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On the Existence of Uniformly Most Powerful
Bayesian Tests With Application to
Non-Central Chi-Squared Tests

Amir Nikooienejad∗ and Valen E. Johnson†

Abstract. Uniformly most powerful Bayesian tests (UMPBT’s) are an objective
class of Bayesian hypothesis tests that can be considered the Bayesian counter-
part of classical uniformly most powerful tests. Because the rejection regions of
UMPBT’s can be matched to the rejection regions of classical uniformly most
powerful tests (UMPTs), UMPBT’s provide a mechanism for calibrating Bayesian
evidence thresholds, Bayes factors, classical significance levels and p-values. The
purpose of this article is to expand the application of UMPBT’s outside the class
of exponential family models. Specifically, we introduce sufficient conditions for
the existence of UMPBT’s and propose a unified approach for their derivation. An
important application of our methodology is the extension of UMPBT’s to testing
whether the non-centrality parameter of a chi-squared distribution is zero. The
resulting tests have broad applicability, providing default alternative hypotheses
to compute Bayes factors in, for example, Pearson’s chi-squared test for goodness-
of-fit, tests of independence in contingency tables, and likelihood ratio, score and
Wald tests.

Keywords: uniformly most powerful Bayesian tests, Bayesian hypothesis test,
chi-squared tests, test of independence in contingency tables.

1 Introduction

Bayesian hypothesis tests are based on computing the posterior probabilities of com-
peting hypotheses given data. From Bayes theorem, the posterior probability of each
hypothesis is proportional to the product of its prior probability and the marginal like-
lihood of the data given that the hypothesis is true. In the case of two competing
hypotheses, the posterior odds between hypotheses H0 and H1 can be written as

P(H1 |x)
P(H0 |x)

=
m1(x)

m0(x)
× p(H1)

p(H0)
, (1.1)

where m1(x)/m0(x) is called the Bayes factor in favor of the alternative hypothesis
(denoted more simply as BF10(x)), mi(x) denotes the marginal density of the data
under hypothesis i, and p(Hi) denotes the prior probability of hypothesis Hi. The
logarithm of the Bayes factor is called the weight of evidence. We assume throughout
that the sampling density of the data x is defined with respect to a σ-finite measure
and is described by the same parametric family of densities indexed by a parameter
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θ ∈ R under all hypotheses, and refer to models and hypotheses interchangeably. Letting
f(x | θ) denote the sampling density of the data x given the value of a parameter θ ∈ Θ,
and πi(θ) the prior on θ given hypothesis i, the marginal density of the data under
hypothesis i can be written as

mi(x) =

∫
Θ

f(x | θ)πi(θ)dθ.

In the classical testing paradigm, a decision to reject the null hypothesis H0 occurs
when the value of a test statistic exceeds a specified threshold. In a similar way, uni-
formly most powerful Bayesian tests (UMPBT’s) of a null hypothesis are constructed by
determining an alternative hypothesis that maximizes the probability that the Bayes
factor of the test exceeds a pre-specified threshold, say γ, for all values of the data-
generating parameter θ.

With this notation, a UMPBT(γ) was defined in Johnson (2013b) as follows:

Definition 1. A uniformly most powerful Bayesian test for evidence threshold γ > 0
in favor of the alternative hypothesis H1 against a fixed null hypothesis H0, denoted by
UMPBT(γ), is a Bayesian hypothesis test in which the Bayes factor for the test satisfies
the following inequality for any θt ∈ Θ and for all alternative hypotheses H2 : θ ∼ π2(θ):

Pθt

[
BF10(x) > γ

]
≥ Pθt

[
BF20(x) > γ

]
. (1.2)

The alternative hypothesisH1 in (1.2) thus maximizes the probability that the Bayes
factor is greater than a fixed evidence threshold, γ, among all possible prior densities
that define alternatives hypotheses on the parameter space Θ and for all possible values
of the data-generating parameter θt in Θ.

For the case of testing simple null hypotheses H0 : θ = θ0, and under the further
assumption that tests are one-sided (i.e., Θ = {θ : θ > θ0} or Θ = {θ : θ < θ0}),
UMPBT’s for one parameter exponential families were derived in Johnson (2013b).
These tests included tests of binomial proportions, tests of normal means with known
variance, tests for normal variances when the mean is known, and tests that the non-
centrality parameter of χ2

1 distribution is equal to zero (Johnson, 2013a,b). UMPBT’s
were extended in Goddard and Johnson (2016) by restricting the class of alternative
hypotheses over which the maximization in (1.2) is performed.

The UMPBT’s derived in Johnson (2013b) were obtained by rewriting
Pθt [BF10(x) > γ] in (1.2) as

Pθt

[
t(x) > A(γ, θ)

]
, (1.3)

where t(x) was a sufficient statistic. By so doing, the probability in (1.3) can be maxi-
mized with respect to θ by simply minimizing A(γ, θ), regardless of the distribution of
t(x), thus producing a UMPBT(γ) test.

The primary goal of this article is to provide a new approach to defining UMPBT’s
when Pθt [BF10(x) > γ] cannot be written in the form of (1.3). A primary application
of the resulting method is to derive UMPBT’s for tests of non-centrality parameters
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in χ2
ν distributions with arbitrary degrees of freedom (ν ≥ 1), henceforth denoted by

χ2 distribution. Although the methodology presented in this article also requires the
existence of scalar-valued sufficient statistics.

The extension of UMPBT’s to χ2 tests is important because it facilitates the calibra-
tion of classical p-values and Bayes factors obtained from χ2 tests. This calibration can
be accomplished by finding the evidence threshold γ that produces the same rejection
region as the classical test conducted at the given significance level α. This γ implicitly
defines the UMPBT alternative hypothesis, from which the Bayes factor of the test can
be computed. Thus, a correspondence between γ and α, and the p-value and the Bayes
factor is obtained. Examples of this procedure are discussed in Section 4.

Aside from applications involving hypothesis tests based on χ2 statistics, UMPBT’s
based on χ2 statistics have potential application in the realm of Bayesian model se-
lection. For example, Hu and Johnson (2009) propose the use of likelihood ratio test
statistics to compute Bayes factors in model selection procedures. For spurious regres-
sors, the resulting χ2 test statistic has a central χ2 distribution; for important regressors
it has a non-central χ2 distribution. UMPBT’s for the non-centrality parameter thus
provide an objective prior for computing the marginal density of χ2-statistics in model
selection procedures. Importantly, the alternative model for the χ2 statistic implicit in
this framework is a non-local prior density. In contrast, other default Bayesian variable
selection procedures are based on the use of local alternative priors on regression param-
eters (Berger and Pericchi, 1996; O’Hagan, 1995). The potential value of using non-local
priors in Bayesian variable selection is discussed in Johnson and Rossell (2010).

The remainder of this article is organized as follows. Section 2 describes methodology
to determine the existence of UMPBT’s. In Section 3 we exploit this methodology
to derive the UMPBT(γ) of a non-centrality parameter of a χ2 distribution. Several
examples are provided in Section 3. Concluding comments appear in Section 4.

2 Method

2.1 Preliminaries

Let y = h(x) denote a sufficient statistic of the data, with y ∈ R. For the remainder
of this article, we assume that the null hypothesis being tested is a simple hypothesis
having the form H0 : θ = θ0 ∈ Θ.

For every θ ∈ Θ, we denote the likelihood ratio in favor of θ1 as g(y, θ1) (suppressing
dependence on θ0). For simple alternative hypotheses H1 : θ = θ1 ∈ Θ, g(y, θ1) also
represents the Bayes factor. Our strategy for studying the properties of UMPBT’s is
to first restrict attention to Bayesian tests defined with simple alternative hypotheses,
and to then extend properties of these tests to tests defined with composite alternative
hypotheses. If a UMPBT exists when the class of alternatives is restricted to simple
alternatives, then the same test is a UMPBT when composite hypotheses are formed
by averaging (according to a prior density) over simple alternative hypotheses. This
strategy is illustrated formally in the proof of Theorem 1.
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For θ ∈ Θ, define
Ωγ(θ) = {y : g(y, θ) > γ}. (2.1)

The interval Ωγ(θ1) has a straightforward interpretation from a decision-theoretic per-
spective if we assume a 0 − 1 loss function (i.e., the loss associated with incorrectly
choosing the true hypothesis is 1, while the correct choice incurs no loss). In that case,
Ωγ(θ1) represents the “rejection region” of a simple null hypothesis against the simple
alternative hypothesis H1 : θ = θ1 when the prior odds in favor of H0 are γ.

Let f(y; θt) be the density function of y for the data generating parameter, θt,
and F (y; θt) its corresponding distribution function defined with respect to a σ-finite
measure μ. Let S(f) ⊂ R denote the support of f , which is assumed to be independent
of θ. Let R̄ represent affinely extended real numbers, R∪{−∞,+∞}. Define a, b ∈ R̄ as

a = inf S(f) b = supS(f). (2.2)

Next, define Hγ(θ1; θt) to be

Hγ(θ1; θt) = Pθt [g(y, θ1) > γ] =

∫
Ωγ(θ1)

f(y; θt)μ(dy), (2.3)

the probability that the Bayes factor exceeds γ when the true state of nature is θt and
the alternative is specified as H1 : θ = θ1.

If
θ∗ = argmax

θ∈Θ
Hγ(θ; θt) ∀θt ∈ Θ, (2.4)

then it follows that H1 : θ = θ∗ is the alternative hypothesis of a UMPBT(γ).

The existence of UMPBT’s, along with the fact that their alternatives do not place
unit mass at the true parameter value, is somewhat counterintuitive. So, too, is the fact
that they concentrate their mass on a (false) point alternative hypothesis. However,
as noted in Johnson (2013b), UMPBT’s underestimate the “true” weight of evidence,
(i.e., the logarithm of the Bayes factor) in favor of true alternative hypotheses in the
sense that the expected value of the weight of evidence using the UMPBT alternative
is less than it is under the true (data-generating) parameter value. UMPBT’s and the
alternatives which define them thus provide a new class of default Bayesian hypothesis
tests that are significantly less conservative than other default choices (e.g., Jeffreys
(1961); Berger and Pericchi (1996); O’Hagan (1995); Moreno et al. (1998); Bayarri and
Garćıa-Donato (2008); Bayarri et al. (2012)).

2.2 Existence and Derivation of UMPBT’s

We now describe a sufficient condition for the existence of UMPBT’s for one-sided
hypothesis tests. The extension to two-sided tests requires further assumptions regarding
the probability assigned to parameter values that are greater than or less than the
null value. If it is assumed that alternative hypothesis is symmetric around the null
hypothesis, Johnson (2013b) showed that approximate two-sided UMPBT(γ)’s can be
obtained by specifying alternative hypotheses so that they concentrate their mass on
the two corresponding one-sided UMPBT(2γ) tests.
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Theorem 1. Consider a test of a simple null hypothesis H0 : θ = θ0. Then H1 : θ =
θ∗ ∈ Θ defines an alternative hypothesis of a UMPBT(γ) if

Ωγ(θ) ⊆ Ωγ(θ
∗) for all θ ∈ Θ. (2.5)

Proof. For any simple alternative hypothesis H1 : θ ∈ Θ, the relation in (2.5) and the
definition of the function Hγ(θ; θt) in (2.3) implies that

Hγ(θ; θt) =

∫
Ωγ(θ)

F (dy; θt) ≤
∫
Ωγ(θ∗)

F (dy; θt) = Hγ(θ
∗; θt). (2.6)

Knowing that θ∗ ∈ Θ, the inequality above ensures that θ∗ = argmaxθ∈Θ Hγ(θ; θt).
Because this inequality holds for all simple alternatives, it is straightforward to show
that it also holds for composite alternatives (Johnson, 2013b). Let π(θ) be any prior
density used to define the alternative hypothesis. Define

s(y, θ) =

{
1 if y ∈ Ωγ(θ),

0 otherwise.
(2.7)

Then (2.5) implies ∫
Θ

s(y, θ)π(dθ) ≤
∫
Θ

s(y, θ∗)π(dθ) = s(y, θ∗). (2.8)

It follows that the Bayes factor based on H1 : θ ∼ π(θ), satisfies

Pθt [BF10(y) > γ] =

∫
Θ

∫
R
s(y, θ)F (dy, θt)π(dθ) (2.9)

=

∫
R

∫
Θ

s(y, θ)π(dθ)F (dy, θt) (2.10)

≤
∫
R
s(y, θ∗)F (dy, θt) = Hγ(θ

∗; θt), (2.11)

and the proof is complete.

This is a useful existence theorem for UMPBT’s. When Ωγ(θ) is an interval for all
values of θ ∈ Θ, a more practical mechanism for establishing the existence of a UMPBT
is provided in the following corollary.

Corollary 1. Consider a Bayesian hypothesis test of a simple null hypothesis H0 : θ =
θ0. If Ωγ(θ) is either of the form of

(
c, d(θ)

)
or

(
d(θ), c

)
for all θ ∈ Θ and c ∈ R, and if

θ∗ = argmin
θ

vd(θ), where v =

{
−1 if Ωγ(θ) =

(
c, d(θ)

)
1 if Ωγ(θ) =

(
d(θ), c

) , (2.12)

then H1 : θ = θ∗ provides an alternative hypothesis corresponding to a UMPBT(γ).
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Proof. It suffices to show that the condition (2.5) holds for the proposed θ∗. Consider
the case where Ωγ(θ) have the form

(
d(θ), c

)
. In this case, the upper bound of Ωγ(θ)

is fixed for all θ ∈ Θ, but Ωγ(θ
∗) has the smallest lower bound among all other Ωγ(θ).

Hence,
Ωγ(θ) ⊆ Ωγ(θ

∗) for every θ ∈ Θ. (2.13)

The proof follows from Theorem 1. The case for v = −1 follows along similar lines.

Corollary 1 offers a simple tool to check the existence of a UMPBT for continuous
distributions, as well as offering a practical approach for finding it.

If the Bayes factor is a monotone function of the sufficient statistic, then the following
theorem provides a more direct route for finding a UMPBT.

Theorem 2. Let the likelihood ratio g(y, θ) be a continuous and differentiable function
in (a, b)×Θ, the domains of y and θ. Define

Q(θ; y) =
∂g(y, θ)

∂y
,

and suppose for all y and θ that Q(θ; y) is either strictly positive or strictly negative.
Let v denote the sign of Q(θ; y). For a fixed γ > 1, let Λ =

{
(y, θ) : g(y, θ) − γ = 0

}
and suppose Λ �= ∅. Let r : Θ → R denote a function of θ such that

(
r(θ), θ

)
∈ Λ.

If
θ∗ = argmin

θ
vr(θ), (2.14)

then H1 : θ = θ∗ defines the alternative hypothesis for a UMPBT(γ).

Proof. Because Q is either strictly positive or negative, the function g is a one-to-one
function of y. Hence, for a given θ, g(y, θ)−γ has a unique root. Due to the monotonicity
of g(y, θ) in y, Ωγ(θ) is then either on the right side of the root, Ωγ(θ) =

(
r(θ), b

)
, or

on its left, Ωγ(θ) =
(
a, r(θ)

)
, where a and b are defined in (2.2). The proof follows from

Corollary 1.

Note that the form of Ωγ(θ) in the above theorem depends on v. More specifically,
Ωγ(θ) is of the form

(
r(θ), b

)
when v = 1 and it is of the form

(
a, r(θ)

)
when v = −1. We

note that for each value of θ, the function r(θ) provides the value of y = r(θ) satisfying
g(y, θ) = γ; that is, the value of y that results in a Bayes factor exactly equal to γ.
Because Q is monotone, this value is unique.

An example plot of r(θ) versus θ for different values of the evidence threshold, γ,
is drawn in Supplementary (Nikooienejad and Johnson, 2020) for a non-central χ2 test
with 10 degrees of freedom.

Corollary 1 and Theorem 2 provide sufficient conditions for the existence of a
UMPBT. In Section 3 we apply these results to demonstrate both the existence of
UMPBT’s for one-parameter exponential family models and a UMPBT for the non-
centrality parameter for χ2 distributions.
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Defining general conditions that are necessary for the existence of a UMPBT is
difficult, but the next fact provides a simple method to demonstrate that a UMPBT
does not exist.

Fact 1. If the value of θ∗ that maximizes Hγ(θ; θt) in (2.3) is not a constant function
of θt, then a UMPBT(γ) does not exist.

To see that this statement holds, suppose that θ∗1 maximizes Hγ(θ, θt1) and θ∗2 max-
imizes Hγ(θ, θt2), with θ∗1 �= θ∗2 . It follows that there is no θ∗ that maximizes Hγ(θ; θt)
in (2.4) for every θt and thus a UMPBT(γ) does not exist.

An application of this fact to show that UMPBT’s do not exist for one sample t-tests
is provided in Section 3.3.

3 UMPBT’s for Common Hypothesis Tests

3.1 One-Parameter Exponential Family Distributions

We first show how the theory of the previous section can be used to derive UMPBT’s for
one-parameter exponential family distributions. We also demonstrate that the method
proposed in Johnson (2013b) is a special case of Theorem 2.

Using the notation in Johnson (2013b), let x = {x1, x2, · · · , xn} denote a random
sample from a one-parameter exponential family model indexed by θ, and suppose
interest focuses on testing a null hypothesis H0 : θ = θ0. Our goal is to determine the
UMPBT for a fixed evidence threshold, γ. We parametrize the density function for the
model as

f(x | θ) = h(x) exp
{
η(θ)T (x)−A(θ)

}
, (3.1)

where h(x), A(θ) and η(θ) are known functions and T (x) is the sufficient statistic of the
data. Let y =

∑n
i=1 T (xi). For a simple alternative hypothesis H1 : θ = θ1, it follows

that the Bayes factor in favor of the alternative hypothesis can be expressed as

g(y, θ1) = exp
{
n
(
A(θ0)−A(θ1)

)}
exp

{
y
(
η(θ1)− η(θ0)

)}
. (3.2)

Consequently, the first derivative of the Bayes factor with respect to y in (3.2) can be
written as

∂g(y, θ1)

∂y
=

[
η(θ1)− η(θ0)

]
exp

{
n
(
A(θ1)−A(θ0)

)
+ y

(
η(θ1)− η(θ0)

)}
. (3.3)

If the function η(θ1) is monotonic on Θ, the derivative above does not change sign and is
strictly positive or negative. Therefore, for a fixed threshold γ, g(y, θ1)−γ has a unique
root, given by

y =
log(γ) + n

(
A(θ1)−A(θ0)

)
η(θ1)− η(θ0)

. (3.4)
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Following Theorem 2, if

θ∗ = argmin
θ∈Θ

v
log(γ) + n

(
A(θ)−A(θ0)

)
η(θ)− η(θ0)

, (3.5)

where v is equal to the sign of η(θ) − η(θ0), then H1 : θ = θ∗ defines an alternative
hypothesis for a UMPBT(γ).

In testing a one sided alternative against a point null hypothesis for one dimensional
exponential family distributions, the UMPBT(γ) can always be found as described in
(3.5) if the natural parameter of the exponential family, η(θ), is monotone on the domain
of the alternative hypothesis Θ. This result confirms the findings in Johnson (2013b).

3.2 UMPBT’s for the Non-centrality Parameter in χ2 Tests

We now apply the theory of Section 2 to derive UMPBT’s for the non-centrality pa-
rameter of χ2 test statistics. We then apply these tests to contingency tables and use
them to study the relationship between p-values based on χ2 tests and Bayes factors
obtained from the corresponding UMPBT.

Let y be an observation from a chi-squared distribution on ν degrees of freedom and
non-centrality parameter θ, denoted by χ2

ν(θ). As shown in Patnaik (1949) and Seber
(1963), the probability density function of y can be written as

f(y | θ) = 1

2
exp

[
− (y + θ)

2

] (y
θ

)ν/4−1/2
Iν/2−1(

√
θy). (3.6)

Here, Iν(·) is the modified Bessel function of the first kind and for a real valued ν is
defined as

Iν(y) =
∞∑
j=0

(y/2)2j+ν

Γ(ν + j + 1)j!
. (3.7)

In general, the range of the modified Bessel function of the first kind is C, the set
of all complex numbers. However, for real positive arguments and real-valued degrees
of freedom, the range is R+. In the case of θ = 0, the probability distribution function
in (3.6) reduces to

f(y|θ = 0) =

(
1

2

)ν/2

e−y/2 yν/2−1

Γ(ν/2)
. (3.8)

Suppose we are interested in testing H0 : θ = 0 against H1 : θ ∼ π(θ), where π(θ) is
any probability density function defined on the non-negative real line not representing a
point mass at 0. Using (3.6) and (3.8), the Bayes factor in favor of a simple alternative
hypothesis H1 : θ = θ1 �= 0 can be expressed as

g(y, θ1) = Γ
(ν
2

)
exp−θ1/2 2ν/2−1(

√
θ1y)

1−ν/2Iν/2−1(
√

θ1y). (3.9)
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For this Bayes factor, both the data and the parameter of the test are arguments
of the modified Bessel function. Thus Pθt [BF10(y) > γ] cannot be written in the form
of (1.3). The following theorem proves the existence of a UMPBT(γ) for this test using
Corollary 1.

Corollary 2. Suppose y ∼ χ2
ν(θ) and consider a test of the null hypothesis H0 : θ = 0.

Given an evidence threshold γ > 0, define r(θ) as in Theorem 2. Then the alternative
hypothesis that defines the UMPBT(γ) is given by H1 : θ = θ∗, where

θ∗ = argmin
θ>0

r(θ). (3.10)

Proof. The first derivative of the modified Bessel function of the first kind with ν degrees

of freedom can be expressed as ∂Iν(z)
∂z = ν

z Iν(z)+ Iν+1(z). The first derivative of g(y, θ)
with respect to y thus equals

∂g(y, θ)

∂y
=

α

2
θ(
√

θy)−ν/2Iν/2(
√

θy), (3.11)

where α = Γ(ν2 ) exp
−θ/2 2ν/2−1 is a positive number. The domain for the alternative

hypothesis is θ ≥ 0 and the support of the χ2 distribution is R+, which results in a real,
positive modified Bessel function of the first kind. Therefore, the derivative in (3.11)
is strictly positive. Moreover, g(y, θ) is continuous on Θ × R

+ and its infimum is zero.
Hence, for every γ > 0, the set Λ defined in Theorem 2 is not an empty set. The result
then follows from Theorem 2.

Tests of Independence in Contingency Tables

Tests of independence between rows and columns of contingency tables are common in
statistical practice. Performing such tests in the Bayesian paradigm requires computa-
tion of the Bayes factor, which depends on the prior densities assumed for the multino-
mial probability vector under both hypotheses. Different methods have been proposed
to define these priors. Albert (1990) uses a prior distribution for the alternative hypoth-
esis constructed about the “independence surface” representing the null hypothesis.
Good and Crook (1987) used a mixed-Dirichlet prior and checked the robustness and
sensitivity of this assumption with respect to hyperpriors and their hyperparameters.
Johnson (2005) proposed a totally different approach by computing the Bayes factor
based on a test statistic, in this case the standard χ2-statistic. Johnson’s approach re-
quires the specification of a prior distribution on the non-centrality parameter of the
chi-squared distribution under the alternative hypothesis. He used a conjugate gamma
prior density for the non-centrality parameter, and discussed various schemes for setting
the hyperparameters of the prior density.

Our method extends the concept of uniformly most powerful Bayesian tests to non-
central chi-squared tests with different degrees of freedom. As a result, borrowing the
methodology from Johnson (2005), we use a χ2-statistic to compute the Bayes factor.
The difference between our method and Johnson (2005) is that we use UMPBT method-
ology to fix the prior on the non-centrality parameter under the alternative hypothesis.
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Site
Results for the

following blood groups:
O A B or AB

Pylorus and antrum 104 140 52
Body and fundus 116 117 52
Cardia 28 39 11
Extensive 28 12 8

Table 1: White and Eisenberg (1959) classification of cancer patients.

The contingency table shown in Table 1 represents the cross classification on cancer
site and blood type for patients with stomach cancer (White and Eisenberg, 1959). The
total sample size is 707 and the goal is to test independence of cancer site and blood
type.

The χ2-statistic for this contingency table is 12.65 on 6 degrees of freedom. Johnson
(2005) computed the Bayes factor against the independence model as 2.97 when the
hyperparameter of the prior gamma density was chosen so as to maximize the Bayes
factor.

Using the method proposed by Albert (1990), the maximum Bayes factor that can
be obtained in favor of the alternative hypothesis is 3.02. This value is obtained by
maximizing the approximate Bayes factor with respect to the parameter that controls
the dispersion of the alternative hypothesis around the independence model. Under the
model proposed by Good and Crook (1987), the Bayes factor is 3.06.

Using the methodology proposed in this article, the Bayes factor based on the χ2-
statistic is 3.52. This value is obtained by assuming that Ωγ(θ

∗) matches the rejection
region of a 5% classical test. The alternative hypothesis in this test is that the non-
centrality parameter is equal to 7.31. The evidence threshold corresponding to the 5%
test is γ = 3.46.

In assessing the evidence against null hypotheses, this example illustrates that
UMPBT’s are not as conservative as other default Bayesian tests. This is especially
true when Bayesian tests specify local alternative hypotheses, or alternative hypotheses
that place prior mass around the null value (Johnson and Rossell, 2010).

Comparing Bayesian and Classical Tests of χ2 Non-Centrality Parameters

The connection between p-values and evidence thresholds based on χ2 tests for inde-
pendence in contingency tables holds more broadly for hypothesis tests based on χ2

statistics. If H0 : θ0 = 0, and H1 : θ = θ∗ defines the alternative hypothesis of a
UMPBT(γ), where γ is chosen so that Ωγ(θ

∗) matches the rejection region of a classical
χ2 test of size α, it is possible to compare evidence thresholds γ to p-values in general
tests of non-centrality parameters. For instance, Figure 1 illustrates the relation between
the Bayesian evidence thresholds γ and the p-values of classical tests (with rejection
region matched to Ωγ(θ

∗)) versus the degrees of freedom of the χ2 tests.
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Figure 1: Evidence threshold vs. degrees of freedom in chi-squared tests for different
significance thresholds.

Figure 2: Posterior probability of the null hypothesis vs. degrees of freedom in chi-
squared tests for different frequentist significance levels and γ = 3. Based on the assign-
ment of prior probability 1/2 to both hypotheses.

Two important points are exposed in this figure. First, for a given p-value the evi-
dence thresholds from corresponding Bayesian tests are almost constant with respect to
the degrees of freedom. Second, for degrees of freedom less than 120, a p-value of 0.05 is
equivalent to evidence thresholds that are always less than 3.67. This value of the evi-
dence threshold suggests positive, but not strong evidence, against the null hypothesis.

The posterior probabilities of null hypotheses with respect to different degrees of
freedom in χ2 tests are depicted in Figure 2. These probabilities were computed under
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Figure 3: Alternative hypothesis values for UMPBT’s matched to classical significance
tests.

the assumption that the null and alternative hypotheses were equally likely a priori.
The evidence threshold used to construct this plot was γ = 3.67.

Figure 2 shows that for p-values of 0.05, the posterior probabilities assigned to the
null were between 21.4% and 22.7%. The posterior probabilities resulting from p-values
equal to 0.005 were between 5.1% and 5.5%.

Figure 3 depicts the UMPBT alternative hypothesis values in tests for which Ωγ(θ)
has been matched to the rejection regions of classical chi-squared tests for various de-
grees of freedom and Type I errors. In general, the value of the non-centrality parameter
that defines the alternative hypothesis for a UMPBT must be determined numerically.
An R function that performs this calculation is provided in Supplementary.

3.3 One Sample t-test

In this section we consider the one sample t-test for a normal mean when the variance,
σ2, is not known. We demonstrate that uniformly most powerful Bayesian tests do not
exist in this setting.

Let x = {x1, x2, · · · , xn} represent n i.i.d. Gaussian observations, and define x̄ to be
the sample mean. The sample variance is defined in the usual way as s2 =

∑n
i=1(xi −

x̄)2/(n− 1).

Suppose the prior distribution for σ2 is inverse gamma with parameters α and β.
Considering simple hypotheses, for every θ ∈ Θ the marginal distribution of x is obtained
by integrating out σ2, leading to

m(x) = (2π)n/2
βα × Γ(n/2 + α)

Γ(α)
[
U + n(x̄− θ)2

]n/2+α
. (3.12)
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Here, U =
∑n

i=1(xi− x̄)2+2β. It follows that the Bayes factor for the test of H0 : θ = θ0
versus H1 : θ = θ1 can be expressed as

g(y, θ1) =
[U + n(y − θ0)

2

U + n(y − θ1)2

]n/2+α

, (3.13)

where y = x̄.

To use theorems exposed in the previous section, we first determine the form of

Ωγ(θ). Letting γn = γ
2

n+2α , it can be shown (Johnson, 2013a) that for θ1 ∈ Θ, Ωγ(θ1)
can be expressed as

Ωγ(θ1) =
{
y : y2 +

2(γnθ1 − θ0)

1− γn
y −

(γnθ21 − θ20
1− γn

− U

n

)
< 0

}
. (3.14)

The roots of the quadratic function in (3.14) can be written as

a(θ1) =
γnθ1 − θ0
γn − 1

−
√

γn(θ1 − θ0)2

(γn − 1)2
− U

n
and

b(θ1) =
γnθ1 − θ0
γn − 1

+

√
γn(θ1 − θ0)2

(γn − 1)2
− U

n
. (3.15)

Thus,
Ωγ(θ1) =

{
y : a(θ1) < y < b(θ1)

}
. (3.16)

From (3.15), it follows that for θ > θ0,

min
θ

a(θ) = θ0 +

√
U(γ∗ − 1)

n
, argmin

θ
a(θ) = θ0 +

√
U(γ∗ − 1)

n
, (3.17)

and b(θ) is a monotone increasing function of θ with lim
θ→+∞

b(θ) = +∞. (3.18)

Similarly, for θ < θ0,

max
θ

b(θ) = θ0 −
√

U(γ∗ − 1)

n
, argmax

θ
b(θ) = θ0 −

√
U(γ∗ − 1)

n
, (3.19)

and a(θ) is a monotone increasing function of θ with lim
θ→−∞

a(θ) = −∞. (3.20)

It follows from (3.17)–(3.20) that for a fixed n < ∞, no value of θ1 can be found
to achieve the infimum of a(θ) and the supremum b(θ) at the same time, so that (2.5)
cannot be achieved for any θ∗. Indeed, different values of θ lead to non-nested Ωγ(θ),
so that Corollary 1 does not apply.

To use Fact 1 to show that a UMPBT does not exist, consider two data generating
parameters, say θt = 2 and θt = 4. Suppose the data-generating variance, σ2, is equal
to 1 and the evidence threshold, γ, is equal to 3. Take α = β = 0 so that a non-
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informative prior is assumed for σ2. It follows from numerical analysis that the most
powerful alternative when θt = 2 is obtained by taking θ∗ = 1.496, while for θt = 4 the
most powerful alternative is θ∗ = 2.394. Thus, a UMPBT does not exist for this test.

Finally, we note that in classical hypothesis testing, Lehmann et al. (1948) showed
that t-tests for significance levels less than 0.5 are not Uniformly Most Powerful in the
classical sense. However, as noted by Diaconis and Lehmann (2008), both one-sided and
two-sided t-tests are UMP when attention is restricted to the class of all unbiased tests.

4 Discussion

UMPBT’s provide a new class of objective Bayesian hypothesis tests. These tests facili-
tate a comparison between p-values from classical tests and Bayes factors from Bayesian
tests. These comparisons can be made by matching the rejection regions of the classical
tests to the regions for which the Bayes factors from the UMPBT’s exceed a specified
evidence threshold.

When UMPBT’s are defined with evidence thresholds that remain fixed as sample
sizes increase, they inherit certain inconsistencies of classical tests. For instance, in large
sample settings there remains a nonzero probability that the alternative hypothesis will
be favored by the UMPBT even when the null hypothesis is true. This deficiency stems
from using a fixed evidence threshold (corresponding to a fixed significance level) as
n increases, which allows the alternative hypothesis defining the UMPBT to become
arbitrarily close to the null hypothesis. In general, we recommend increasing the evidence
threshold with n to avoid this problem. Further discussion of this point is provided in
Johnson (2013b). We also note that UMPBT’s cannot generally be applied in sequential
testing setting, since in most cases the alternative hypothesis that defines the UMPBT
is determined by the sample size upon which the test is based.

The primary contribution of this article is the extension of UMPBT’s to a larger class
of models and the introduction of a sufficient condition for the existence of UMPBT’s.
A practical mechanism for establishing the existence of a UMPBT was also provided.
In cases when the sufficient condition is not satisfied, a procedure to verify that a
UMPBT does not exist was provided by Fact 1. These results allowed us to establish
the existence of UMPBT’s for tests of non-centrality parameters in χ2 statistics, which
were illustrated for tests of independence in contingency tables. By basing Bayes factors
based on test statistics (Johnson, 2005), the χ2 test can also be extended to obtain Bayes
factors from likelihood ratio tests and score tests, which are among the most commonly
used classical test statistics. We also showed that uniformly most powerful Bayesian
tests do not exist for one-sample t-tests.

It is important to note that UMPBT’s do not provide an upper bound on the Bayes
factor against a point null hypothesis, a common misperception. When the null hypoth-
esis is true (i.e., represents the data-generating parameter), the Bayes factor against the
null hypothesis will typically be substantially smaller than the likelihood ratio statistic
for the test, which provides an actual upper bound on the Bayes factor. Conversely
when the alternative hypothesis is true, the Bayes factor in favor of the alternative
hypothesis will typically be smaller than the likelihood ratio statistic, particularly if
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the data-generating parameter exceeds the value defined under the UMPBT alternative
hypothesis. It is only when the maximum likelihood estimate of the tested parameter
is close to a (simple) UMPBT alternative that the Bayes factor based on the UMPBT
provides an approximate upper bound on the Bayes factor.

To illustrate the importance of this difference, suppose x̄ = 0 in a test of a normal
mean in which the UMPBT’s alternative hypothesis is chosen so that Ωγ(θ

∗) matches
the one-sided 5% classical test’s rejection region. Then the Bayes factor based on the
UMPBT is BF10(x̄) = .258, whereas the maximum Bayes factor is 1. In this case, the use
of the UMPBT results in a posterior probability for the null hypothesis that can signifi-
cantly exceed 0.5 (i.e., 0.795) when both hypotheses are assigned equal prior probability,
something that is not possible if the Maximum Likelihood Estimate (MLE) is used to
set the alternative hypothesis. Similarly, if x̄ = 2 ∗ 1.645σ/

√
n, or twice the UMPBT

alternative, then BF10 = 57.9, whereas the maximum Bayes factor is 224.1. That is, the
UMPBT-based Bayes factor is a factor of 4 smaller than the likelihood ratio statistic.

The magnitude of such differences can become large when the alternative hypothesis
differs dramatically from the null hypothesis. For example, suppose a chi-squared statis-
tic represents the sum-of-squares of p independent and identically distributed N(μ, 1)
random variables. If λ represents the non-centrality parameter of the χ2

p test statistic,
then λ = pμ2. When μ �= 0, the prior density that defines the UMPBT(γ) of H0 : λ = 0,
for any fixed evidence threshold γ, underestimates the true value of λ under the alter-
native hypothesis as p → ∞. Thus, the Bayes factor in favor of the UMPBT alternative
hypothesis will underestimate the evidence against the null hypothesis as compared to
alternative hypotheses based on prior densities that put more weight near the true value
of λ. This example reflects the situation in many real testing situations, for which the
Bayes factors based on the UMPBT can represent a more conservative estimate of the
Bayes factor against the null hypothesis than the Bayes factor based on subjectively-
motivated or other default choices of the prior defining alternative hypotheses. On the
other hand, when the observed chi-squared statistic falls near the boundary of the rejec-
tion region of the UMPBT, the Bayes factor obtained for the UMPBT will tend to fall
between the upper bound given by the likelihood ratio statistic and the values defined
by other Bayesian methods.

In future research, we hope to extend UMPBT’s to Bayesian variable selection prob-
lems and examine constraints that will allow this methodology to be extended to multi-
dimensional exponential family distributions.

Supplementary Material

On the Existence of Uniformly Most Powerful Bayesian Tests With Application to Non-
Central Chi-Squared Tests. Supplementary Material (DOI: 10.1214/19-BA1194SUPP;
.pdf). The supplementary material has two parts. First part describes an R function to
numerically calculate the value of the non-centrality parameter that defines the alter-
native hypothesis for a UMPBT. The second part provides a plot of r(θ) versus θ in
Theorem 2 for several evidence threshold values γ. The plot is drawn under an example
when θ is the non-centrality parameter of a χ2 distribution with 10 degrees of freedom.

https://doi.org/10.1214/19-BA1194SUPP
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