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ON THE EXPONENTIAL DIOPHANTINE EQUATION xy + yx = zz
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Abstract. For any positive integer D which is not a square, let (u1, v1) be the least
positive integer solution of the Pell equation u2 −Dv2 = 1, and let h(4D) denote the class
number of binary quadratic primitive forms of discriminant 4D. If D satisfies 2 ∤ D and
v1h(4D) ≡ 0 (mod D), then D is called a singular number. In this paper, we prove that if
(x, y, z) is a positive integer solution of the equation xy+yx = zz with 2 | z, then maximum
max{x, y, z} < 480000 and both x, y are singular numbers. Thus, one can possibly prove
that the equation has no positive integer solutions (x, y, z).
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1. Introduction

Let Z, N be the sets of all integers and positive integers, respectively. In recent

years, the solutions of circulant exponential diophantine equations have been inves-

tigated in many papers (see [7], [8], [9], [14], [15], [16]). In 2013, using upper bounds

of linear forms in p-adic logarithms, Zhang, Luo and Yuan in [15] proved that the

equation

(1.1) xy + yx = zz, x, y, z ∈ N,

has only finitely many solutions (x, y, z), and all solutions (x, y, z) of (1.1) satisfy

z < 2.8× 109. In addition, they proposed the following conjecture:

Conjecture. The equation (1.1) has no solution (x, y, z).
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Obviously, the upper bound given in [15] is far too large for any practical purpose.

In 2014, Deng and Zhang in [5] proved that (1.1) has no solutions (x, y, z) with x

and y being odd primes. Very recently, Wu in [13] proved that (1.1) has no solutions

(x, y, z) with 2 ∤ z. His proof relied upon a deep result concerning the existence of

primitive divisors of Lucas and Lehmer numbers due to Bilu, Hanrot and Voutier,

see [1].

In this paper we shall discuss the solutions of (1.1) with 2 | z. This is the remaining
and the more difficult part of (1.1). First we give a better upper bound for the

solutions of (1.1) as follows:

Theorem 1.1. All solutions (x, y, z) of (1.1) with 2 | z satisfy max{x, y, z} <

480000.

Let D be a positive integer which is not a square. It is well known that the Pell

equation

(1.2) u2 −Dv2 = 1, u, v ∈ Z,

has positive integer solutions (u, v). Further, let (u1, v1) be the least positive integer

solution of (1.2), and let h(4D) denote the class number of binary quadratic primitive

forms of discriminant 4D. If D satisfies

(1.3) 2 ∤ D, v1h(4D) ≡ 0 (mod D),

then D is called a singular number. We give a relationship between the solutions

of (1.1) and singular numbers as follows:

Theorem 1.2. If (x, y, z) is a solution of (1.1) with 2 | z, then both x and y are

singular numbers.

Thus, combining the computational results of h(4D) and v1 (see [3], [10], [12])

with our theorems, one can possibly verify the above mentioned conjecture.

2. Proof of Theorem 1.1

Lemma 2.1. Let a1, a2 be coprime nonzero integers with a1 ≡ a2 ≡ 1 (mod 4),

and let b1, b2 be positive integers. Further, let Λ = ab11 − ab22 , and let v2(Λ) denote

the degree of 2 in Λ. If min{|a1|, |a2|} > 3, then we have

v2(Λ) < 19.5540(log |a1|)(log |a2|)

×
(

max
{

12 log 2, 0.4 + log(2 log 2) + log
( b1
log |a2|

+
b2

log |a1|
)})2

.
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P r o o f. This is a special case of Theorem 2 of [4] for p = 2. Since

min{|a1|, |a2|} > 3 and a1 ≡ a2 ≡ 1 (mod 4), we have min{|a1|, |a2|} > 3. Therefore,

we may choose that E = 2, g = 1 and logAi = log |ai| for i = 1, 2. Thus, by the

theorem, we get

v2(Λ) 6
36.1g

E3(log 2)4
(logA1)(logA2)

×
(

max
{

5, 6E log 2, 0.4 + log(E log 2) + log
( b1
logA2

+
b2

logA1

)})2

< 19.5540(log |a1|)(log |a2|)

×
(

max
{

12 log 2, 0.4 + log(2 log 2) + log
( b1
log |a2|

+
b2

log |a1|
)})2

.

The lemma is proved. �

P r o o f of Theorem 1.1. By [15], if (x, y, z) is a solution of (1.1), then we have

(2.1) min{x, y, z} > 1

and

(2.2) gcd(x, y) = gcd(x, z) = gcd(y, z) = 1.

We now assume that (x, y, z) is a solution of (1.1) with 2 | z. By (2.2), we have

(2.3) 2 ∤ x, 2 ∤ y.

Without loss of generality, we may assume that x 6 y. Then, by [5] and [15], we

have

(2.4) 3 < x < z < y.

Further, since zz > xy by (1.1), we get

(2.5) y log x < z log z.

On the other hand, we see from (1.1) and (2.3) that

(2.6) 0 ≡ zz ≡ xy + yx ≡ x+ y (mod 4).

Let

(2.7) (a1, a2, b1, b2) =

{

(x,−y, y, x) if x ≡ 1 (mod 4),

(y,−x, x, y) if x ≡ 3 (mod 4).
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By (2.6) and (2.7), we have a1 ≡ a2 ≡ 1 (mod 4). Further, let Λ = ab11 − ab22 , and

let v2(Λ) denote the degree of 2 in Λ. By (1.1) and (2.7), we have Λ = xy + yx = zz

and v2(Λ) > z. Therefore by (2.4), using Lemma 2.1, we get

(2.8) z < 19.5540(logx)(log y)

×
(

max
{

12 log 2, 0.4 + log(2 log 2) + log
( x

log x
+

y

log y

)})2

.

If 12 log 2 > 0.4+log(2 log 2)+log(x/ log x+y/ log y), then we have 2000 > e7.591 >

y/ log y and y < 25000. Therefore, by (2.4), the theorem holds.

If 12 log 2 < 0.4 + log(2 log 2) + log(x/ log x+ y/ log y), then from (2.8) we get

(2.9) z < 19.5540(logx)(log y)
(

0.7271 + log
( x

log x
+

y

log y

))2

.

Notice that r/ log r is increasing for any real number r with r > e. By (2.4), we have

x/ log x < y/ log y, and by (2.9), we get

(2.10) z < 19.5540(logx)(log y)
(

0.7271 + log
( 2y

log y

))2

.

Further, by (2.4), (2.5) and (2.10), we have

y <
z log z

log x
< 19.5540(log y)(log z)

(

0.7271 + log
( 2y

log y

))2

< 19.5540(log y)2
(

0.7271 + log
( 2y

log y

))2

,

whence we conclude that y < 480000. Thus, by (2.4), the theorem is proved. �

3. Proof of Theorem 1.2

Lemma 3.1 ([2]). If X , Y , n are positive integers such thatX > Y , gcd(X,Y )=1

and n > 6, then Xn − Y n has a prime divisor p with p > n.

Lemma 3.2 ([11], Theorem 8.1). Every solution (u, v) of (1.2) can be expressed

as

u+ v
√
D = λ1

(

u1 + λ2v1
√
D
)s
, λ1, λ2 ∈ {±1}, s ∈ Z, s > 0,

where (u1, v1) is the least positive integer solution of (1.2).
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Lemma 3.3 ([6], Theorem 1 and 2). Let D, k be positive integers such that D

is not a square, k > 1, 2 ∤ k and gcd(D, k) = 1. Every solution (X,Y, Z) of the

equation

X2 −DY 2 = kZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0

can be expressed as

X + Y
√
D =

(

X1 + Y1

√
D
)t(

u+ v
√
D
)

, Z = Z1t, t ∈ N,

where X1, Y1, Z1 are positive integers satisfying

X2
1 −DY 2

1 = kZ1 , gcd(X1, Y1) = 1, h(4D) ≡ 0 (mod Z1),

(u, v) is a solution of (1.2).

P r o o f of Theorem 1.2. We now assume that (x, y, z) is a solution of (1.1) with

2 | z. If x is a square, then from (2.1) and (2.3) we get x = a2, where a is an odd

integer with a > 3. Substituting it into (1.1), by (2.2), we have

(3.1) zz/2 + ay = ba
2

, zz/2 − ay = ca
2

, y = bc, b, c ∈ N, gcd(b, c) = 1,

whence we get

(3.2) 2ay = ba
2 − ca

2

.

However, since a2 > 9, by Lemma 3.1, ba
2 − ca

2

has a prime divisor p with p > a2

and (3.2) is false. It implies that x is not a square. Similarly, we can prove that y is

not a square.

We see from (1.1) and (2.3) that the equation

(3.3) X2 − yY 2 = xZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0

has the solution

(3.4) (X,Y, Z) = (zz/2, y(x−1)/2, y).

Recall that x > 1, 2 ∤ x, gcd(x, y) = 1 and y is not a square. Applying Lemma 3.3

to (3.3) and (3.4), we have

y = Z1t, t ∈ N,(3.5)

zz/2 + y(x−1)/2√y = (X1 + Y1
√
y)t(u+ v

√
y),(3.6)
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where X1, Y1, Z1 are positive integers satisfying

X2
1 − yY 2

1 = xZ1 , gcd(X1, Y1) = 1,(3.7)

h(4y) ≡ 0 (mod Z1),(3.8)

(u, v) is a solution of the Pell equation

(3.9) u2 − yv2 = 1, u, v ∈ Z.

Since zz/2 + y(x−1)/2√y > 0 and X1 + Y1
√
y > 0, by Lemma 3.2, we get from (3.6)

that

(3.10) u+ v
√
y = (u1 + λv1

√
y)s, λ ∈ {±1}, s ∈ Z, s > 0,

where (u1, v1) is the least positive integer solution of (3.9). Substituting (3.10)

into (3.6), we have

(3.11) zz/2 + y(x−1)/2√y = (X1 + Y1
√
y)t(u1 + λv1

√
y)s.

Let d = gcd(s, t). If d > 1, since 2 ∤ t by (2.3) and (3.5), then d has an odd prime

divisor p. Further, let

(3.12) f + g
√
y = (X1 + Y1

√
y)t/p(u1 + λv1

√
y)s/p.

By Lemmas 3.2 and 3.3, we see from (3.5), (3.7) and (3.12) that f , g are integers

satisfying

(3.13) f2 − yg2 = xy/p, gcd(f, g) = 1.

Substituting (3.12) into (3.11), we have

(3.14) zz/2 + y(x−1)/2√y = (f + g
√
y)p,

whence we get

(3.15) y(x−1)/2 = g

(p−1)/2
∑

i=0

(

p

2i+ 1

)

fp−2i−1(yg2)i.

When p = 3, by (3.5), we have 3 | y and

(3.16) y = 3l, l ∈ N.
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Further, by (3.15) and (3.16), we get

(3.17) 3(x−3)/2l(x−1)/2 = g(f2 + lg2).

Since gcd(f, yg) = 1 by (3.13), we have gcd(f, lg) = gcd(f2 + lg2, l) = 1. Hence,

by (3.17), we get

(3.18) f2 + lg2 6 3(x−3)/2, l(x−1)/2 6 g.

We find from (3.18) that l = 1. Substituting it into (3.17), we have

(3.19) 3(x−3)/2 = g(f2 + g2).

But, since f2 + g2 > 1 and 3 ∤ f2 + g2, (3.19) is false.

When p > 3, since p | y and gcd(f, y) = 1, we have

(

p

2i+ 1

)

fp−2i−1(yg2)i ≡ 0 (mod p2), i = 1, . . . ,
p− 1

2
,(3.20)

p
∥

∥

(p−1)/2
∑

i=0

(

p

2i+ 1

)

fp−2i−1(yg2)i(3.21)

and

(3.22) gcd

(

y,
1

p

(p−1)/2
∑

i=0

(

p

2i+ 1

)

fp−2i−1(yg2)i
)

= 1.

Hence, we see from (3.15) and (3.22) that

(3.23) p =

(p−1)/2
∑

i=0

(

p

2i+ 1

)

fp−2i−1(yg2)i > p,

a contradiction. Therefore, we obtain

(3.24) gcd(s, t) = 1.

Let

(3.25) X + Y
√
y = (X1 + Y1

√
y)t.
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Since 2 ∤ t, by (3.10) and (3.25), we have

u =

[s/2]
∑

i=0

(

s

2i

)

us−2i
1 (yv21)

i, v = λv1

[(s−1)/2]
∑

i=0

(

s

2i+ 1

)

us−2i−1
1 (yv21)

i,(3.26)

X =

(t−1)/2
∑

i=0

(

t

2i

)

Xt−2i
1 (yY 2

1 )
i, Y = Y1

(t−1)/2
∑

i=0

(

t

2i+ 1

)

Xt−2i−1
1 (yY 2

1 )
i,

where [s/2] and [(s − 1)/2] are integer parts of s/2 and (s − 1)/2, respectively.

Substituting (3.25) into (3.6), we have

zz/2 + y(x−1)/2√y = (X + Y
√
y)(u+ v

√
y),

whence we get

(3.27) y(x−1)/2 = Xv + Y u.

By (3.26), we have

u ≡ us
1 (mod y), v ≡ λsus−1

1 v1 (mod y),(3.28)

X ≡ Xt
1 (mod y), Y ≡ tXt−1

1 Y1 (mod y).

Since x > 1, by (3.27) and (3.28), we get

(3.29) D ≡ y(x−1)/2 ≡ Xv + Y u ≡ Xt
1(λsu

s−1
1 v1) + tXt−1

1 Y1(u
s
1) (mod y).

Further, by (3.7) and (3.9), we have gcd(X1, y) = gcd(u1, y) = 1. We see from (3.29)

that

(3.30) λsX1v1 + tY1u1 ≡ 0 (mod y).

Furthermore, since t | y by (3.5), we obtain from (3.24) and (3.30) that

(3.31) v1 ≡ 0 (mod t).

Therefore, the combination of (3.5), (3.8) and (3.31) yields

v1h(4y) ≡ 0 (mod y).

It implies that y is a singular number.

By the symmetry of x and y in (1.1), using the same method as above, we can

prove that x is a singular number too. Thus, the theorem is proved. �
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