenomena of transient phase 

difference dynamics triggered by different face perception stimuli. 

 

4.2 Existence of synchrostates 

The most important finding of this study is that over the four different subject groups 

and a total of 44 subjects a small set of unique phase difference patterns – synchrostates – 

each being stable of the order of ms have been found to exist in the β and γ band. These 

synchrostates switch from one to another abruptly and thereby constructing a characteristic 

time-course to the applied stimulus. This is qualitatively similar to the results obtained with 

microstates (T Koenig et al. 2005) albeit the microstate topographies are constructed in the 

EEG amplitude domain where the number of states is up to 10. From our experiments, we 

observe that the number of synchrostates is bounded between 3 and 7 depending on 

individual subjects, stimuli and also the number of EEG electrodes for recording. From the 

time-course plots it is evident that different synchrostates show different duration of stability 
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at different time point depending on the applied stimulus and thereby possibly capturing the 

dynamics of phase synchronisation at a finer temporal granularity level. 

An interesting observation for the case of typical development population is that the 

topographies of population average synchrostates are almost similar for all the applied stimuli 

in both the bands. This is similar to our earlier observation (Wasifa Jamal et al. 2013) where 

initial exploration was carried out with single normal adult subject. Intuitively this implies 

that although different stimuli have been applied, since all of them belong to the general class 

of face perception task, the fundamental phase relationship over the scalp remains nearly the 

same indicating a specific type of information integration phenomenon pertaining to the 

general face perception scenario. However the effect of different stimuli within the general 

class of face perception is reflected in the respective time-course plot which showed marked 

difference as the characteristic of the applied stimulus. On the other hand, although the 

topographies in the case of ASD population showed certain similarities they are more 

variable compared to the typical case along with their time-course. This may be due to the 

difference in information processing in the brain between the two subject groups. In addition, 

it is apparent that generally for the ASD group the gross phase difference of each electrode 

across the scalp is higher than that compared to the typical group as there is more presence of 

red and yellow hues in the ASD states in the γ band (Figure 10) compared to the more blue 

hues in the states for the typical (Figure 6) group. This implies predominantly loose 

synchronisation in the former case which also falls in the line of already established theory 

that ASD brains show less synchronisation in information processing compared to the 

typically growing children. Individuals with autism present atypical neural activity in face 

processing and eye gaze tasks and this has been associated with later diagnosed autism 

(Elsabbagh et al. 2012). Similar considerations apply to the children with anxiety. However 

as discussed in Section 3.5 it seems that determination of the optimal number of 

synchrostates depends on the electrode systems used for EEG recording and more consistent 

result could be obtained using high-density system. Given this fact a direct comparison 

between group I-II and III-IV could be misleading as they do not share the same number of 

electrode configurations. But despite this fact it is evident that the number of synchrostates in 

all the four cases does not vary widely and is bounded within a small number of 3 to 7 

depending on the pathophysiological conditions of the subject. 

 

4.3 Physical Interpretation 

Synchrostates are the states within which the inter-electrode relative phase difference 

varies little over time and the corresponding transition plot indicates how long each of these 

phase-difference topographies remain stable. Hence the interpretation of these states cannot 

be done in an isolated way from its transition plots. Interpretation of the synchrostate 

topographies and the state transitions should be done together combining the stability 

duration and their respective numerical values of phase difference. When considered together 

one can formulate a synchronisation index corresponding to each of the synchrostates from 

which scalp-level functional connectivity network could be derived. These dynamic networks 

are governed by the nature of switching patterns of the synchrostates and therefore in essence 

capture the temporal evolution of functional connectivity in stimulus-specific way at fine 

temporal granularity level. Fundamental graph-theoretic measures could be used for 

characterizing such networks for gaining quantitatively deeper insight into the temporal 

dynamics of the connectivity pattern prevailing after the onset of stimuli and therefore may 

provide a quantitative means for assessing cognitive functionalities. This approach has been 

adopted in (Jamal et al. 2014) to classify a population of typical and ASD children. 

Therefore, synchrostates and their associated temporal switching sequences may be 
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considered as  a new tool for analyzing the scalp-level functional connectivity dynamics at a 

fine temporal scale given a type of stimulus indicating towards the dynamics of information 

exchange in a person-centric, and frequency band-specific manner. A major implication is 

that comparing the graph-theoretic measures, extracted from the functional connectivity 

networks formulated through synchrostates may provide a new way of classifying different 

neurodevelopment disorders. 

Why such synchrostates exist and, given the fact that EEG has poor spatial resolution, 

how the phase difference configurations described by the synchrostates corroborate with the 

actual anatomical level (or source level) connectivity and information exchange, is still an 

open question and requires further experiments and modelling activities. Thus the 

neurological perspective of synchrostate topographies, their numbers and transitions needs to 

be explored in future research. Another important fact is that the results reported here are 

only for face perception tasks. Whether the same phenomenon exists with other types of 

stimuli, e.g. auditory stimuli or different real-life cognitive activities is still a question to 

answer. Also whether the existence of synchrostates is associated only with the active 

cognitive states or not, is an area to explore. 

5. Conclusions 

Our analysis described in this paper shows that there exist a small set of unique phase 

difference patterns at ms order time interval amongst the EEG electrodes when 44 subjects 

from three different neuro-pathological groups and one healthy group were subjected to a set 

of facial perception task. These unique patterns – termed as synchrostates – abruptly switch 

from one to another and construct a stimulus-specific time course. The synchrostates and 

their transition plots can together be utilized as a generic method to understand temporal 

dynamics of EEG phase synchronisation as was done in (Jamal et al. 2014). Our present 

exploration shows that existence of such synchrostates is consistent and exhibits only a small 

variability that may be attributable to inter-person or inter-trial variation often expected to be 

present in such experiments. Another possible factor that may contribute in such variability is 

the number of electrodes – less number of EEG electrodes exhibiting greater variability by 

introducing less resolution in computing the phase difference pattern. Also quantification of 

the synchrostate transition in different groups are done in a probabilistic frame in terms of the 

self-transitions which might help in understanding the EEG phase synchronisation based 

derivation of the functional brain connectivity. Although we observed consistent number of 

synchrostates their physiological origin in relation to the anatomical brain network is yet to 

be established. Also it is still an open question whether the existence of synchrostates is a 

general phenomenon associated with active cognitive computation. However if established as 

a generic phenomenon, combining the phase topographies of the synchrostates and their 

temporal stability from the time-course plot, one may establish a set of quantitative index that 

may give deeper understanding in transient phase relationship with effective connectivity in 

brain which may be useful in quantifying cognitive ability in task-specific manner as well as 

classifying atypical neuropsychiatric conditions from normal brain functionality. 
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