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Introduction

The study of the Cauchy problem for differential equations in a
Banach space relative to the strong topology has attracted much attention
in recent years [2,4,5,7]. This study has taken two different directions.
One direction is to impose compactness type conditions that guarantee only
existence and the corresponding results are extensions of the classical
Peano's Theorem. The other approach is to utilize dissipative type condi~
tions that assure existence and uniqueness of solutions, and the correspond-
ing results are extensions of the classical Picard's Theorem.

However, a similar study of the Cauchy problem in a Banach space rela-
tive to the weak topology has lagged behind. Recently Szep [7] proved
Peano's Theorem in the weak topology for differential equations in a reflex-
ive Banach space and his main tool is the Eberlein-Smulian Theorem which as-
sures the weak compactness of a closed set in the weak topology. In this
paper we wish to prove this theorem in arbitrary Banach spaces, imposing
weak compactness type conditions. For this purpose we introduce the notion
of measure of weak noncompactness which is parallel to the Kuratowski meas-
ure of noncompactness and develop its properties. We also impose weak dis-

sipative type conditions and prove an existence and uniqueness theorem.

* This work partially supported by a grant from the U.S. Army Research
Office, Durham, North Carolina 27706.



1. Preliminaries

Throughout this paper, (E,||+||) will denote a real Banach space,

E* the dual space, that is the set of all continuous linear functionals on
E, and Ew, the space # endowed with the weak topology. A subbase for
Bw is B = {slz.,d,r] : x € E, ¢ € E*, r > 0} where Slx,¢,r] =

{yek: |¢fz~-y| <rt.

It should be noted that p¢(x,y) = |¢(x - y)| -is a pseudometric, s0
that ‘{p¢ : ¢ € E*} generates a uniformity on E. The weak topology is
the same as the uniform topology generated by {p¢ : ¢ e E*}. We state the
following results in terms of the weak topology, however in general these

can be stated for uniform topologies [€].

Deginition 1.1, A subset 4 of Ew is totally bounded if and only if for all

¢ e B* and € >0, A can be covered by a finite number of ¢ balls of

radius €.

THEOREM 1.1. A set A is compact in the weak topology if and only if it

is weakly complete and totally bounded.

Since our purpose is to work in FEw, we list some necessary defini-

tions below for completeness,

Definition 1.2. Let {yn} be a sequence in &, {mn(t)} be a sequence

of functions mapping the interval I < A, the real line, into E, and
f a function from I x A« B x F into E. We say that
1) _{yn} converges weakly to y € B if {é(yn)} converges to ¢(y) for

all ¢ e E*;



2) {xn(t}} converges weakly uniformly to ax(t) where x ¢ I + F 1if

for € >0, ¢ € E* there exists N = N($,e) such that n > N implies
I¢[xn(t) - x(t)]! < g forall t € I;

3) {yn} is weakly Cauchy if given € > 0, ¢ € E* there exists N =
N(¢,e) such that n, m >N implies l¢(yn - ym)! < gy

4} FE 1is weakly complete Iif every weakly Cauchy sequence converges weakly

to a peoint In Fj

5) w(t) 1is weakly continuous at ¢, if ¢(x(t)) is continuous at tg
for each ¢ € F*;
6) x(t) 1is weakly (Reimann) integrable on [a,b] if there is xg € E
: b
such that ¢(x,) = J ¢(x(s))}ds for each ¢ e E*, and we write
a

b
xp = j x(glde;
a?

7) x(t) is weakly differentiable at ¢y if there exists a point in £,
denoted x'(ty), such that $lz'(ty)) = (¢x)'(ty) fFor each ¢ € E*;

8) F 1is weakly weakly continuous at ‘(ta,mo) if given € > 0, ¢ € E*
there exists § = §(¢,e) and u = uld,e) a weakly open set continuing
xg such that |[¢(f(t,x) - f(to,xc))f < € whenever |t - tol <3 and

x € Uj

9) f is weakly weakly uniformly continuous if given ¢ > 0 and ¢ e E*
there exists & = 8(¢,e) and {¢i P, E* { = 1,2,...,n(¢,5)} such
that |¢(f(t,x) - f(e,y))] < € whenever |t - s| < § and |¢i(x -yl <8

T = 1,2,...4u(t,c);



10) the family {mn(t)} is said to be weakly equicontinuous if given
E>0, ¢ eE* there exists 6 = 6(¢,e) such that |¢(xn(t) - mn(s))! <g
whenever |t - 8| < 6.

The following facts result from the definitions and are stated below

for convenience

. 1) If z(t) is weakly continuous and Ew is weakly complete then x(t)

is weakly integrable.

2) If x(t) is weakly differentiable then (%) is weakly continuous.

‘ t
3) If x(t) is weakly continuocus and F(t) = I w x(s)ds then F!(t) =
a

x(t) where F!(t) is the weak derivative of F.

In its usual form the Ascoli-Arzela Theorem deals with a family of
functions into a metric space. The following Ascoli-Arzela type theorem
can be proved in a manner precisely parallel to that of the usual theorem

and hence we merely state it.

THEOREM 1.2. Let F be a weakly equicontinuous family of functions from
I={tyty +alcR to E. Let {xn} be a sequence in F such that for
each t e, {xn(t)} is weakly pre-compact. Then there exists a sub-
sequence {xn } which converges weakly uniformly on I +to a weakly conti-

k
nuous function «ft).



2. Measure o4 Weak Noncompactness
Here we define the notion of a measure of weak noncompactness of a
bounded set in E which is suitable.for our purpose and develop sgeveral
of the necessary properties of such a measure. Our definition, as will
be seen, is parallel to the Kuratowski measure of noncompactness. Other
forms of measure of weak noncompactness are known [1,6] but are not con-

venlent for our discussion.

Deginition 2.1. For a bounded subset A4 of FE, the measure of weak

noncompactness B(A) 1is a real valued function defined by
B(A) = inf{d > 0 : for each ¢ € E*, ||¢|] = 1 there exist

TysTyseees®,  such that 4 {x : |o(x - 5"7;” < d}

1

N

T

The following lemma is concerned with the properties of R.

Lemma 2.1. Let A and B be bounded subsets of E and {z,} and
{yn} be bounded sequences in E. Then

(1) if 4 B then B(A) < B(B);

(2)  B(A) = B(A’) where 7 denotes the weak closure of A
(3) if Ew is weakly complete then B74) = 0 if and only if M is
weakly compact;

(4)  B(A U B) = max{B(4),B(B)};

(5) B(4) = B(Co 4},

(6} B(A + B) < B(A) + B(B);

7) B({xn}) - B({yn})_i B({mn - yn});

(8) B(x + A) = B(A) where z & E;



(9) B(tA) = tB(4) t > 0;

(10} given € > 0 if for each ¢ € E* |[¢|| = 1 there exists

N = N(d,e) such that n > ¥ implies [¢(xn)! < g ‘then B({xn})_i £;
(11) if ‘{Xk} is a sequence of nonvoid weakly closed subsets of &, X,

mmmmmlhbﬁju.Dﬁﬁu.amZMB%g=0mm

o

n x # ¢.

n=1

Proof. Except for (3) and (10), the proofs of the rest of the properties
of B are similar to the proofs of the corresponding properties of the
Kuratowski measure of noncompactness and hence we merely indicate the proofs
of (3) and (10).

If Zﬁu is weakly compact it is totally bounded which implies
Bmw)-: 0 and thus by (2) B(4) = 0. If B(4A) = 0 then B(Z'u; = 0
which implies Zw iz totally bounded. Since A4 1is closed and the space
is weakly complete Z%is also complete. Thus by Theorem 1.1 Y is
weakly compact. This proves (3).

To prove (10), consider ¢ € E with [[¢ll = 1. The spheres of
radius € about the points O,xl,xz,...,xn(¢,e) cover the entire sequence
{w}.

We need a mean value theorem in this set up similar to the one in the

strong topology. For this purpose we first prove the following Theorem.

THEOREM 2.7, Let FE be a real Banach space, A c F and z € E. If for

all ¢ e E*, ¢(x) € ¢(A) then z € co 4.



Proof. Let x; be any fixed element of 4. Let M = co(4d - {xy1).
Clearly M is closed, convex and O € M. Suppose & =~ xy £ M. Then by a
theorem due to S. Mazur [8] there exists ¢ € E* such that ¢(x - x5) > 1
and ¢(z) <1 on M. But by hypothesis there exists y € A4 such that
¢(x) = $(y). Then ¢z ~ ®g) = ¢y -~ xy). Note that y - a, € M. We
reach a contradiction by observing that 1 < ¢(x - xy) = $ly - xy) <1

—

and therefore « - x; € M. Now given € > 0 there exist {yi} 4,

n n
{a,} with o, >0, i£1 o, = 1 such that |a - &) - i£1 oy, = xi}[ < e,
n n
But |o - @y - [ oy, -z)| = |z~ ] a;4;| < € and therefore
i=1 1=

x € co A.
THEOREM 2.3. Suppose =z € Cb[[t0=tﬂ + al,E] and x(t) is weakly differ-
entiable on [tgsto +al. If ¢ e[tﬁ,to +a) and h > 0 such that

t+h<ty+a then z(t + hé =208 ¢ Golxt(s) selt,t + hll}.

Proof. The weak differentiability of x(#) implies that ¢(t) is differ-
entiable. For each ¢ e E*, by the mean value theorem there exists

t¢ elt,t + k]l such that

$alt + poge(t) (0a) () = g (t ).

Letting A = {x'(s) : e e[t,t + 4], we have

¢{ z(t + hé - x(t} } € (4) for all ¢ e E*.



Consequently by applying Theorem 2.2 we can conclude

x(t + h) - x(t)
h

e colx'le) : 8 e[t,t + h1}.

3. Exdstence of Solutions
This section of the paper contains our main results. Throughout
this section we will assume that Fw is weakly complete.

Consider the Cauchy problem
(3.1) x! = flt,x), x(ty) = xg,

where we will assume that
(Hl) f 1is weakly weakly continuous on Ry and ||f(t,x)]] <M on
Ry where Ry =[(t,z) : ¢ty <t <ty;+a and ||z~ xyl] < bl
Looking at the hypothesis (Hl) it may seem more natural to impose
boundedness on f in terms of each ¢ € E*. However, by the Uniform
Boundedness Theorem it is known that a subset 4 of a normedispace is
bounded if and only if the set {¢(z) : x € A} 1is bounded for each ¢ e E*.
The technique for proving existence results generally follows a three
step procedure. First, a sequence of approximate solutions is constructed.
Second, it is shown that the sequence converges., Third, it i1s proved
that the limit function is a solution. Two of the steps, namely construct-
ing a sequence of approximate solutions for (3.1) and proving that the limit
function is a solution of (3.1) are straight forward. Assertions concern-

ing these two steps are given in the following lemmas.



Lemma 3.1, Let the assumption (Hl) be satisfled and let {sn} > 0 such

that €, 0 as n -+ o be given, Then there exists a sequence of approx-
imate solutions {xnft)} satisfying

(1) z (ty) = 23

(ii) {xn(t)} is weakly equicontinuous and uniformly bounded on [¢,,8, + ul;

(iii) xé(t) = f(tjxn(t - en)}, t elty,ty + al, where o = min(a,b/M).

Lemma 3.7. Let the assumption (Hl) be satisfied. Suppose that {xn(t)}
converge weakly to x(t) on [to,to + al. Then x=(t) is a solution of
the Cauchy problem (3.1).

For a proof of Lemmas 3.1 and 3.2 see [7].

We shall now concentrate our attention to show the convergence of the
sequence of approximate solutions. As in the case of existence of strong
solutions, we utllize weak compactness type conditions and weak dissipative
type conditions to achieve this goal. Note that if we assume that FE is
reflexive, we do not need any additional assumptions Ffor proving an existence
result because of the Eberlein Smulian Theorem. This is precisely the
result in [7].

(a) Weak Compactness Type Conditions

Here we shall employ the measure of weak noncompactness B discussed

in séction 2, to impose conditions on f. Specifically, let us first prove

the following result.

THEOREM 3.1. Let the hypothesis (Hl) hold. Suppose further that

B(F(I x A)) < g(B(A)) where I = [tg,ty +al, ACRy and g e CLH & 1.
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Assume that u(t) = 0 1is the unique solution of u' = g(u), u(to) =0
on [to,to + al. Then there exists a solution (t) for the problem (3.1)

on [t,.t, + 0] where o = min(a,b/M).

Proof. Let {mn(t)} be the sequence of approximate solutions of (3.1)
constructed in Lemma 3.1. In view of Theorem 1.2 and Lemma 3.2, it is
sufficient to show B({xh(t)}:;l) =0, We define m(t) = 8({wn(t)}:;l) and
note that m(ty) = 0. The continuity of mf¢) is clear from the equiconti-

nuity of the sequence {wn(t)} and property (7) of B in Lemma 2.1. Now

D*mt) = tim, eup THEZL h;)l - m(t)

t+9 helo,t]

B({wn(t + h) - xn(t)})
sup % » by property (7) of 8.
hef0,1]

< lim
= g’

Using the mean value Theorem 2.3, we get

o«
Dﬁw(t)‘ﬁ lim sup B[ U co {(x'(s) : 8 e[t,t + D]} ]
0 helo,t] n=1 n

{ o
< tim 8 co U {fls,z (g - €, : 8 elt,t + 1]} ]
™ ' n=) "

r [+ ]
= 1im, B} U {f(s,v (8 ~c ) : 8 elt,t + 1]} )
ot lp=r M n

< tim Bl U {f(Izlz (s - ) : o elt,t + 11} )
™0 \ n=l

A

lim, g B{ U {x (s ~¢) : 8 elt,t+ 1]}
o' { n=y "
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(ii) B({z + hf(hx) : x € A) - B(A) < hg(t,B(A)) for h >0 sufficiently
small, ¢ eltg,tq + ] and A€ R, where g e CLR x Rt ,R1;
(ii1) u(t) = 0 1is the only solution on u' = g(t,u), ul(tg) =0 on

{ty,t + o] then the conclusion of Theorem 3.] is true.

Proof. We proceed as in Theorem 3.1 and set mit) = B({xh(t)}). In this
case we don't use mean value Theorem 2.3 and hence part of the proof is

different. Now,

otmt) = ﬁgz; L8 {z,(t + W)} - B({z,(t)})

1
5_%‘?} i Bz, () + nf(t, (£))}) - Bl{m, (8)})

LBtz (¢ + W}) - B({z, (t) + hf(t,m (8))}),

+ Tim,
h+o

Hence by using the assumption we get

Dm(t) < gtt,m(t)) + Tim

a{ @ (t +h) -z (t) - hft,x, (t)
Fy
h+0

h

We shall next show that

—_— x (t +h) -2 (t) - hflt,x (f))
Zim1L B L n o = 0,
h+0 h

For this purpose note that
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t+h
1 i
z{zn(t + h) - xn(t) - hf(t,xn(t}) =% It [fTs,xn(s - En)) - f(t,xn(t)}ﬂ
given € > 0 ¢ € E* with ||¢|] = 1, by the weak weak uniform continuity
of f, there exists § = 6(¢,g) >0 and {¢£ | £ =1,2,...p such that
loCf(t,x) - Flt,yl)]| < € whenever e - t] <6 and [¢i(x -yl <6
1 =1,2,...p. By the equicontinuity of the family {xn(t)} there exist

Y; such that |¢£(mh(t) - xn(e))‘ < § whenever |t - 8] < Y;o Lety =

min %%u Choose #h = min{8,yY} and choose N sufficiently larger so that
if n >N then €, < Y. Thus on [t,t + h] we have [t - 8| < § and

l¢i(xﬁ(3 - €/} - mn(t}t < 8. Hence we have

ol

t+h
J t¢ f(s,mn(s - en))

%¢ z,(t +h) ~x () - hflt,a, () ,_i ,

”~
« h ¢

I

~ flt,x, (t)) 'db <

By property (10} of Lemma 2.1 this yields

. { z,(t + h) - (t) - hf(t,z (t)) } cz
h

But this is true for arbitrary € and h sufficiently small. Therefore

Tim, 8

xn(t + h) - xn(&) - hf(t,xn(t)) .
ho”

h

Hence we have D'm(t) < g(t,m(t)), ¢t eltg,tq + al. By the comparison theorem
[3] this implies m(t) < r(t) ¢t eltg,tq + 0] where »r(t) is the maximal
solution of u' = g(t,u) u(tyg) = 0. By hypothesis r(t) = 0 which implies

m(t) 2 0 and the proof is complete.
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<g [%g;rg,{_ 8( ngl {z, (s - € ) : o elt,t + 11} )

=g (Bla, (¢ - En)}nzl)
given € > 0. By the weak equicontinuity of the family {mn(tl}, given
¢ € E* for €, sufficiently small or equivalently »n sufficiently larg-
er ]¢(xn(t - g} - xn(y))[ < €. By property (10) of Lemma 2.1 we con-
clude that B({xh(t -e ) - (t)}) <e. But € was arbitrary so that
B({xn(t -e) - z (t)}) = 0.

Since {a:n(t' -e )= {xn(t -e) - () + a:n(t)} {xn(t -e )+
Y,(t)} + {z (t)} it follows B(lx, (t -~ € )} < B({z, (t - € -« (t)}) +
B{x, (t)}) =0 + B({x, (t)}). Similarly B({x, (t)}) < Bz (¢ - e, /1) and
therefore B({xn(t - En}}) = S({xn(t)}. Consequently we obtain D+h(t)_§
gim(t)), t eltg,tg + al. This implies by the comparison theorem [3] that
m(t) < r(t) where pr(t) is the makimal solution of u' = gl(u) wu(ty) = 0.
Since by assumption »(t) = 0 we have m(t) = 0. The proof of the theorem
is thus complete.

If we wish to weaken the compactness type assumpfion in Theorem 3.1,
namely B(f(I x A)) < g(B(4)), we need to strengthen continuity assumption

on f. The next result is concerned with this situation.

THEOREM 3.2. Assume that
(i) f  is weakly weakly uniformly continuous on Ry and that

[F(tx)|] < M on Ry;
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(B) Weak Dissipative Type Conditions
Here we shall utilize a weak dissipative type condition on f to

prove existence and uniqueness of solutions of the problem (3.1).

Theonem 3.3. Suppose that
(i) f is weakly weakly uniformly continuous on Ry and
Hf(t,xd || <M on Ry,

(ii) for each ¢ e E* with |[¢]] =1,

im

;:lﬂx—y+Mﬂhﬂ—fﬂmHﬂ"iwm-WIﬁmmwm_y”)
0

where g € Clltg.tgq + alx[0,2b1,R 15
(iii) wu(tp) = 0 is the only solution u' = g(t,u) ultyg) =0 on [tgstg + al
Then there exists a unique solution x(t) of (3.1) on [#g,tg + o] where

o = min{a,b/M}.

Progf. As before, let {xn(t)} be the family of approximate solutions for
(3.1) constructed as in Lemma 3.1. We want to show that {xn(t)} are

weakly cauchy u given ¢,€ we need to find N such that n, m > N implies
lo(x, (¢) - @ (8))] < €.

For € sufficiently small the maximal solutions r(t,e) of u' =
g(t,;) + €, ultyg) =€ converge to zero as € =+ 0 [3]. Thus for € suffi-
ciently small, & < gy, r(t,e) < €. By the weak weak uniform continuity of
Fo|o(f(t,x) - fla,y))| < €1/2 whenever |t - 8| <& and |¢,(x - y)| <&

% =1,2,...p. By the equicontinuity of the family l¢i(xh(t) - xh(s))ﬁ < 8
whenever |t - 8} < 8,0 Let y = min  {y;}. Choose ¥ such that

1=1,2,404p
En <y for n>N.
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Let n, m >N and define m(t) = [cb(:cn(t) - mm(t))l. Then

|6z, (8) - & (t) + k(f(t,2,(t) - flt,a (t))| = |o(x, (t) - zp(E)) |

pim(t) < 'i'i?n‘+
h+0 h
. ‘2_:5". |0(z, (t + 1) -z (¢t + h)) - Oz, (t) ~ & (t) + h(f(t,m, (t) = fltyz, (1
h’*0+ 5

This implies that

Ol (t + k) ~ z(t) - hf(t,x (£))
D'met) < glmit)) + Tim, |—2 - (%) |
h+0 h !
Olx (t + k) -z (t) - hf(t,xm(t)))g
n l
—_— (x (t + k) ~ & (t) - hf(t,x, (t)))
But Iim iz, n - B, t <

wro? h | =

+ lim
nrot

+ ¢(a:n(t + h) - :cn(A - hf,(t,xn(t - en)))
w0 h

* E;;@ locrit,e (¢ - € )) - Flt,z, (¢)))]

; |o(x (¢t + B} - & _(t) ~ hf(t,z (t)))]
Similarly 725; il z n < ey /2.
B0 h

Hence we have D'm(t) < gltym(t)) + €y m(ty) = 0. Thus m(t) < rlt,eq) < €.
We have now shown that {¢xn(t)} is Cauchy for each ¢. Since the space is

weakly complete {xn(t)} converges weakly to a function «x(t).
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Lemma 3.2 assures that x(%t) 1is a solution of (3.1).
To see that the solution is unique, suppose that z(t) and yft) are

both solutions of (3.1). Let p(t) = |¢(x(t) - y(t))].

T p(t + h) - p(t) <
o’ h -

lolx(t) - y(t) + h(F(t,m(t)) - flty(t))}| - |elxlt) - y(t)))]

im

ot h

- [o(z(t + h) - @(t) - hf(t,0))] loty(t + h) ~ y(t) - Bf(t,y))]
+ Lim + Lim

h+o" h ot h

Thus D+p(t) < glt,p(t)), p(ty) =0, teltyt; +al. and 02 m(t) < r(t)
Z 0. We conclude m(t) = 0 and therefore o¢x = ¢y for each ¢ € E* which

implies x(t) = y(t) completing the proof.

Remark. 1In the dissipative condition assumed in Theorem 3.3, we could
replace g by 9 for each ¢ provided fgp(t,u)l <M for ¢ e[to,to + al

and 0 < u < 2b.
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