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In this paper, we consider a linear one-dimensional Bresse system consisting of

three hyperbolic equations coupled in a certain manner under mixed homoge-

neous Dirichlet-Neumann boundary conditions. Here, we consider that only the

longitudinal displacement is damped, and the vertical displacement and shear

angle displacement are free. We prove the well-posedness of the system and

some exponential, lack of exponential and polynomial stability results depend-

ing on the coefficients of the equations and the smoothness of initial data. At

the end, we use some numerical approximations based on finite difference tech-

niques to validate the theoretical results. The proof is based on the semigroup

theory and a combination of the energy method and the frequency domain

approach.
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1 INTRODUCTION

In this paper, we consider the one-dimensional Bresse system model consisting of three coupled hyperbolic equations as

follows:

⎧⎪⎨⎪⎩

𝜌1𝜑tt − k(𝜑x + 𝜓 + l w)x − lk0 (wx − l𝜑) = F1 in (0,L) × (0,∞) ,

𝜌2𝜓tt − b𝜓xx + k (𝜑x + 𝜓 + l w) = F2 in (0,L) × (0,∞) ,

𝜌1wtt − k0(wx − l𝜑)x + lk (𝜑x + 𝜓 + l w) = F3 in (0,L) × (0,∞) ,

(1.1)

along with the initial data

⎧⎪⎨⎪⎩

𝜑 (x, 0) = 𝜑0 (x) , 𝜑t (x, 0) = 𝜑1 (x) in (0,L) ,

𝜓 (x, 0) = 𝜓0 (x) , 𝜓t (x, 0) = 𝜓1 (x) in (0,L) ,

w (x, 0) = w0 (x) , wt (x, 0) = w1 (x) in (0,L) .

(1.2)

where L > 0, Fi ∶ (0,L) × (0,∞) → R are the external forces (controllers) and w, 𝜑 and 𝜓 represent, respectively,

the longitudinal, vertical, and shear angle displacements. For more details, we refer to Lagnese et al.1,2 The coefficients

𝜌1, 𝜌2, b, k, k0 and l are positive constants, the initial data𝜑0,𝜑1,𝜓0,𝜓1,w0, andw1 belong to a suitable Hilbert space. For

the last few years, many researchers studied the well-posedness and the stability of Bresse systems (1.1). Under different
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types of controls Fi, various stability results have been yet obtained depending on the nature and the number of controls,

the regularity of initial data, and the following parameters:

s1 =
k

𝜌1
, s2 =

b

𝜌2
and s3 =

k0
𝜌1

; (1.3)

for this purpose, we refer the reader to previous studies3,4,6-10 in case of (local or global, linear or nonlinear) frictional

dampings and De Lima Santos et al11, Guesmia and Kafini,12,13 and Guesmia14 in case of memories. In some papers, it

was proved that, when each equation of (1.1) is directly damped, that is, F1F2F3 ≠ 0, the stability of (1.1) holds regardless

to s1, s2 and s3. However, when at least one equation in (1.1) is free, that is, F1F2F3 = 0 and (F1,F2,F3) ≠ (0, 0, 0), system

(1.1) is still stable depending on the relation between the coefficients s1, s2, and s3 like

s1 = s2 = s3. (1.4)

When (F1,F2,F3) = (0, 0, 0), system (1.1) is conservative, which means that the energy is conserved and equal to the

energy of initial data along the trajectory of solutions.

We need to mention here that similar conditions on the coefficients were established in the case of Cauchy problem for

the Bresse system (see Ghoul et al15). Also recent new decay and new conditions on the coefficients were introduced and

established in the case of thermoelastic Bresse system with second sound (see Afilall et al16). Notice that, when the three

hyperbolic equations in Bresse system are (all or some of them) directly damped; that is, (F1,F2,F3) ≠ (0, 0, 0), system

(1.1) is dissipative. In this paper, we consider (1.1) and (1.2) along with a mixed boundary conditions of the form:

{
𝜑 (0, t) = 𝜓x (0, t) = wx (0, t) = 0 in (0,∞) ,

𝜑x (L, t) = 𝜓 (L, t) = w (L, t) = 0 in (0,∞) ,
(1.5)

and here, only the third hyperbolic equation is damped, that is,

(F1,F2,F3) = (0, 0,−𝛿wt),

where 𝛿 is a positive constant . We prove the well-posedness, and we establish some decay rates for the solutions (like

exponential stability, nonexponential stability, and polynomial stability) depending on a new relationship between the

coefficients of (1.1) and the smoothness of the initial data.

Without loss of generality, we consider the domain (0, 1) instead of (0,L). The proof of the well-posedness is based on

the semigroup theory. However, the stability results are proved using the energy method combining with the frequency

domain approach. The paper is organized as follows. In Section 2, we prove the well-posedness of (1.1), (1.2), and (1.5). In

Sections 3 and 4, we show, respectively, the lack of exponential stability and the exponential stability results for (1.1), (1.2),

and (1.5). The polynomial decay result for (1.1), (1.2), and (1.5) is proved in Section 5. Numerical approximations using

finite difference techniques is introduced in Section 6. Concluding remarks and open questions are given in Section 7.

2 WELL-POSEDNESS

In this section, we prove the existence, uniqueness and smoothness of solutions for (1.1), (1.2), and (1.5) using the semi-

group theory. In order to transform (1.1), (1.2), and (1.5) into a first-order evolution system on a suitable Hilbert space,

we introduce the vector functions

Φ = (𝜑, �̃�, 𝜓, �̃�, w, w̃)T and Φ0 = (𝜑0, 𝜑1, 𝜓0, 𝜓1, w0, w1)
T ,

where �̃� = 𝜑t, �̃� = 𝜓t and w̃ = wt. System (1.1) with initial data (1.2) can be written as

{
Φt = Φ in (0,∞) ,

Φ (0) = Φ0,
(2.1)



AFILAL ET AL. 3

where is a linear operator defined by

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃�

k

𝜌1
(𝜑x + 𝜓 + l w)x +

lk0
𝜌1

(wx − l𝜑)

�̃�

b

𝜌2
𝜓xx −

k

𝜌2
(𝜑x + 𝜓 + l w)

w̃

k0
𝜌1
(wx − l𝜑)x −

lk

𝜌1
(𝜑x + 𝜓 + l w) − 𝛿

𝜌1
wt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2)

Now, we introduce the following spaces:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

H1
∗ (0, 1) =

{
𝑓 ∈ H1 (0, 1) ∶ 𝑓 (0) = 0

}
,

∼

H1
∗ (0, 1) =

{
𝑓 ∈ H1 (0, 1) ∶ 𝑓 (1) = 0

}
,

H2
∗ (0, 1) = H2 (0, 1) ∩H1

∗ (0, 1) ,
∼

H2
∗ (0, 1) = H2 (0, 1) ∩

∼

H1
∗ (0, 1)

and the energy space is given by

 = H1
∗ (0, 1) × L

2 (0, 1) × (
∼

H1
∗ (0, 1) × L

2 (0, 1))2,

equipped with the inner product, for Φ𝑗 = (𝜑𝑗 , �̃�𝑗 , 𝜓𝑗 , �̃�𝑗 , w𝑗 , w̃𝑗)
T ∈ , 𝑗 = 1, 2,

⟨Φ1,Φ2⟩ = k⟨(𝜑1x + 𝜓1 + l w1) , (𝜑2x + 𝜓2 + l w2)⟩L2(0,1) + b⟨𝜓1x, 𝜓2x⟩L2(0,1)
+ k0⟨(w1x − l𝜑1) , (w2x − l𝜑2)⟩L2(0,1) + 𝜌1⟨�̃�1, �̃�2⟩L2(0,1)
+ 𝜌2⟨�̃�1, �̃�2⟩L2(0,1) + 𝜌1⟨w̃1, w̃2⟩L2(0,1),

and the corresponding norm in the energy space will be given by

‖𝜑‖2 = k ‖𝜑x + 𝜓 + l w‖2L2(0,1) + b ‖𝜓x‖2L2(0,1) + k0 ‖wx − l𝜑‖2L2(0,1)
+ 𝜌1 ‖�̃�‖2

L2(0,1)
+ 𝜌2||�̃�||2

L2(0,1)
+ 𝜌1 ‖w̃‖2

L2(0,1)
.

The domain of the operator will be

D () = {Φ ∈  | Φ ∈ , 𝜑x (1) = 𝜓x (0) = wx (0) = 0} .

Based on the definition of and, one can see that

D () =

⎧⎪⎨⎪⎩

Φ ∈ | 𝜑 ∈ H2
∗ (0, 1) ; 𝜓, w ∈

∼

H2
∗ (0, 1) ; �̃� ∈ H1

∗ (0, 1) ;

�̃� , w̃ ∈
∼

H1
∗ (0, 1) ; 𝜑x (1) = 𝜓x (0) = wx (0) = 0

⎫⎪⎬⎪⎭
.

Since the homogeneous Dirichlet-Neumann boundary conditions in (1.5) are included in the definition of H1
∗ (0, 1),

∼

H1
∗ (0, 1), and D (), it follows that, if 𝜑 ∈ D () and satisfies (2.1), then (1.1), (1.2), and (1.5) holds.
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It is clear from the homogeneous Dirichlet boundary conditions in H1
∗ (0, 1) and

∼

H1
∗ (0, 1) that, if (𝜑,𝜓,w) ∈ H1

∗ (0, 1) ×
∼

H1
∗ (0, 1) ×

∼

H1
∗ (0, 1) satisfying

k ‖(𝜑x + 𝜓 + l w)‖2L2(0,1) + b ‖𝜓x‖2L2(0,1) + k0 ‖(wx − l𝜑)‖2L2(0,1) = 0,

then 𝜓 = 0, 𝜑 = −c sin (lx) and w = c cos (lx), where c is a constant such that c = 0 or l = 𝜋

2
+ m𝜋, for some m ∈ N.

Furthermore, we get 𝜑 = 𝜓 = w = 0 if

l ≠ 𝜋

2
+m𝜋, ∀m ∈ N. (2.3)

Here and after we assume that (2.3) is satisfied. Thus, is a Hilbert space and D () is dense in. If the domain (0, 1)

is replaced by (0,L), then (2.3) becomes

lL ≠ 𝜋

2
+m𝜋, ∀m ∈ N. (2.4)

Now, we prove that the operator generates a C0 semigroup of contractions on . For this purpose, it is sufficient to

prove that is maximal monotone. A direct calculation gives

⟨Φ,Φ⟩ = −𝛿 ‖w̃‖2
L2(0,1)

≤ 0, (2.5)

which implies that is dissipative in. On the other hand, based on the theory elliptic equations, it is easy (see Pazy17)

to show that 0 ∈ 𝜌 (); that is, for any F = (𝑓1, … , 𝑓6)
T ∈ , there exists Z = (z1, … , z6)T ∈ D () satisfying

Z = F. (2.6)

Thus, the well-posedness result for (2.1) is stated in the following:

Theorem 1. Assume that (2.3) holds. For any p ∈ N and 𝜑0 ∈ D(p), system (2.1) admits a unique solution

Φ ∈ ∩
p
𝑗=0C

p−𝑗
(
R+;D

(𝑗
))

, (2.7)

where D
(𝑗

)
is endowed by the graph norm ‖·‖D(𝑗 ) =

∑𝑗

r=0 ‖r·‖ .
In the coming sections, the following stated theorems will play an essential role in our proof:

Theorem 2. (18 and19) A C0 semigroup of contractions on aHilbert space generated by an operator is exponentially

stable if and only if

iR ⊂ 𝜌 () and sup
𝜆∈R

‖‖‖(i𝜆I −)−1
‖‖‖()

< ∞. (2.8)

Theorem 3 (Liu and Rao18). If a bounded C0 semigroup et on a Hilbert space generated by an operator satisfies,

for some 𝑗 ∈ N∗,

iR ⊂ 𝜌 () and sup
|𝜆|≥1

1

𝜆𝑗
‖‖‖(i𝜆I −)−1

‖‖‖()
< ∞. (2.9)

Then, for any p ∈ N∗, there exists a positive constant cp such that

‖‖‖e
tz0‖‖‖ ≤ cp‖z0‖D(p)

(
ln t

t

) p

𝑗

ln t, ∀z0 ∈ D
(p

)
, ∀t > 0. (2.10)

3 LACK OF EXPONENTIAL STABILITY

In this section, we prove that the semigroup associatedwith the Bresse systemwith frictional damping is not exponentially

stable if (1.4) or

l2 ≠ 𝜌2k0 + 𝜌1b

𝜌2k0

(
𝜋

2
+m𝜋

)2
+

𝜌1k

𝜌2 (k + k0)
, ∀m ∈ Z, (3.1)

does not hold. Our main result is given as follows:
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Theorem 4. Let us assume that

does not hold or
b

𝜌2
≠ k

𝜌1
or

b

𝜌2
≠ k0

𝜌1
or k ≠ k0.

Then, the semigroup associated with (1.1) and (1.2) is not exponentially stable.

Proof. We prove that the first condition in (2.8) is equivalent to (3.1) by proving that the unique

Φ = (𝜑, �̃�, 𝜓, �̃� ,w, w̃)T ∈ D()

satisfying

 Φ = i 𝜆 Φ (3.2)

is Φ = 0 if and only if (3.1) holds. Equation (3.2) is equivalent to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̃� = i𝜆𝜑, �̃� = i𝜆𝜓, w̃ = i𝜆w,

k

𝜌1
(𝜑x + 𝜓 + l w)x +

lk0
𝜌1

(wx − l𝜑) = i𝜆�̃�,

b

𝜌2
𝜓xx −

k

𝜌2
(𝜑x + 𝜓 + l w) = i𝜆�̃�,

k0
𝜌1
(wx − l𝜑)x −

lk

𝜌1
(𝜑x + 𝜓 + l w) − 𝛿

𝜌1
w̃ = i𝜆w̃.

(3.3)

Using (2.5), we find

−𝛿 ‖w̃‖2
L2(0,1)

= Re ⟨Φ,Φ⟩ = Re ⟨i𝜆 Φ,Φ⟩ = Re i𝜆 ‖Φ‖2 = 0.

So w̃ = 0. From the third equation in (3.3), we get w = 0. Therefore, (3.3) is reduced into the following:

⎧
⎪⎪⎨⎪⎪⎩

�̃� = i𝜆𝜑, �̃� = i𝜆𝜓,

k(𝜑x + 𝜓)x − l2k0𝜑 = −𝜌1𝜆
2𝜑,

b𝜓xx − k (𝜑x + 𝜓) = −𝜌2𝜆
2𝜓,

−k0𝜑x − k (𝜑x + 𝜓) = 0,

(3.4)

which is equivalent to �̃� = i𝜆𝜑, �̃� = i𝜆𝜓 and

⎧⎪⎨⎪⎩

(
l2k0 − 𝜌1𝜆

2
)
𝜑 − k(𝜑x + 𝜓)x = 0,

−𝜌2𝜆
2𝜓 − b𝜓xx + k (𝜑x + 𝜓) = 0,

𝜑x + 𝜓 = −
k0
k
𝜑x.

(3.5)

By deriving (3.5)3 and combining with (3.5)1, we see that 𝜑 satisfy the following equation:

𝜑xx + 𝛼𝜑 = 0, (3.6)

where 𝛼 =
l2k0−𝜌1𝜆

2

k0
. At this stage, we distinguish three cases.

Case 1:

𝜆2 =
l2k0
𝜌1
. Then,

𝜑(x) = c1x + c2,

for c1, c2 ∈ C. Using the boundary conditions

𝜑 (0) = 𝜑x (1) = 0, (3.7)
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we find

𝜑 = 0, (3.8)

which implies that, using the first two equations in (3.4) and the last one in (3.5),

∼
𝜑 = 0 (3.9)

and

𝜓 =
∼
𝜓 = 0. (3.10)

Consequently, we get

Φ = 0. (3.11)

Case 2: 𝜆2 >
l2k0
𝜌1
. Then,

𝜑(x) = c1e
√
−𝛼x + c2e

−
√
−𝛼x.

Using again the boundary conditions (3.7), we find (3.8), and similarly as before, we arrive at (3.11).

Case 3: 𝜆2 <
l2k0
𝜌1
. Then,

𝜑(x) = c1 cos
(√

𝛼x
)
+ c2 sin

(√
𝛼x

)
.

Using the boundary conditions (3.7), we deduce that c1 = 0, and

c2 = 0 or ∃ m ∈ Z ∶ 𝛼 =
(
𝜋

2
+m𝜋

)2
. (3.12)

If c2 = 0, then (3.8) holds, and as before, we find (3.11). If c2 ≠ 0, then, by (3.12),

∃ m ∈ Z ∶
l2k0 − 𝜌1𝜆

2

k0
=

(
𝜋

2
+m𝜋

)2
. (3.13)

Therefore, (3.5)3 is equivalent to

𝜓(x) = −c2

(
1 +

k0
k

)√
𝛼 cos

(√
𝛼x

)
, (3.14)

and then the first two equations in (3.5) are reduced to

𝜆2 =
k0

[
kk0 + bl2 (k + k0)

]
(k + k0) (k0𝜌2 + b𝜌1)

. (3.15)

We see that (3.13) and (3.15) lead to

∃ m ∈ Z ∶ l2 =
𝜌2k0 + 𝜌1b

𝜌2k0

(
𝜋

2
+m𝜋

)2
+

𝜌1k

𝜌2 (k + k0)
;

that is (3.1) does not hold. So, if (3.1) holds, we get a contradiction, and hence, c2 = 0 and, as before, we find (3.11). If

(3.1) does not hold, then, for 𝜆 ∈ R satisfying (3.15), the function

Φ(x) = c2

(
sin

(√
𝛼x

)
, i𝜆 sin

(√
𝛼x

)
,−

(
1 +

k0
k

)√
𝛼 cos

(√
𝛼x

)
,

−i𝜆

(
1 +

k0
k

)√
𝛼 cos

(√
𝛼x

)
, 0, 0, 0, 0

)T

is a solution of (3.2), for any c2 ∈ C, and then i𝜆 ∉ 𝜌 (). Thus, we proved that i R ⊂ 𝜌 () is equivalent to (3.1).

We prove now that the second condition in (2.8) is not satisfied. We have to prove that there exist sequences (𝜆n)n ⊂

R and (Fn)n ⊂ , with ‖Fn‖ ≤ 1, for which we have

||(𝜆nI −)−1Fn
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Φn

|| → ∞, (3.16)
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therefore, we have

𝜆nΦn −Φn = Fn. (3.17)

Rewriting the spectral equation in terms of its components, we have

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i𝜆n𝜑n −
∼
𝜑n = 𝑓1n,

i𝜆n𝜌1
∼
𝜑n − k(𝜑nx + 𝜓n + l wn)x − lk0 (wnx − l𝜑n) = 𝜌1𝑓2n,

i𝜆n𝜓n −
∼
𝜓n = 𝑓3n,

i𝜆n𝜌2
∼
𝜓n − b𝜓nxx + k (𝜑nx + 𝜓n + l wn) = 𝜌2𝑓4n,

i𝜆nwn −
∼
wn = 𝑓5n,

i𝜆n𝜌1
∼
wn − k0(wnx − l𝜑n)x + lk (𝜑nx + 𝜓n + l wn) + 𝛿

∼
wn = 𝜌1𝑓6n.

(3.18)

Let us take

𝑓4n(x) = c cos(Nx), and 𝑓1n = 𝑓2n = 𝑓3n = 𝑓5n = 𝑓6n = 0, (3.19)

where N =
(2n+1)𝜋

2
and c is a constant satisfying 0 < |c| ≤ 1√

𝜌2
, so

‖Fn‖2 = 𝜌2 ‖𝑓4n‖2L2(0,1) = 𝜌2|c|2 ∫
1

0

cos2 (Nx) dx ≤ 1.

Choosing {
𝜑n(x) = 𝛼1 sin (Nx) , 𝜓n(x) = 𝛼2 cos (Nx) , wn(x) = 𝛼3 cos (Nx) ,

�̃�n(x) = i𝜆n𝛼1 sin (Nx) , �̃�n(x) = i𝜆n𝛼2 cos (Nx) , w̃n(x) = i𝜆n𝛼3 cos (Nx) ,

where 𝛼1, 𝛼2, 𝛼3 are constants depending on N (will be fixed later). Then, we get

⎧⎪⎨⎪⎩

[
kN2 + l2k0 − 𝜆2n𝜌1

]
𝛼1 + kN𝛼2 + l (k + k0)N𝛼3 = 0,

[
bN2 + k − 𝜆2n𝜌2

]
𝛼2 + kN𝛼1 + lk𝛼3 = 𝜌2c,[

k0N2 + i𝛿𝜆n + l2k − 𝜆2n𝜌1
]
𝛼3 + l (k + k0)N𝛼1 + lk𝛼2 = 0.

(3.20)

We have to discuss the two cases

𝜌1b − 𝜌2k ≠ 0 and [𝜌1b − 𝜌2k = 0 and k − k0 ≠ 0],

Case 1: 𝜌1b − 𝜌2k ≠ 0. Let us choose 𝜆n =

√
b

𝜌2
N2 +

kk0
𝜌2(k+k0)

. Then, (3.20) becomes

⎧⎪⎪⎨⎪⎪⎩

[(
k −

𝜌1b

𝜌2

)
N2 + l2k0 −

𝜌1kk0
𝜌2(k+k0)

]
𝛼1 + kN𝛼2 + l (k + k0)N𝛼3 = 0,

k2

k+k0
𝛼2 + kN𝛼1 + lk𝛼3 = 𝜌2c,

[(
k0 −

𝜌1b

𝜌2

)
N2 + i𝛿𝜆n + l2k −

𝜌1kk0
𝜌2(k+k0)

]
𝛼3 + l (k + k0)N𝛼1 + lk𝛼2 = 0.

(3.21)

From (3.21)2, we get

𝛼1 =
𝜌2c − lk𝛼3 −

k2

k+k0
𝛼2

kN
. (3.22)

By substituting (3.22) into (3.21)3 and into (3.21)1, we obtain, respectively,

𝛼3 =
𝜌2lc(k + k0)

k
[(

𝜌1b

𝜌2
− k0

)
N2 − i𝛿𝜆n + l2k0 +

𝜌1kk0
𝜌2(k+k0)

] (3.23)
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and

𝛼2 =

[
(𝜌2c − lk𝛼3)

(
k −

𝜌1b

𝜌2

)
+ lk(k + k0)𝛼3

]
N2 + (𝜌2c − lk𝛼3)

[
l2k0 −

𝜌1kk0
𝜌2(k+k0)

]

k2

k+k0

[
−

(
𝜌1b

𝜌2
+ k0

)
N2 + l2k0 −

𝜌1kk0
𝜌2(k+k0)

] . (3.24)

We see that (3.23) and the fact that limn→∞𝜆n = ∞ imply that

lim
n→∞

𝛼3 = 0, (3.25)

therefore,

lim
n→∞

𝛼2 =
c(k + k0)(𝜌1b − 𝜌2k)

k2
(

𝜌1b

𝜌2
+ k0

) ≠ 0 (3.26)

since 𝜌1b − 𝜌2k ≠ 0. Then,

lim
n→∞

|𝛼2|N = ∞. (3.27)

Finally, using the norm of 𝜓nx in L
2(0, 1), we obtain

‖Φn‖2 ≥ b ‖𝜓nx‖2L2(0,1) = b|𝛼2|2N2 ∫
1

0

sin2 (Nx) dx

≥ b

2
|𝛼2|2N2 ∫

1

0

(1 − cos (2Nx)) dx =
b

2
|𝛼2|2N2

→ ∞. (3.28)

Case 2: 𝜌1b − 𝜌2k = 0 and k − k0 ≠ 0. Let us choose 𝜆n =

√
k

𝜌1
N2 +

k√
𝜌1𝜌2

N. Then, (3.20) becomes

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(
−

𝜌1k√
𝜌1𝜌2

N + l2k0

)
𝛼1 + kN𝛼2 + l (k + k0)N𝛼3 = 0,

(
−

𝜌2k√
𝜌1𝜌2

N + k

)
𝛼2 + kN𝛼1 + lk𝛼3 = 𝜌2c,

[
(k0 − k)N2 + i𝛿𝜆n −

𝜌1k√
𝜌1𝜌2

N + l2k

]
𝛼3 + l (k + k0)N𝛼1 + lk𝛼2 = 0.

(3.29)

From (3.29)1 we get, for N >
l2k0

√
𝜌1𝜌2

𝜌1k
,

𝛼1 =
kN𝛼2 + l(k + k0)N𝛼3

𝜌1k√
𝜌1𝜌2

N − l2k0
. (3.30)

By substituting (3.30) into (3.29)3, we find, for N >
l2k0

√
𝜌1𝜌2

𝜌1k
,

𝛼3 =

lk

[
(k + k0)N2 +

𝜌1k√
𝜌1𝜌2

N − l2k0

]
𝛼2

(
−

𝜌1k√
𝜌1𝜌2

N + l2k0

)[
(k0 − k)N2 + i𝛿𝜆n −

𝜌1k√
𝜌1𝜌2

N + l2k

]
− l2(k + k0)2N2

. (3.31)

By substituting (3.30) and (3.31) into (3.29)2, we obtain, for N >
l2k0

√
𝜌1𝜌2

𝜌1k
,

𝛼2 =
a1
a2

, (3.32)

where

a1 = −𝜌2c

(
𝜌1k√
𝜌1𝜌2

N − l2k0

)2 [
(k0 − k)N2 + i𝛿𝜆n −

𝜌1k√
𝜌1𝜌2

N + l2k

]



AFILAL ET AL. 9

+𝜌2cl
2(k + k0)

2

(
−

𝜌1k√
𝜌1𝜌2

N + l2k0

)
N2

and

a2 = l2k2

[
(k + k0)N

2 +
𝜌1k√
𝜌1𝜌2

N − l2k0

]2

+ l2(k + k0)
2

(
l2kk0 −

𝜌1k2 + l2kk0𝜌2√
𝜌1𝜌2

N

)
N2

+

(
l2kk0 −

𝜌1k2 + l2kk0𝜌2√
𝜌1𝜌2

N

)(
𝜌1k√
𝜌1𝜌2

N − l2k0

)[
(k0 − k)N2 + i𝛿𝜆n −

𝜌1k√
𝜌1𝜌2

N + l2k

]
.

We see that (3.32) implies that

lim
n→∞

|𝛼2| =
⎧⎪⎨⎪⎩

||||
c𝜌1𝜌2(k−k0)

k[𝜌2l2(k+3k0)+𝜌1(k−k0)]

|||| , i𝑓 𝜌2l2 (k + 3k0) + 𝜌1 (k − k0) ≠ 0,

∞, i𝑓 𝜌2l2 (k + 3k0) + 𝜌1(k − k0) = 0.

(3.33)

Because k − k0 ≠ 0, then (3.27) holds. Consequently, (3.28) remains valid.

4 EXPONENTIAL STABILITY

In this section, we use Theorem 2 to prove that the semigroup associated to system (1.1) to (1.5) is exponentially stable

provided that (1.4), (2.3), and (3.1) hold.

Theorem 5. We assume that (1.4), (2.3), and (3.1) hold. Then, the semigroup associated with (1.1) and (1.2) is

exponentially stable.

Proof. We have proved that the first condition in (2.8) is equivalent to (3.1). Now, by contradiction, we will prove the

second condition in (2.8). So we assume that the second condition in (2.8) is false, then there exist sequences (Φn)n
⊂  () and (𝜆n)n ⊂ R satisfying

‖Φn‖ = 1, ∀ n ≥ 0, (4.1)

lim
n→∞

|𝜆n| = ∞ (4.2)

and

lim
n→∞

‖(i 𝜆n I −) Φn‖ = 0, (4.3)

which implies that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i𝜆n𝜑n −
∼
𝜑n → 0 in H1

∗ (0, 1) ,

i𝜆n𝜌1
∼
𝜑n − k(𝜑nx + 𝜓n + lwn)x − lk0 (wnx − l𝜑n) → 0 in L2 (0, 1) ,

i𝜆n𝜓n −
∼
𝜓n → 0 in

∼

H1
∗ (0, 1) ,

i𝜆n𝜌2
∼
𝜓n − b𝜓nxx + k (𝜑nx + 𝜓n + lwn) → 0 in L2 (0, 1) ,

i𝜆nwn −
∼
wn → 0 in

∼

H1
∗ (0, 1) ,

i𝜆n𝜌1
∼
wn − k0(wnx − l𝜑n)x + lk (𝜑nx + 𝜓n + lwn) + 𝛿

∼
wn → 0 in L2 (0, 1) .

(4.4)

We will check the second condition in (2.8) by finding a contradiction with (4.1). Our proof is divided into several

steps.

Step 1. Taking the inner product of (i 𝜆n I −) Φn with Φn in and using (2.5), we get

⌉⟨(i 𝜆n I −) Φn,Φn⟩ = 𝛿
‖‖‖

∼
wn

‖‖‖
2

L2(0,1)
.
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Using (4.1) and (4.3), we deduce that
∼
wn → 0 in L2 (0, 1) . (4.5)

Step 2. Using (4.4)1, (4.4)3, (4.4)5,(4.1), (4.2), and (4.5), we deduce that

⎧
⎪⎨⎪⎩

𝜑n → 0 in L2 (0, 1) ,

𝜓n → 0 in L2 (0, 1) ,

𝜆nwn → 0 in L2 (0, 1) .

(4.6)

Step 3. Taking the inner product of (5.4)6 with wn in L2 (0, 1), integrating by parts and using the boundary conditions,

we get

k0 ‖wnx‖2L2(0,1) + 𝜌1

⟨
i
∼
wn𝜆nwn

⟩
L2(0,1)

+
⟨[
lk (𝜑nx + 𝜓n + lwn) + k0l𝜑nx + 𝛿

∼
wn

]
,wn

⟩
L2(0,1)

→ 0.

Using (4.1), (4.2), and (4.6)3, we deduce that

wnx → 0 in L2 (0, 1) , (4.7)

and by (4.4)5, we deduce that ∼
wnx

𝜆n
→ 0 in L2 (0, 1) . (4.8)

Step 4. Taking the inner product of (𝜑nx + 𝜓n + lwn) with i𝜆n
∼
wn in L2 (0, 1), integrating by parts and using the

boundary conditions, we get

⟨
(𝜑nx + 𝜓n + lwn) , i𝜆n

∼
wn

⟩
L2(0,1)

= −
⟨
i𝜆n𝜑nx,

∼
wn

⟩
L2(0,1)

−
⟨
i𝜆n𝜓n,

∼
wn

⟩
L2(0,1)

− l
⟨
i𝜆nwn,

∼
wn

⟩
L2(0,1)

=
⟨(

i𝜆n𝜑n −
∼
𝜑n ,

∼
wnx

⟩
L2(0,1)

+
⟨

∼
𝜑n,

∼
wnx

⟩
L2(0,1)

−
⟨(

i𝜆n𝜓n −
∼
𝜓n

)
,
∼
wn

⟩
L2(0,1)

−
⟨

∼
𝜓n,

∼
wn

⟩
L2(0,1)

− l
⟨(

i𝜆nwn −
∼
wn

)
,
∼
wn

⟩
L2(0,1)

− l
‖‖‖
∼
wn

‖‖‖
2

L2(0,1)

= −
⟨(

i𝜆n𝜑nx −
∼
𝜑nx

)
,
∼
wn

⟩
L2(0,1)

+
⟨

∼
𝜑n,

∼
wnx

⟩
L2(0,1)

−
⟨(

i𝜆n𝜓n −
∼
𝜓n

)
,
∼
wn

⟩
L2(0,1)

−
⟨

∼
𝜓n,

∼
wn

⟩
L2(0,1)

− l
⟨(

i𝜆nwn −
∼
wn

)
,
∼
wn

⟩
L2(0,1)

− l
‖‖‖
∼
wn

‖‖‖
2

L2(0,1)
.

Then, by using (4.1), (4.4)1, (4.4)3, (4.4)5, and (4.5), we deduce that

⟨
(𝜑nx + 𝜓n + lwn) , i𝜆n

∼
wn

⟩
L2(0,1)

−
⟨

∼
𝜑n,

∼
wnx

⟩
L2(0,1)

→ 0. (4.9)

Taking the inner product of
∼
𝜑n with

∼
wnx in L2 (0, 1), we get

⟨
∼
𝜑n,

∼
wnx

⟩
L2(0,1)

=
⟨

∼
𝜑n,

(
∼
wnx −

∼
𝜑n

)⟩
L2(0,1)

+
‖‖‖

∼
𝜑n

‖‖‖
2

L2(0,1)

= −
⟨

∼
𝜑n,

(
i𝜆nwnx −

∼
wnx

)⟩
L2(0,1)

+
⟨

∼
𝜑n,

(
i𝜆n𝜑n −

∼
𝜑n

)⟩
L2(0,1)

+
⟨

∼
𝜑n, i𝜆n (wnx − 𝜑n)

⟩
L2(0,1)

+
‖‖‖

∼
𝜑n

‖‖‖
2

L2(0,1)
,

then, by (4.1), (4.4)1, and (4.4)5, we have

𝜆n

⟨
∼
𝜑n, i (wnx − 𝜑n)

⟩
L2(0,1)

−
⟨

∼
𝜑n,

∼
wnx

⟩
L2(0,1)

+
‖‖‖

∼
𝜑n

‖‖‖
2

L2(0,1)
→ 0. (4.10)

On the other hand, taking the inner product of (4.4)2 with (wnx − l𝜑n) in L2 (0, 1), integrating by parts and using the

boundary conditions, we get

⟨
i𝜆n𝜌1

∼
𝜑n, (wnx − l𝜑n)

⟩
L2(0,1)

+ k⟨(𝜑nx + 𝜓n + lwn) , (wnx − l𝜑n)x⟩L2(0,1)
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−lk0 ‖(wnx − l𝜑n)‖2L2(0,1) → 0,

then,

𝜆n𝜌1

⟨
i
∼
𝜑n, (wnx − l𝜑n)

⟩
L2(0,1)

−
k

k0

⟨
(𝜑nx + 𝜓n + lwn) ,

[
𝜆n𝜌1

∼
wn − k0(wnx − l𝜑n)x + lk (𝜑nx + 𝜓n + lwn) + 𝛿

∼
wn

]⟩
L2(0,1)

+
k𝜌1
k0

⟨
(𝜑nx + 𝜓n + lwn) , i𝜆n

∼
wn

⟩
L2(0,1)

+
lk2

k0
‖(𝜑nx + 𝜓n + lwn)‖2L2(0,1)

+
𝛿k

k0

⟨
(𝜑nx + 𝜓n + lwn) ,

∼
wn

⟩
L2(0,1)

− lk0 ‖(wnx − l𝜑n)‖2L2(0,1) → 0.

Using (4.1), (4.2), (4.4)6, (4.5), (4.6), and (4.7), we get

−𝜆n𝜌1

⟨
∼
𝜑n, i (wnx − l𝜑n)

⟩
L2(0,1)

+
k𝜌1
k0

⟨
(𝜑nx + 𝜓n + lwn) , i𝜆n

∼
wn

⟩
L2(0,1)

(4.11)

+
lk2

k0
‖(𝜑nx + 𝜓n + lwn)‖2L2(0,1) → 0,

then, by (4.9), (4.10), and (4.11), we obtain

(
k

k0
− 1

)
𝜌1

⟨
∼
𝜑n,

∼
wnx

⟩
L2(0,1)

+
lk2

k0
‖(𝜑nx + 𝜓n + lwn)‖2L2(0,1) + 𝜌1

‖‖‖
∼
𝜑n

‖‖‖
2

L2(0,1)
→ 0. (4.12)

Here, we use the fact that k = k0 (condition 1.4), we deduce that

lk2

k0
‖(𝜑nx + 𝜓n + lwn)‖2L2(0,1) + 𝜌1

‖‖‖
∼
𝜑n

‖‖‖
2

L2(0,1)
→ 0,

and then using (4.6), we have

𝜑nx → 0 in L2 (0, 1) (4.13)

and
∼
𝜑n → 0 in L2 (0, 1) , (4.14)

and by (4.1) , (4.2), (4.4)1, (4.13), and (4.14), we have

𝜆n𝜑n → 0 in L2 (0, 1) (4.15)

and
∼
𝜑nx

𝜆n
→ 0 in L2 (0, 1) . (4.16)

Step 5. Taking the inner product of (4.4)4with (𝜑nx + 𝜓n + lwn) in L2 (0, 1), integrating by parts and using the boundary

conditions, we get ⟨
i𝜆n𝜌2

∼
𝜓n, 𝜑nx

⟩
L2(0,1)

+
⟨
i𝜆n𝜌2

∼
𝜓n, 𝜓n

⟩
L2(0,1)

+ l
⟨
i𝜆n𝜌2

∼
𝜓n,wn

⟩
L2(0,1)

+b⟨𝜓nx, (𝜑nx + 𝜓n + lwn)x⟩L2(0,1) + k ‖(𝜑nx + 𝜓n + lwn)‖2L2(0,1) → 0,

then,

−𝜆n𝜌2

⟨
∼
𝜓n, i𝜑nx

⟩
L2(0,1)

− 𝜌2

⟨
∼
𝜓n,

(
i𝜆n𝜓n −

∼
𝜓n

)⟩
L2(0,1)

− 𝜌2
‖‖‖

∼
𝜓n

‖‖‖
2

L2(0,1)

−l𝜌2
⟨

∼
𝜓n,

(
i𝜆nwn −

∼
wn

)⟩
L2(0,1)

− l𝜌2
⟨

∼
𝜓n,

∼
wn

⟩
L2(0,1)

−
b

k

⟨
𝜓nx,

[
i𝜆n𝜌1

∼
𝜑n − k(𝜑nx + 𝜓n + lwn)x − lk0 (wnx − l𝜑n)

]⟩
L2(0,1)

+
b

k

⟨
𝜓nx, i𝜆n𝜌1

∼
𝜑n

⟩
L2(0,1)

−
lk0b

k
⟨𝜓nx, (wnx − l𝜑n)⟩L2(0,1) + k ‖𝜑nx + 𝜓n + lwn‖2L2(0,1) → 0,

using (4.1), (4.4)2, (4.4)3, (4.4)5, (4.5) , (4.6), (4.7), and (4.13), we get

−𝜆n𝜌2

⟨
∼
𝜓n, i𝜑nx

⟩
L2(0,1)

− 𝜌2
‖‖‖

∼
𝜓n

‖‖‖
2

L2(0,1)
+
b𝜌1
k

𝜆n

⟨
𝜓nx, i

∼
𝜑n

⟩
L2(0,1)

→ 0. (4.17)
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Now, we use that

𝜆n

⟨
𝜓nx, i

∼
𝜑n

⟩
L2(0,1)

= −
⟨(
i𝜆n𝜓nx −

∼
𝜓nx

)
,

∼
𝜑n

⟩
L2(0,1)

−
⟨

∼
𝜓nx,

∼
𝜑n

⟩
L2(0,1)

,

and by integrating by parts and using the boundary conditions, we have

𝜆n

⟨
𝜓nx, i

∼
𝜑n

⟩
L2(0,1)

= −
⟨
i𝜆n𝜓nx −

∼
𝜓nx,

∼
𝜑n

⟩
L2(0,1)

+
⟨

∼
𝜓n,

∼
𝜑nx

⟩
L2(0,1)

= −
⟨(

i𝜆n𝜓nx −
∼
𝜓nx

)
,

∼
𝜑n

⟩
L2(0,1)

−
⟨

∼
𝜓n,

(
i𝜆n𝜑nx −

∼
𝜑nx

)⟩
L2(0,1)

+
⟨

∼
𝜓n, i𝜆n𝜑nx

⟩
L2(0,1)

,

therefore, from (4.1), (4.4)1, and (4.4)3, we see that

𝜆n

⟨
𝜓nx, i

∼
𝜑n

⟩
L2(0,1)

− 𝜆n

⟨
∼
𝜓n, i𝜑nx

⟩
L2(0,1)

→ 0, (4.18)

so, inserting (4.18) into (4.17), we obtain

𝜆n

k
(b𝜌1 − k𝜌2)

⟨
𝜓nx, i

∼
𝜑n

⟩
L2(0,1)

− 𝜌2
‖‖‖

∼
𝜓n

‖‖‖
2

L2(0,1)
→ 0. (4.19)

At this stage, we use the fact that b𝜌1 − k𝜌2 = 0, then we have from (4.22)

∼
𝜓n → 0 in L2 (0, 1) , (4.20)

and by (4.4)3, we deduce that

𝜆n𝜓n → 0 in L2 (0, 1) . (4.21)

so, inserting (4.18) into (4.17), we obtain

𝜆n

k
(b𝜌1 − k𝜌2)

⟨
𝜓nx, i

∼
𝜑n

⟩
L2(0,1)

− 𝜌2
‖‖‖

∼
𝜓n

‖‖‖
2

L2(0,1)
→ 0. (4.22)

Here, again, using b𝜌1 − k𝜌2 = 0, then we have

∼
𝜓n → 0 in L2 (0, 1) , (4.23)

and by (4.4)3, we deduce that

𝜆n𝜓n → 0 in L2 (0, 1) . (4.24)

Step 6. Taking the inner product of (4.4)4 with 𝜓n in L
2 (0, 1), integrating by parts and using the boundary conditions,

we get

−𝜌2

⟨
∼
𝜓n, i𝜆n𝜓n

⟩
L2(0,1)

+ b ‖𝜓nx‖2L2(0,1) + k⟨(𝜑nx + 𝜓n + lwn) , 𝜓n⟩L2(0,1) → 0,

and by using (4.6), (4.23), and (4.24), we obtain

𝜓nx → 0 in L2 (0, 1) . (4.25)

A combination of (4.5) ,(4.6), (4.7) , (4.13), (4.14), (4.23), and (4.24) leads to

‖Φn‖ → 0,

which is a contradiction with (4.1). Hence, the proof of Theorem 5 is completed.
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5 POLYNOMIAL STABILITY

In this section, we prove the polynomial decay of the solutions of (1.1) to (1.5) using Theorem 3. Our main result is stated

as follow:

Theorem 6. We assume that (2.3) and (3.1) hold. Then, for each p ∈ N∗, there exists a constant cp > 0 such that

∀Φ0 ∈ D
(p

)
, ∀t > 0,

‖‖‖e
tΦ0

‖‖‖ ≤ cp‖Φ0‖D(p)

(
ln t

t

) p

8

ln t. (5.1)

Proof. In section 4, we have proved that the first condition in (2.9) is satisfied if (3.1) holds. Now, we need to show that

sup
|𝜆| ≥ 1

1

𝜆8
‖‖‖(i𝜆I −)−1

‖‖‖ < ∞. (5.2)

We establish (5.2) by contradiction. So, if (5.2) is false, then there exist sequences (Φn)n ⊂ D () and (𝜆n)n ⊂ R

satisfying (4.1) , (4.2) and

lim
n→∞

𝜆8n‖(i𝜆n I −) Φn‖ = 0, (5.3)

which implies that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜆8n

(
i𝜆n𝜑n −

∼
𝜑n

)
→ 0 in H1

∗ (0, 1) ,

𝜆8n

[
i𝜆n𝜌1

∼
𝜑n − k(𝜑nx + 𝜓n + lwn)x − lk0 (wnx − l𝜑n)

]
→ 0 in L2 (0, 1) ,

𝜆8n

(
i𝜆n𝜓n −

∼
𝜓n

)
→ 0 in

∼

H1
∗ (0, 1) ,

𝜆8n

[
i𝜆n𝜌2

∼
𝜓n − b𝜓nxx + k (𝜑nx + 𝜓n + lwn)

]
→ 0 in L2 (0, 1) ,

𝜆8n

(
i𝜆nwn −

∼
wn

)
→ 0 in

∼

H1
∗ (0, 1) ,

𝜆8n

[
i𝜆n𝜌1

∼
wn − k0(wnx − l𝜑n)x + lk (𝜑nx + 𝜓n + lwn) + 𝛿

∼
wn

]
→ 0 in L2 (0, 1) .

(5.4)

We will prove that ‖ Φn‖ → 0 as a contradiction with (4.1). This will be established through several steps.

Step 1. Taking the inner product of 𝜆8n (i 𝜆n I −) Φn with Φn in, we get

⌉⟨𝜆8n (i 𝜆n I −) Φn,Φn

⟩
L2(0,1)

= 𝛿
‖‖‖𝜆

4
n

∼
w
‖‖‖
2

L2(0,1)
,

so we have

𝜆4n
∼
wn → 0 in L2 (0, 1) . (5.5)

Step 2. Using (4.1), (4.2), (5.4)1, (5.4)3, (5.4)5, and (5.5), we obtain

{
𝜑n, 𝜓n, 𝜆5nwn → 0 in L2 (0, 1) ,

(𝜆n𝜑n)n and (𝜆n𝜓n)n are uniformly bounded in L2 (0, 1) .
(5.6)

Step 3. Taking the inner product of (5.4)6 with
wn

𝜆3n
in L2 (0, 1), integrating by parts and using the boundary conditions,

we get

𝜌1

⟨
i𝜆n

∼
wn, 𝜆

5
nwn

⟩
L2(0,1)

+ k0𝜆
5
n ‖wnx‖2L2(0,1) + l (k + k0)

⟨
𝜑nx, 𝜆

5
nwn

⟩
L2(0,1)

+lk⟨(𝜓n + lwn) ,wn⟩L2(0,1) + 𝛿
⟨

∼
wn, 𝜆

5
nwn

⟩
L2(0,1)

→ 0,
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then, using (4.1), (4.2), (5.5) and (5.6) , we obtain

|𝜆n| 52wnx → 0 in L2 (0, 1) . (5.7)

So, from (5.4)5, we find

|𝜆n| 32 ∼
wnx → 0 in L2 (0, 1) . (5.8)

Step 4. Applying triangle inequality, we have

‖‖‖‖
𝜑nxx

𝜆n

‖‖‖‖L2(0,1) ≤
1

k

‖‖‖‖
1

𝜆n

[
i𝜆n𝜌1

∼
𝜑n − k(𝜑nx + 𝜓n + lwn)x − lk0 (wnx − l𝜑n)

]‖‖‖‖L2(0,1)

+
1

k

‖‖‖‖i𝜌1
∼
𝜑n −

k

𝜆n
(𝜓nx + lwnx) −

lk0
𝜆n

(wnx − l𝜑n)
‖‖‖‖L2(0,1),

and using (4.1), (4.2) and (5.4)2, we deduce that

(
𝜑nxx

𝜆n

)

n

is uniformly bounded in L2 (0, 1) . (5.9)

Taking the inner product of (5.4)6 with
𝜑nx

𝜆8n
in L2 (0, 1), integrating by parts and using the boundary conditions, we

obtain

𝜌1

⟨
i𝜆n

∼
wn, 𝜑nx

⟩
L2(0,1)

+ k0

⟨
𝜆nwnx,

𝜑nxx

𝜆n

⟩

L2(0,1)

+ l (k + k0) ‖𝜑nx‖2L2(0,1)
+lk⟨(𝜓n + lwn) , 𝜑nx⟩L2(0,1) + 𝛿

⟨
∼
wn, 𝜑nx

⟩
L2(0,1)

→ 0,

then, from (4.1), (4.2), (5.6), (5.7) ,(5.8), and (5.9), we have

𝜑nx → 0 in L2 (0, 1) . (5.10)

Step 5. Taking the inner product of (5.10)6 with
𝜑nx

𝜆7n
in L2 (0, 1), integrating by parts and using the boundary conditions,

we get

−𝜌1

⟨
∼
wn, 𝜆n

(
i𝜆n𝜑nx −

∼
𝜑nx

)⟩
L2(0,1)

+ 𝜌1

⟨
𝜆n

∼
wnx,

∼
𝜑n

⟩
L2(0,1)

+k0

⟨
𝜆2nwnx,

𝜑nxx

𝜆n

⟩

L2(0,1)

+ l (k + k0) 𝜆n ‖𝜑nx‖2L2(0,1)
+lk⟨𝜆n (𝜓n + lwn) , 𝜑nx⟩L2(0,1) + 𝛿

⟨
𝜆n

∼
wn, 𝜑nx

⟩
L2(0,1)

→ 0,

hence, using (4.1) , (4.2), (5.4)1, (5.6), (5.7), (5.9), and (5.10), we obtain

𝜆n ‖𝜑nx‖2L2(0,1) → 0. (5.11)

Taking the inner product of (5.4)2 with
𝜑n

𝜆7n
in L2 (0, 1), integrating by parts and using the boundary conditions, we get

−𝜌1𝜆n

⟨
∼
𝜑n,

(
i𝜆n𝜑n −

∼
𝜑n

)⟩
L2(0,1)

− 𝜌1𝜆n
‖‖‖
∼
𝜑n

‖‖‖
2

L2(0,1)

+k𝜆n⟨(𝜑nx + 𝜓n + lwn) , 𝜑nx⟩L2(0,1) − lk0𝜆n⟨(wnx − l𝜑n) , 𝜑n⟩L2(0,1) → 0,

which implies

−𝜌1

⟨
∼
𝜑n, 𝜆n

(
i𝜆n𝜑n −

∼
𝜑n

)⟩
L2(0,1)

− 𝜌1𝜆n
‖‖‖
∼
𝜑n

‖‖‖
2

L2(0,1)

+k𝜆n ‖𝜑nx‖2L2(0,1) + k⟨(𝜆n𝜓n + l𝜆nwn) , 𝜑nx⟩L2(0,1)
−lk0⟨(𝜆nwnx − l𝜆n𝜑n) , 𝜑n⟩L2(0,1) → 0,
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so, using (4.1), (4.2), (5.4)1, (5.6) , (5.7), and (5.11), we deduce that

𝜆n
‖‖‖
∼
𝜑n

‖‖‖
2

L2(0,1)
→ 0, (5.12)

and from (5.4)1, we obtain that

𝜆3n‖𝜑n‖2 → 0. (5.13)

Step 6. Multiplying (5.4)2 by
1

|𝜆n| 12 𝜆8n
, we get

i
𝜆n

|𝜆n|𝜌1|𝜆n|
1

2
∼
𝜑n − k

𝜑nxx

|𝜆n| 12
− k

𝜓nx

|𝜆n| 12
− l (k + k0)

wnx

|𝜆n| 12
+ l2k0

𝜑n

|𝜆n| 12
→ 0 in L2 (0, 1) ,

then, using (4.1), (4.2) and (5.12), we deduce that

𝜑nxx

|𝜆n| 12
→ 0 in L2 (0, 1) . (5.14)

On the other hand, by integrating by parts and using the boundary conditions, we see that

𝜆n⟨wnxx, i𝜆n𝜑nx⟩L2(0,1) = 𝜆2n⟨iwnx, 𝜑nxx⟩L2(0,1)

=
⟨
𝜆n

(
i𝜆nwnx −

∼
wnx

)
, 𝜑nxx

⟩
L2(0,1)

+ 𝜆n

⟨
∼
wnx, 𝜑nxx

⟩
L2(0,1)

=

⟨
𝜆2n

(
i𝜆nwnx −

∼
wnx

)
,
𝜑nxx

𝜆n

⟩

L2(0,1)

+

⟨
𝜆n|𝜆n| 12 ∼

wnx,
𝜑nxx

|𝜆n| 12

⟩

L2(0,1)

,

then, using (4.2), (5.4)5, (5.8) , and (5.14), we obtain

𝜆n⟨wnxx, i𝜆n𝜑nx⟩L2(0,1) → 0. (5.15)

Furthermore, integrating by parts and using the boundary conditions,

𝜆n

⟨
(𝜑nx + 𝜓n + lwn)x,

∼
𝜑n

⟩
L2(0,1)

= −𝜆n

⟨
(𝜑nx + 𝜓n + lwn) ,

∼
𝜑nx

⟩
L2(0,1)

= −
1

lk

⟨
𝜆2n

[
i𝜆n𝜌1

∼
wn − k0(wnx − l𝜑n)x + lk (𝜑nx + 𝜓n + lwn) + 𝛿𝜃nx

]
,

∼
𝜑nx

𝜆n

⟩

L2(0,1)

−
1

lk

⟨(
i𝜆n𝜌1

∼
wn + 𝛿𝜃nx

)
, 𝜆n

(
i𝜆n𝜑nx −

∼
𝜑nx

)⟩
L2(0,1)

+
k0
lk

⟨
(wnx − l𝜑n)x, 𝜆n

(
i𝜆n𝜑nx −

∼
𝜑nx

)⟩
L2(0,1)

−
𝜆3n

lk

⟨
i𝜌1

∼
wnx, i𝜑n

⟩
L2(0,1)

+
𝛿

lk

⟨
𝜆2n𝜃nx, i𝜑nx

⟩
L2(0,1)

−
k0𝜆n
lk

⟨wnxx, i𝜆n𝜑nx⟩L2(0,1) −
k0𝜆

2
n

k
i ‖𝜑nx‖2L2(0,1) ,

then, using (5.4)1, (5.4)6, (5.7) , (5.8), (5.13), and (5.15), we find

𝜆n

⟨
(𝜑nx + 𝜓n + lwn)x,

∼
𝜑n

⟩
L2(0,1)

+
k0
k
i ‖𝜆n𝜑nx‖2L2(0,1) → 0. (5.16)

Taking the inner product of (5.4)2 with
∼
𝜑n

𝜆7n
in L2 (0, 1), we get

𝜌1i
‖‖‖𝜆n

∼
𝜑n

‖‖‖
2

L2(0,1)
− k𝜆n

⟨
(𝜑nx + 𝜓n + lwn)x,

∼
𝜑n

⟩
L2(0,1)

− lk0

⟨
(𝜆nwnx − l𝜆n𝜑n) ,

∼
𝜑n

⟩
L2(0,1)

→ 0,
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then, using (5.16), we obtain

𝜌1i
‖‖‖𝜆n

∼
𝜑n

‖‖‖
2

L2(0,1)
+ ik0 ‖𝜆n𝜑nx‖2L2(0,1) − lk0

⟨
(𝜆nwnx − l𝜆n𝜑n) ,

∼
𝜑n

⟩
L2(0,1)

→ 0,

and from (4.1), (4.2), (5.4)1, (5.12), and (5.13), we deduce that

𝜆n
∼
𝜑n → 0 in L2 (0, 1) (5.17)

and

𝜆n𝜑nx → 0 in L2 (0, 1) . (5.18)

Step 7. Multiplying (5.4)4 by
1

𝜆9n
, we obtain

i𝜌2
∼
𝜓n − b

𝜓nxx

𝜆n
+

k

𝜆n
(𝜑nx + 𝜓n + lwn) → 0 in L2 (0, 1) .

By triangle inequality, we deduce from (4.1) and (4.2) that

(
𝜓nxx

𝜆n

)

n

is uniformly bounded in L2 (0, 1) . (5.19)

Taking the inner product of (5.4)2 with
𝜓nx

𝜆8n
in L2 (0, 1), we get

𝜌1

⟨
i𝜆n

∼
𝜑n, 𝜓nx

⟩
L2(0,1)

− k⟨𝜑nxx, 𝜓nx⟩L2(0,1) − k ‖𝜓nx‖2L2(0,1)

−l(k + k0)⟨wnx, 𝜓nx⟩L2(0,1) + l2k0⟨𝜑n, 𝜓nx⟩L2(0,1) → 0,

then, integrating by parts and using the boundary conditions, we obtain

𝜌1

⟨
i𝜆n

∼
𝜑n, 𝜓nx

⟩
L2(0,1)

+ k

⟨
𝜆n𝜑nx,

𝜓nxx

𝜆n

⟩

L2(0,1)

− k ‖𝜓nx‖2L2(0,1)

−l(k + k0)⟨wnx, 𝜓nx⟩L2(0,1) + l2k0⟨𝜑n, 𝜓nx⟩L2(0,1) → 0,

so, using (4.1), (4.2), (5.5), (5.6) , (5.7), (5.18), and (5.19), we deduce that

𝜓nx → 0 in L2 (0, 1) . (5.20)

Taking the inner product of (5.4)4 with
𝜓n

𝜆8n
in L2 (0, 1), integrating by parts and using the boundary conditions, we get

−𝜌2

⟨
∼
𝜓n,

(
i𝜆n𝜓n −

∼
𝜓n

)⟩
L2(0,1)

− 𝜌2
‖‖‖
∼
𝜓n

‖‖‖
2

L2(0,1)
+ b ‖𝜓nx‖2L2(0,1)

+⟨k (𝜑nx + 𝜓n + lwn) , 𝜓n⟩L2(0,1) → 0,

hence, using (4.1), (4.2), (5.4)3, (5.6), and (5.20), we get

∼
𝜓n → 0 in L2 (0, 1) . (5.21)

A combination of (4.2) and all the above convergence leads to

‖𝜑n‖ → 0,

which is a contradiction with (4.1). Consequently, the proof of our Theorem 6 is completed.
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FIGURE 1 Test 1: Exponential decay

6 NUMERICAL RESULTS

In the numerical part of this paper, we examine our theoretical results. We solve (1.1) using the finite difference method

for discretizing the space-time domain [0,L] × [0,Te]. We implement a first-order approximation in time and a second

order in space. For a similar construction, we refer to Santos and Junior.19 We conduct three different tests as follow:

Test 1: Here, we present the exponential decay case based on the result in Theorem 4.1 using the inputs parameters as

follows: 𝜌1 = 𝜌2 = 1, k = k0 = 1, b = 1, and 𝓁 = 1.

Test 2: In the second numerical test, we examine the polynomial decay case as in Theorem 6, for this case we choose the

following parameters: 𝜌1 = 𝜌2 = 1, k = 1, b = 1, 𝓁 = 1, and k0 = 0.5.

Test 3: In the third numerical test, we simulate the conservative case. We take out the damping source (ie, 𝛿 = 0) from

the third equation of the system (1.1) and we simulate the problem using the same value as in test 1.

In our numerical approach, we perform three tests using a fixed time steps �t satisfying a stability condition according

to the Courant-Friedrichs-Lewy (CFL) inequality.

For our numerical test, we uses a unform discretization of [0, 4] into 500 subintervals and we fixed the time step by the

condition �t = �x∕8. The initial data are given by

𝜑(x, 0) = 𝜓(x, 0) = 𝜔(x, 0) = 0 in [0, 4], (6.1)

and

𝜑t(x, 0) = cos(2𝜋x); 𝜓t(x, 0) = 𝜔t(x, 0) = sin(2𝜋x) in [0, 4]. (6.2)

In Figure 1, we plot the result of the first test, namely, the exponential decay case. Figure 1A shows the two dimensional

time-space evolution of 𝜑, Figure 1B shows the evolution of 𝜓 , and Figure 1C shows the evolution of 𝜔. Figure 1D shows

the corresponding cross-section cut at x = 0.25.
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FIGURE 2 Test 2: Polynomial

decay

FIGURE 3 Test 3:

Conservative system

In Figure 2, we show similar results to test 1. We need to mention here the difference between the decay behavior of

this test in comparison with the first one.

In Figure 3, we plot the result of the conservative case, namely, after removing the damping term in the third equation.

Figure 3A shows the nondecay of the two-dimensional time-space evolution of 𝜑, Figure 3B shows a nonconverging

periodic-like behavior of the evolution of 𝜓 , and Figure 3C shows the nondamped behavior of 𝜔. Figure 3D shows the

corresponding cross-section cut at x = 0.25. where, the nondecay physical behavior is clearly demonstrated.



AFILAL ET AL. 19

FIGURE 4 Energy plot of tests 1, 2, and 3

In Figure 4, we plot the energy for the three scenarios as mentioned in tests 1, 2, and 3. As it is seen in the figures, the

asymptotic behavior through the curves clearly justify our new stability conditions proved in the previous sections.

7 CONCLUDING REMARKS AND OPEN PROBLEMS

In this paper, Bresse systemwith one dampingwas considered, we proved thewell-posedness, stability results were proved

subject to a new relationship on the coefficients of the Bresse system, and some numerical approximations were presented

to validate the theoretical results obtained in this paper. The proofs were based on a combination between frequency

domain approach andmultipliers techniques.Weneed tomentionhere that the optimality rates of decay in the polynomial

stability is an open problem as well as the stability results in case of Dirichlet boundary conditions instead of a mixed

boundary conditions considered in this paper is an open problem too.
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