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ON THE EXPONENTIAL MOMENTS

OF ADDITIVE PROCESSES

TSUKASA FUJIWARA*

Dedicated to the memory of Professor Hiroshi Kunita

Abstract. A theorem on the exponential moments of general R-valued ad-

ditive processes will be established. A condition that implies the integrability
of the exponential of additive processes will be proposed and furthermore the
representation of their exponential moments by their characteristics will be
shown.

In the previous paper [1], the same problem as above has been investigated
in the case when the underlying additive processes have the structure of
semimartingales. In this paper, another proof for this case will be presented.

It will be more inherent and simpler than the previous one. Moreover, the
result will be generalized to the case when the underlying additive processes
do not necessarily have the structure of semimartingales.

1. Introduction

In this paper, we will establish a theorem on the exponential moments of general
R-valued additive processes.

Let (Xt)t∈[0,T ], T ∈ (0,∞), be an R-valued additive process, that is, a real-
valued stochastic process with independent increments. We will propose a condi-
tion under which the exponential of additive process (eXt) can be integrable and
furthermore represent the expectation E[eXt ] by the characteristics.

It is a simple but fundamental problem in the probability theory because the
exponential moment E[eXt ] can be regarded as the Laplace transform at 1 of the
law of Xt. In the case when (Xt) is a Lévy process, that is, a stochastically
continuous stochastic process with stationary independent increments, a complete
answer to this problem is stated as Theorem 25.17 in [8]. Furthermore, in the
previous paper [1], we have discussed the case when (Xt) has the structure of
semimartingale. See Theorem 1 in [1]. This result plays a fundamental rôle in
determining the minimal entropy martingale measure for (S0 e

Xt) with positive
constant S0. See [2] for the details. On the other hand, in [6], it is pointed out
that the result of [1] can be used to extend their main result on moderate deviations
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for additive processes without fixed jump discontinuities to the one for additive
processes with fixed jump discontinuities.

The purpose of this paper is to generalize these results above to the case when
the underlying additive processes do not necessarily have the structure of semi-
martingales. A main result, Theorem 2.1, will be stated in Section 2.

A proof of Theorem 2.1 will be given in Section 3. The first part (Section 3.1)
will deal with the case when the additive process (Xt) is also a semimartingale.
The content is regarded as another proof of Theorem 1 in [1]. The proof given
there heavily depends on a result in the theory of semimartingale, Theorem 3.2 in
[5], whereas the proof given here is more inherent and simpler than the previous
one. The second part (Section 3.2) will deal with the extention to the case when
(Xt) is not a semimartingale.

2. Exponential Moments of Additive Processes

Let (Xt)t∈[0,T ], T > 0, be an R-valued additive process defined on a probability
space (Ω,F , P ) equipped with a filtration (Ft), that is an increasing and right-
continuous family of sub-σ-fields of F . To be precise, (Xt) is an R-valued adapted
càdlàg process with X0 = 0 that has independent increments: for all s ≤ t, the
increment Xt −Xs is independent of Fs. In [4], such a process as (Xt) is called a
PII (a process with independent increments) ([4] Definition II.4.1 (p.101)).

Let (Ct, n(dtdx), Bt) be the characteristics, in the sense of Theorem II.5.2 in [4]
(pp.114-115), of (Xt) associated with the truncation function h(x) := xI{|x|≤1}(x)
on R. This means that the law of (Xt) is characterized by the following formula,
which is an extension of the Lévy-Khinchin formula: For any ξ ∈ R and s ≤ t,

E[eiξ(Xt−Xs)] = exp
[
− 1

2
ξ2(Ct − Cs) + iξ(Bt −Bs)

+

∫
(s,t]

∫
R\{0}

(
eiξx − 1− iξh(x)

)
IJc(u)n(dudx)

]
×

∏
u∈(s,t]

{
e−iξ∆Bu

[
1 +

∫
R\{0}

(
eiξx − 1

)
n({u}, dx)

]}
, (2.1)

where i =
√
−1 and J := {t > 0; n({t},R\{0}) > 0} denotes the set of all fixed

times of discontinuity of (Xt). Also, A
c denotes the complement of the set A. As

fundamental properties of characteristics, the following facts are known:

• (Ct, n(dtdx), Bt) are deterministic, since (Xt) has independent increments.
• ∫

(0,T ]

∫
R\{0}

(|x|2 ∧ 1)IJc(u)n(dudx) < ∞, (2.2)

where α ∧ β := min{α, β} for α, β ∈ R, and n({u},R\{0}) ≤ 1 ([4] II.5.5-
(i),(iii),(v) (p.114)).

• (Bt) is a càdlàg function ([4] II.5.3 (p.114)). Note that (Bt) is not neces-
sarily a function with finite variation on [0, T ].

∆Bu := Bu −Bu− =

∫
R\{0}

h(x)n({u}, dx), (2.3)
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where Bu− := limv↑u Bv ([4] II.5.5-(v) (p.114)).

The following property also comes from the formula (2.1):

• The law of the random variable ∆Xu is

n({u}, dx) + (1− n({u},R))δ0(dx), (2.4)

where δ0(dx) denotes the Dirac measure at the origin 0 ([4] Theorem II.5.2
- a) (p.115)).

The purpose of this paper is to establish the following theorem:

Theorem 2.1. Let (Xt)t∈[0,T ], T > 0, be an R-valued additive process defined on a
probability space (Ω,F , P ) equipped with a filtration (Ft), and let (Ct, n(dtdx), Bt)
be the characteristics of (Xt) associated with the truncation function h(x) :=
xI{|x|≤1}(x). Suppose that∫

(0,T ]

∫
{x>1}

ex n(dudx) < ∞. (2.5)

Then, for all t ∈ [0, T ],

E[eXt ] = exp
[1
2
Ct +Bt +

∫
(0,t]

∫
R\{0}

(
ex − 1− h(x)

)
IJc(u)n(dudx)

]
×

∏
u∈(0,t]

e−∆Bu

[
1 +

∫
R\{0}

(ex − 1)n({u}, dx)
]
. (2.6)

The meaning of this theorem is clear: under the integrability condition (2.5) the
exponential moment of E[eXt ] is represented by the characteristics (Ct, n(dtdx), Bt)
as (2.6). It is regarded as a representation of the Laplace transform at 1 of the law
of Xt. In the case when (Xt) is a Lévy process, that is, a stochastically continuous
stochastic process with stationary independent increments, a corresponding result
is stated as a part of Theorem 25.17 in [8]. Furthermore, in the previous paper
[1], we have discussed the case when (Xt) has the structure of semimartingale.
See Theorem 1 in [1]. This result plays a fundamental rôle in determining the
minimal entropy martingale measure for (S0 e

Xt) with positive constant S0. See
[2] for the details. On the other hand, in [6], it is pointed out that the result of
[1] can be used to extend their main result on moderate deviations for additive
processes without fixed jump discontinuities to the one for additive processes with
fixed jump discontinuities. See Concluding remarks (i) in [6] (p.651).

We will prove Theorem 2.1 in Section 3. In the first part (Section 3.1), we will
discuss the case when the additive process (Xt) is also a semimartingale. The
content is regarded as another proof of Theorem 1 in [1]. The proof given there
heavily depends on a result in the theory of semimartingale, Theorem 3.2 in [5],
whereas the proof given here might be more inherent and simpler than the previous
one. In the second part (Section 3.2), we will investigate the case when (Xt) is
not a semimartingale to complete our proof of Theorem 2.1.

3. Proof of Theorem 2.1

3.1. The case of PII-semimartingales. In this subsection, we will give a proof
of Theorem 2.1 in the case when the additive process (Xt) has the structure of
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semimartingale. In [4], such a process is simply called a PII-semimartingale ([4]
(p.106)).

We first introduce the canonical representation of (Xt) associated with the
truncation function h:

Xt = Xc
t +Bt +

∫
(0,t]

∫
R\{0}

h(x) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(x)N(dudx). (3.1)

Here, (Xc
t ) is a continuous (local) martingale with Xc

0 = 0 and ⟨Xc⟩t = Ct.
N(dudx) denotes the counting measure of the jumps of (Xt):

N((0, t], A) := ♯{u ∈ (0, t]; ∆Xu := Xu −Xu− ∈ A}
for A ∈ B(R\{0}), where Xu− := limv↑u Xv and B(R\{0}) is the Borel σ-field on

R\{0}. We denote by Ñ(dudx) := N(dudx)− n(dudx) the compensated measure
of N(dudx). Also, we set ȟ(x) := x−h(x) = xI{|x|>1}(x). See [4] Theorem II.2.34
(p.84) for the canonical representation of semimartingales. Since (Xt) is assumed
to be a semimartingale in this subsection, the integrability (2.2) of n(dudx) is
strengthened as follows:∫

(0,T ]

∫
R\{0}

(|x|2 ∧ 1)n(dudx) < ∞, (3.2)

([4] II.2.13 (p.77)).
Moreover, we decompose (Xt) more finely as follows:

Xt = Xc
t +Bt +Xd,c

t +Xd,d
t , (3.3)

where

Xd,c
t :=

∫
(0,t]

∫
R\{0}

h(x)IJc(u) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(x)IJc(u)N(dudx)

(3.4)

Xd,d
t :=

∫
(0,t]

∫
R\{0}

h(x)IJ(u) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(x)IJ (u)N(dudx). (3.5)

The first stage of our proof is to show the following property:

Proposition 3.1. The processes (Xc
t ), (X

d,c
t ) and (Xd,d

t ) are independent.

In order to prove Proposition 3.1, we prepare the following lemma:

Lemma 3.2. Let ξ1, ξ2, ξ3 ∈ R\{0} be arbitrarily fixed and set

Zt := ξ1X
c
t + ξ2X

d,c
t + ξ3(X

d,d
t +Bt). (3.6)

Then the characteristics (CZ
t , nZ(dudz), BZ

t ) of (Zt) associated with h are given
as follows:

CZ
t = ξ21Ct; (3.7)

nZ((0, t], A) =

∫
(0,t]

∫
R\{0}

IA(ξ2xIJc(u) + ξ3xIJ (u))n(dudx); (3.8)

BZ
t = ξ3Bt +

∫
(0,t]

∫
R\{0}

(
(h(ξ2x)− ξ2h(x))IJc(u)

+ (h(ξ3x)− ξ3h(x))IJ(u)
)
n(dudx). (3.9)
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Proof. Note that

ξ2

∫
(0,t]

∫
R\{0}

h(x)IJc(u) Ñ(dudx)

=

∫
(0,t]

∫
R\{0}

h(ξ2x)IJc(u) Ñ(dudx)

+

∫
(0,t]

∫
R\{0}

(
ξ2h(x)− h(ξ2x)

)
IJc(u)N(dudx)

−
∫
(0,t]

∫
R\{0}

(
ξ2h(x)− h(ξ2x)

)
IJc(u)n(dudx)

and that

ξ2

∫
(0,t]

∫
R\{0}

ȟ(x)IJc(u)N(dudx)

=

∫
(0,t]

∫
R\{0}

ȟ(ξ2x)IJc(u)N(dudx)

+

∫
(0,t]

∫
R\{0}

(
ξ2ȟ(x)− ȟ(ξ2x)

)
IJc(u)N(dudx).

Hence,

ξ2

∫
(0,t]

∫
R\{0}

h(x)IJc(u) Ñ(dudx) + ξ2

∫
(0,t]

∫
R\{0}

ȟ(x)IJc(u)N(dudx)

=

∫
(0,t]

∫
R\{0}

h(ξ2x)IJc(u) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(ξ2x)IJc(u)N(dudx)

−
∫
(0,t]

∫
R\{0}

(
ξ2h(x)− h(ξ2x)

)
IJc(u)n(dudx),

because ∫
(0,t]

∫
R\{0}

(
ξ2h(x)− h(ξ2x)

)
IJc(u)N(dudx)

+

∫
(0,t]

∫
R\{0}

(
ξ2ȟ(x)− ȟ(ξ2x)

)
IJc(u)N(dudx)

=

∫
(0,t]

∫
R\{0}

(ξ2x− ξ2x)IJc(u)N(dudx)

= 0.

By the same way, we have

ξ3

∫
(0,t]

∫
R\{0}

h(x)IJ (u) Ñ(dudx) + ξ3

∫
(0,t]

∫
R\{0}

ȟ(x)IJ (u)N(dudx)

=

∫
(0,t]

∫
R\{0}

h(ξ3x)IJ(u) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(ξ3x)IJ (u)N(dudx)

−
∫
(0,t]

∫
R\{0}

(
ξ3h(x)− h(ξ3x)

)
IJ (u)n(dudx).
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Therefore, we obtain

ξ2X
d,c
t + ξ3X

d,d
t

=

∫
(0,t]

∫
R\{0}

(
h(ξ2x)IJc(u) + h(ξ3x)IJ(u)

)
Ñ(dudx)

+

∫
(0,t]

∫
R\{0}

(
ȟ(ξ2x)IJc(u) + ȟ(ξ3x)IJ (u)

)
N(dudx)

−
∫
(0,t]

∫
R\{0}

(
(ξ2h(x)− h(ξ2x))IJc(u) + (ξ3h(x)− h(ξ3x))IJ (u)

)
n(dudx)

=

∫
(0,t]

∫
R\{0}

h(ξ2xIJc(u) + ξ3xIJ(u)) Ñ(dudx)

+

∫
(0,t]

∫
R\{0}

ȟ(ξ2xIJc(u) + ξ3xIJ (u)
)
N(dudx)

+

∫
(0,t]

∫
R\{0}

(
(h(ξ2x)− ξ2h(x))IJc(u) + (h(ξ3x)− ξ3h(x))IJ (u)

)
n(dudx).

(3.10)

Here, since Xu −Bu = Xc
u +Xd,c

u +Xd,d
u ,

∆Zu = ξ2∆Xd,c
u + ξ3(∆Xd,d

u +∆Bu)

=

{
ξ2∆(X −B)u, u ∈ Jc

ξ3(∆(X −B)u +∆Bu), u ∈ J

=

{
ξ2∆Xu, u ∈ Jc

ξ3∆Xu, u ∈ J.

Hence, if we denote by NZ(dudz) the counting measure of the jumps of (Zt), we
have

NZ((0, t], A) =

∫
(0,t]

∫
R\{0}

IA(ξ2xIJc(u) + ξ3xIJ (u))N(dudx),

which implies that∫
(0,t]

∫
R\{0}

ȟ(ξ2xIJc(u) + ξ3xIJ (u)
)
N(dudx) =

∫
(0,t]

∫
R\{0}

ȟ(z)NZ(dudz)

and that the compensator nZ(dudz) is given by (3.8). Also, we denote by ÑZ(dudz)

the compensated measure: ÑZ(dudz) := NZ(dudz)−nZ(dudz). Then, we see that∫
(0,t]

∫
R\{0}

h(ξ2xIJc(u) + ξ3xIJ (u)) Ñ(dudx) =

∫
(0,t]

∫
R\{0}

h(z) ÑZ(dudz).

Thus, we see from (3.8) and (3.10) that

Zt = ξ1X
c
t +

{
ξ3Bt

+

∫
(0,t]

∫
R\{0}

(
(h(ξ2x)− ξ2h(x))IJc(u) + (h(ξ3x)− ξ3h(x))IJ (u)

)
n(dudx)

}



ON THE EXPONENTIAL MOMENTS OF ADDITIVE PROCESSES 7

+

∫
(0,t]

∫
R\{0}

h(z) ÑZ(dudz) +

∫
(0,t]

∫
R\{0}

ȟ(z)NZ(dudz), (3.11)

which gives the canonical representation of (Zt) associated with h. Therefore, it
is easy to see that CZ

t and BZ
t are given by (3.7) and (3.9), respectively. �

Note that JZ = J under the assumption ξ3 ̸= 0, since

JZ := {u > 0;nZ({u},R\{0}) > 0}

= {u > 0;

∫
R\{0}

IR\{0}(ξ3xIJ (u))n({u}, dx) > 0}

= {u > 0; IJ(u)n({u},R\{0}) > 0}
= J.

Proof of Proposition 3.1. In order to prove Proposition 3.1, it is sufficient to show
that for all ξk ∈ R (k = 1, 2, 3)

E[ei{ξ1(X
c
t−Xc

s )+ξ2(X
d,c
t −Xd,c

s )+ξ3(X
d,d
t −Xd,d

s )}]

= E[eiξ1(X
c
t−Xc

s )]× E[eiξ2(X
d,c
t −Xd,c

s )]× E[eiξ3(X
d,d
t −Xd,d

s )]. (3.12)

Without loss of generality, we may assume that ξk ̸= 0 for any k = 1, 2, 3.
Combining the formula (2.1) for (Zt) of (3.6) and Lemma 3.2, we have

E[ei{ξ1(X
c
t−Xc

s)+ξ2(X
d,c
t −Xd,c

s )+ξ3(X
d,d
t −Xd,d

s )+ξ3(Bt−Bs)}]

= E[ei(Zt−Zs)]

= exp
[
− 1

2
(CZ

t − CZ
s ) + i(BZ

t −BZ
s )

+

∫
(s,t]

∫
R\{0}

(
eiz − 1− ih(z)

)
I(JZ)c n

Z(dudz)
]

×
∏

u∈(s,t]

ei∆BZ
u
[
1 +

∫
R\{0}

(
eiz − 1

)
nZ({u}, dz)

]
= exp

[
− 1

2
ξ21(Ct − Cs) + iξ3(Bt −Bs)

+ i

∫
(s,t]

∫
R\{0}

(
(h(ξ2x)− ξ2h(x))IJc(u) + (h(ξ3x)− ξ3h(x))IJ(u)

)
n(dudx)

+

∫
(s,t]

∫
R\{0}

(
eiξ2x − 1− ih(ξ2x)

)
IJc(u)n(dudx)

]
×

∏
u∈(s,t]

e−i(ξ3∆Bu+
∫
R\{0}(h(ξ3x)−ξ3h(x))n({u},dx))

×
[
1 +

∫
R\{0}

(
eiξ3x − 1

)
n({u}, dx)

]
= exp

[
− 1

2
ξ21(Ct − Cs) + iξ3(Bt −Bs)

+

∫
(s,t]

∫
R\{0}

(
eiξ2x − 1− iξ2 h(x)

)
IJc(u)n(dudx)

]
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×
∏

u∈(s,t]

e−iξ3∆Bu
[
1 +

∫
R\{0}

(
eiξ3x − 1

)
n({u}, dx)

]
. (3.13)

On the other hand, it follows from the formula (2.1) that

E[eiξ(Xt−Xs)−iξ(Bt−Bs)]

= exp
[
− 1

2
ξ2(Ct − Cs) +

∫
(s,t]

∫
R\{0}

(
eiξx − 1− iξh(x)

)
I(J)c n(dudx)

]
×

∏
u∈(s,t]

e−iξ∆Bu
[
1 +

∫
R\{0}

(
eiξx − 1

)
n({u}, dx)

]
. (3.14)

(1) Take n ≡ 0 and ξ = ξ1 in (3.14). Then, since Xd,c = Xd,d ≡ 0, we have

E[eiξ1(X
c
t−Xc

s)] = exp
[
− 1

2
ξ21(Ct − Cs)

]
. (3.15)

(2) Take C ≡ 0, J = ∅ and ξ = ξ2 in (3.14). Then, since Xc = Xd,d ≡ 0, we
have

E[eiξ2(X
d,c
t −Xd,c

s )] = exp
[ ∫

(s,t]

∫
R\{0}

(
eiξ2x − 1− iξ2 h(x)

)
IJc(u)n(dudx)

]
.

(3.16)

(3) Take C ≡ 0 and Jc = ∅ and ξ = ξ3 in (3.14). Then, since Xc = Xd,c ≡ 0,
we have

E[eiξ3(X
d,d
t −Xd,d

s )] =
∏

u∈(s,t]

e−iξ3∆Bu ×
[
1 +

∫
R\{0}

(
eiξ3x − 1

)
n({u}, dx)

]
. (3.17)

Therefore, combining these relations (3.15)∼(3.17) with (3.13), we have

E[ei{ξ1(X
c
t−Xc

s )+ξ2(X
d,c
t −Xd,c

s )+ξ3(X
d,d
t −Xd,d

s )+ξ3(Bt−Bs)}]

= E[eiξ1(X
c
t−Xc

s)]× E[eiξ2(X
d,c
t −Xd,c

s )]× E[eiξ3(X
d,d
t −Xd,d

s )]× eiξ3(Bt−Bs),

which immediately implies the equation (3.12). Thus, we have proved Proposition
3.1. �

We are now on the second stage of our proof of semimartingale case. Owing
to Proposition 3.1, the proof will be completed if we establish the exponential

moments of Xc
t , X

d,c
t and Xd,d

t , respectively; they will be shown as Propositions
3.3, 3.4 and 3.12, respectively.

Proposition 3.3. For all t ∈ (0, T ],

E[eX
c
t ] = e

1
2Ct . (3.18)

Proof. (3.15) implies that the law of Xc
t is the normal distribution with mean 0

and variance Ct. Hence, it is easy to see that (3.18) holds. �

Proposition 3.4. For all t ∈ (0, T ],

E[eX
d,c
t ] = exp

[ ∫
(0,t]

∫
R\{0}

(
ex − 1− h(x)

)
IJc(u)n(dudx)

]
. (3.19)
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We will prove this proposition by deviding into several pieces: Lemmas 3.5 ∼
3.10. The outline of the proof is similar to that of the proof of Theorem 25.17 in
[8]. However, note that the stationarity of increments is assumed in the theorem
but it is not assumed here.

Lemma 3.5. Let

Xd,c,1
t :=

∫
(0,t]

∫
{|x|>1}

xIJc(u)N(dudx) ;

Xd,c,0
t := Xd,c

t −Xd,c,1
t .

(1) (Xd,c,0
t ) and (Xd,c,1

t ) are independent.
(2) For all ξ ∈ R,

E[eiξX
d,c,1
t ] = exp

[∫
(0,t]

∫
{|x|>1}

(
eiξx − 1

)
IJc(u)n(dudx)

]
.

Proof. (1) It is immediate from Proposition 4′ in [3] (p.65).
(2) It is nothing but a special case of the formula (2.1). �

Lemma 3.6. Fix t ∈ (0, T ] and let µ1
t be the law of Xd,c,1

t . Then,

µ1
t = e−λ

∞∑
k=0

1

k!
(n1

t )
∗k, (3.20)

where

λ := n((0, t] ∩ Jc, {|x| > 1});
n1
t (dx) := I{|x|>1}(x)n((0, t] ∩ Jc, dx);

∗k denotes the k-fold convolution.

Proof. By Lemma 3.5-(2), we see that

F [µ1
t ](ξ) := E[eiξX

d,c,1
t ]

= exp
[∫

(0,t]

∫
{|x|>1}

(
eiξx − 1

)
IJc(u)n(dudx)

]
= exp

[∫
R

(
eiξx − 1

)
n1
t (dx)

]
= exp

[
λ

∫
R

(
eiξx − 1

)
n̄1
t (dx)

]
= e−λ

∞∑
k=0

λk

k!

(∫
R
eiξx n̄1

t (dx)
)k

= e−λ
∞∑
k=0

λk

k!
(F [n̄1

t ](ξ))
k

= e−λ
∞∑
k=0

λk

k!
F [(n̄1

t )
∗k](ξ)
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= F
[
e−λ

∞∑
k=0

1

k!
(n1

t )
∗k
]
(ξ),

where n̄1
t (dx) := n1

t (dx)/λ. Therefore, from the uniqueness of the Fourier trans-
form, we obtain the conclusion (3.20). �

Lemma 3.7. For all t ∈ (0, T ], eX
d,c,1
t is integrable and

E[eX
d,c,1
t ] = exp

[∫
(0,t]

∫
{|x|>1}

(
ex − 1

)
IJc(u)n(dudx)

]
. (3.21)

Proof. By Lemma 3.6, we see that

E[eX
d,c,1
t ] =

∫
R
ex µ1

t (dx)

=

∫
R
ex e−λ

∞∑
k=0

1

k!
(n1

t )
∗k(dx)

= e−λ
∞∑
k=0

1

k!

∫
R
ex (n1

t )
∗k(dx)

= e−λ
∞∑
k=0

1

k!

∫
R
· · ·

∫
R︸ ︷︷ ︸

k

ex1+···+xk n1
t (dx1) · · · n1

t (dxk)

= e−λ
∞∑
k=0

1

k!

(∫
R
ex n1

t (dx)
)k

= e−λexp
[∫

R
ex n1

t (dx)
]

= exp
[∫

(0,t]

∫
{|x|>1}

(
ex − 1

)
IJc(u)n(dudx)

]
.

Hence, by the assumption (2.5), we obtain the conclusion:

E[eX
d,c,1
t ] = exp

[∫
(0,t]

∫
{|x|>1}

(
ex − 1

)
IJc(u)n(dudx)

]
< ∞. �

Lemma 3.8. Fix t ∈ (0, T ] and let µ0
t be the law of Xd,c,0

t . Then, for ξ ∈ R,

F [µ0
t ](ξ) := E[eiξX

d,c,0
t ]

= exp
[∫

(0,t]

∫
{|x|≤1}

(
eiξx − 1− iξx

)
IJc(u)n(dudx)

]
. (3.22)

Proof. It is a special case of the formula (2.1). �
Lemma 3.9. For each t ∈ (0, T ], F [µ0

t ](ξ) can be extended as an entire function
on C.

Proof. We set

f(ξ) :=

∫
(0,t]

∫
{|x|≤1}

(
eiξx − 1− iξx

)
IJc(u)n(dudx).
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It is sufficient to show that f(ξ) can be extended as an entire function on C.
First, we show that f(ξ) can be extended as a function on C. By the mean

value theorem, for any ξ ∈ C,

eiξx − 1− iξx =

∫ 1

0

(1− s)(iξx)2eiξxs ds.

Hence, we see that

|eiξx − 1− iξx| ≤ |ξx|2e|Imξ|·|x|.

Therefore, ∫
(0,t]

∫
{|x|≤1}

|eiξx − 1− iξx| IJc(u)n(dudx)

≤ |ξ|2e|Imξ|
∫
(0,t]

∫
{|x|≤1}

|x|2 IJc(u)n(dudx) < ∞.

Next, we show that the function f(ξ) is differentiable at any ξ ∈ C. Since

∂

∂ξ

(
eiξx − 1− iξx

)
= ix · iξx

∫ 1

0

eiξxs ds,

we have ∣∣∣ ∂
∂ξ

(
eiξx − 1− iξx

)∣∣∣ ≤ |ξ| · |x|2e|Imξ|·|x|.

Hence, for any R > 0,∫
(0,t]

∫
{|x|≤1}

sup
|ξ|<R

∣∣∣ ∂
∂ξ

(
eiξx − 1− iξx

)∣∣∣IJc(u)n(dudx)

≤
(
sup
|ξ|<R

|ξ|e|Imξ|
)
×
∫
(0,t]

∫
{|x|≤1}

|x|2 IJc(u)n(dudx) < ∞.

Thus, we conclude that the function f(ξ) is differentiable at any ξ ∈ C, and hence
holomorphic on C. �

Lemma 3.10. For all t ∈ (0, T ], eX
d,c,0
t is integrable and

E[eX
d,c,0
t ] = exp

[∫
(0,t]

∫
{|x|≤1}

(
ex − 1− x

)
IJc(u)n(dudx)

]
. (3.23)

To prove this lemma, we will apply the following fact, which is stated as Lemma
25.7 in [8] (p.161).

Lemma 3.11. Let µ be a probability measure on R and suppose that the Fourier
transform F [µ](ξ) can be extended as an entire function on C. Then µ has finite
eα|x|-moment, that is,

∫
R eα|x| µ(dx) < ∞ for any α > 0.

Proof of Lemma 3.10. As we have seen in Lemma 3.9, F [µ0
t ](ξ) can be extended

as an entire function on C. Hence it follows from Lemma 3.11 (take µ := µ0
t )

that µ0
t has finite eα|x|-moment for any α > 0. Therefore, eX

d,c,0
t is integrable.

Furthermore, take ξ := −i in (3.22). Then we obtain (3.23). �
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Proof of Proposition 3.4. We have already seen in Lemma 3.5 that Xd,c,0
t and

Xd,c,1
t are independent. Moreover, we have shown in Lemmas 3.7 and 3.10 the

integrability of eX
d,c,0
t and eX

d,c,1
t and explicit representation of their expectations

(3.23) and (3.21). By these considerations, we conclude that eX
d,c
t = eX

d,c,0
t ×

eX
d,c,1
t is integrable and that

E[eX
d,c
t ] = E[eX

d,c,0
t ]× E[eX

d,c,1
t ]

= exp
[∫

(0,t]

∫
{|x|≤1}

(
ex − 1− x

)
IJc(u)n(dudx)

]
× exp

[∫
(0,t]

∫
{|x|>1}

(
ex − 1

)
IJc(u)n(dudx)

]
= exp

[∫
(0,t]

∫
R\{0}

(
ex − 1− h(x)

)
IJc(u)n(dudx)

]
.

�

Proposition 3.12. For all t ∈ (0, T ],

E[eX
d,d
t ] =

∏
u∈(0,t]∩J

{
e−∆Bu

[
1 +

∫
R\{0}

(ex − 1)n({u}, dx)
]}

(3.24)

= exp
[ ∑
u∈(0,t]∩J

{
log

(
1 +

∫
R\{0}

(ex − 1)n({u}, dx)
)

−
∫
R\{0}

h(x)n({u}, dx)
}]

.

Proof. Since the set J is discrete and deterministic, we can set (0, T ]∩J := {uk; k ∈
N}. By (2.4) and (2.5), we see that e∆Xuk is integrable and that

E[e∆Xuk ] =

∫
R
ex n({uk}, dx) + (1− n({uk},R))

∫
R
ex δ0(dx)

= 1 +

∫
R\{0}

(ex − 1)n({uk}, dx). (3.25)

In the sequel, in order to simplify notation, we will use the one:

Wu :=

∫
R\{0}

(ex − 1)n({u}, dx).

Also, set

Xk :=
e∆Xuk

E[e∆Xuk ]
− 1.

Then {Xk; k ∈ N} is a sequence of independent random variables with mean 0.
Let {JN ;N ∈ N} be an increasing sequence of finite subsets of (0, T ] ∩ J that

exhausts the set (0, T ] ∩ J , that is, JN ⊂ JN+1 and ∪NJN = (0, T ] ∩ J . Then,

lim
N→∞

E[ sup
t∈(0,T ]

|
∫
(0,t]

∫
R\{0}

h(x)IJN
(u) Ñ(dudx)
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−
∫
(0,t]

∫
R\{0}

h(x)IJ(u) Ñ(dudx)|2] = 0 (3.26)

and

lim
N→∞

sup
t∈(0,T ]

|
∫
(0,t]

∫
R\{0}

ȟ(x)IJN
(u)N(dudx)

−
∫
(0,t]

∫
R\{0}

ȟ(x)IJ (u)N(dudx)| = 0 a.s. (3.27)

In fact,

E[ sup
t∈(0,T ]

|
∫
(0,t]

∫
R\{0}

h(x)IJN
(u) Ñ(dudx)

−
∫
(0,t]

∫
R\{0}

h(x)IJ (u) Ñ(dudx)|2]

= E[ sup
t∈(0,T ]

|
∫
(0,t]

∫
R\{0}

h(x)I(J\JN )(u) Ñ(dudx)|2]

≤ 4E[|
∫
(0,T ]

∫
R\{0}

h(x)I(J\JN )(u) Ñ(dudx)|2]

= 4
{∫

(0,T ]

∫
R\{0}

|h(x)|2I(J\JN )(u)n(dudx)

−
∑

u∈(0,T ]∩(J\JN )

|
∫
R\{0}

h(x)n({u}, dx)|2
}

≤ 4

∫
(0,T ]

∫
R\{0}

|h(x)|2I(J\JN )(u)n(dudx),

where in passage from the third line to the fourth, we have used Doob’s inequality.
Since |h|2 ∈ L1((0, T ] × R, n(dudx)) and limN→∞ I(J\JN )(u) = 0 for each u, it
follows from the dominated convergence theorem that

lim
N→∞

∫
(0,T ]

∫
R\{0}

|h(x)|2I(J\JN )(u)n(dudx) = 0,

which implies (3.26).
On the other hand, it is clear that (3.27) holds, since

sup
t∈(0,T ]

|
∫
(0,t]

∫
R\{0}

ȟ(x)IJN
(u)N(dudx)−

∫
(0,t]

∫
R\{0}

ȟ(x)IJ(u)N(dudx)|

≤
∫
(0,T ]

∫
R\{0}

|ȟ(x)|I(J\JN )(u)N(dudx) −−−−→
N→∞

0.

By (3.26), there exists a subsequence {N ′} of N such that

lim
N ′→∞

sup
t∈(0,T ]

|
∫
(0,t]

∫
R\{0}

h(x)IJN′ (u) Ñ(dudx)

−
∫
(0,t]

∫
R\{0}

h(x)IJ (u) Ñ(dudx)| = 0 a.s.



14 TSUKASA FUJIWARA

In the sequel, we denote the subsequence {N ′} by {N} again. Now, note that∫
(0,t]

∫
R\{0}

h(x)IJN
(u) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(x)IJN
(u)N(dudx)

=
∑

k;uk∈(0,t]∩JN

{
∆Xuk

− E[h(∆Xuk
)]
}
.

Hence,

exp
[ ∫

(0,t]

∫
R\{0}

h(x)IJN
(u) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(x)IJN
(u)N(dudx)

]
= exp

[ ∑
k;uk∈(0,t]∩JN

{
∆Xuk

− E[h(∆Xuk
)]
}]

=
∏

k;uk∈(0,t]∩JN

(1 +Xk)×
∏

k;uk∈(0,t]∩JN

E[e∆Xuk ]

eE[h(∆Xuk
)]
.

Here, note that

eE[h(∆Xuk
)] = e

∫
R\{0} h(x)n({uk},dx).

By these relations and (3.25), we see that∏
k;uk∈(0,t]∩JN

(1 +Xk)

= exp
[ ∫

(0,t]

∫
R\{0}

h(x)IJN
(u) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(x)IJN
(u)N(dudx)

]
×

∏
k;uk∈(0,t]∩JN

eE[h(∆Xuk
)]

E[e∆Xuk ]

= exp
[ ∫

(0,t]

∫
R\{0}

h(x)IJN (u) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(x)IJN (u)N(dudx)
]

× e
∑

k;uk∈(0,t]∩JN

∫
R\{0} h(x)n({uk},dx)∏

k;uk∈(0,t]∩JN
(1 +Wuk

)
. (3.28)

Here, recall that when N tends to infinity, the first term of the right-hand side of
(3.28) converges almost surely to

exp
[ ∫

(0,t]

∫
R\{0}

h(x)IJ (u) Ñ(dudx) +

∫
(0,t]

∫
R\{0}

ȟ(x)IJ (u)N(dudx)
]
= eX

d,d
t .

Also, as for the second term of the right-hand side of (3.28), we can show that

e
∑

k;uk∈(0,t]∩JN

∫
R\{0} h(x)n({uk},dx)∏

k;uk∈(0,t]∩JN
(1 +Wuk

)

= exp
[
−

∑
k;uk∈(0,t]∩JN

{
log(1 +Wuk

)−
∫
R\{0}

h(x)n({uk}, dx)
}]

−−−−→
N→∞

L := exp
[
−

∑
u∈(0,t]∩J

{
log(1 +Wu)−

∫
R\{0}

h(x)n({u}, dx)
}]

(3.29)
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and that L > 0.
To this end, it is sufficient to show that∑

u∈(0,t]∩J

| log(1 +Wu)−
∫
R\{0}

h(x)n({u}, dx)| < ∞, (3.30)

because it implies that (3.29) holds and that∑
u∈(0,t]∩J

{
log(1 +Wu)−

∫
R\{0}

h(x)n({u}, dx)
}
∈ R

and hence L > 0.
Note that

| log(1 +Wu)−
∫
R\{0}

h(x)n({u}, dx)|

≤ | log(1 +Wu)−Wu|+ |
∫
R\{0}

(ex − 1− h(x))n({u}, dx)|.

Furthermore,

| log(1 +Wu)−Wu| ≤ | log(1 +Wu)−Wu|I{|Wu|≤1/2}

+ | log(1 +Wu)−Wu|I{|Wu|>1/2}.

Also, note that

| log(1 +Wu)−Wu|I{|Wu|≤1/2}(u)

≤ C
{∫

{|x|≤1}
|x|2 n({u}, dx) +

∫
{x>1}

ex n({u}, dx) + n({u}, {|x| > 1})
}
,

where C is a constant that does not depend on u ((22) in [1]). Moreover,∑
u∈(0,t]∩J

{∫
{|x|≤1}

|x|2 n({u}, dx) +
∫
{x>1}

ex n({u}, dx) + n({u}, {|x| > 1})
}

≤
∫
(0,t]

∫
{|x|≤1}

|x|2 n(dudx) +
∫
(0,t]

∫
{x>1}

ex n(dudx) + n((0, t], {|x| > 1})

< ∞.

Therefore, we see that∑
u∈(0,t]∩J

| log(1 +Wu)−Wu|I{|Wu|≤1/2}(u) < ∞.

On the other hand, if we set

Kt :=
1

2
Ct +Bt +

∫
(0,t]

∫
R\{0}

(
ex − 1− h(x)

)
n(dudx),

then it is a càdlàg function and ∆Ku =
∫
R\{0}(e

x − 1)n({u}, dx) = Wu. Hence,

{u ∈ (0, T ]; |Wu| > 1/2} is a finite set, which implies that∑
u∈(0,t]∩J

| log(1 +Wu)−Wu|I{|Wu|>1/2}(u) < ∞.
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Thus, we see that ∑
u∈(0,t]∩J

| log(1 +Wu)−Wu| < ∞.

Similarly, we see that∑
u∈(0,t]∩J

|
∫
R\{0}

(ex − 1− h(x))n({u}, dx)|

≤
∑

u∈(0,t]∩J

{∫
{|x|≤1}

|x|2 n({u}, dx) + 2

∫
{x>1}

ex n({u}, dx)

+ 2n({u}, {x < −1})
}

< ∞.

Thus, we have shown that (3.30) holds.
As a summary, we have shown that∏

k;uk∈(0,t]∩JN

(1 +Xk) −−−−→
N→∞

eX
d,d
t × L a.s.

and that the limit is positive.
Therefore, applying the implication: D) =⇒ E) in Theorem 1 of [7], we see that∏

k;uk∈(0,t]∩JN

(1 +Xk) −−−−→
N→∞

eX
d,d
t × L in L1.

Since

E
[ ∏
k;uk∈(0,t]∩JN

(1 +Xk)
]
=

∏
k;uk∈(0,t]∩JN

E[(1 +Xk)] = 1,

we obtain

E[eX
d,d
t ] = 1/L

= exp
[ ∑
u∈(0,t]∩J

{
log(1 +Wu)−

∫
R\{0}

h(x)n({u}, dx)
}]

=
∏

u∈(0,t]∩J

e−
∫
R\{0} h(x)n({u},dx)(1 +Wu)

=
∏

u∈(0,t]∩J

e−∆Bu
(
1 +

∫
R\{0}

(ex − 1)n({u}, dx)
)
.

Thus, we have completed the proof of Proposition 3.12. �

3.2. The case of general additive processes. Throughout this subsection,
(Xt)t∈[0,T ] denotes the additive process stated in Theorem 2.1. Let us recall that
we have denoted by (Ct, n(dtdx), Bt) the characteristics of (Xt) associated with
the truncation function h(x) := xI{|x|≤1}(x). In order to complete our proof of
Theorem 2.1, we would like to quote some facts from [4].
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Proposition 3.13. There exist a PII-semimartingale (Yt) and a deterministic
càdlàg function (At) with A0 = 0 such that

Xt = Yt +At.

This result is stated as a part of Theorem II.5.1 in [4] (p.114).
As in the previous sections, we denote by (CY

t , nY (dtdx), BY
t ) the characteristics

of (Yt) associated with the truncation function h. The following result describes
the relation between the characteristics of (Xt) and those of (Yt), which is shown
in the proof of Lemma II.5.14 (p.117) of [4]:

Proposition 3.14.

Ct = CY
t ; (3.31)

n((0, t],H) =

∫
(0,t]

∫
R\{0}

IH(y +∆Au)n
Y (dudy)

+
∑

u∈(0,t]

(1− nY ({u},R\{0}))IH(∆Au), H ∈ B(R\{0}); (3.32)

Bt = At +BY
t +

∫
(0,t]

∫
R\{0}

{h(y +∆Au)−∆Au − h(y)}nY (dudy)

+
∑

u∈(0,t]

{h(∆Au)−∆Au}(1− nY ({u},R\{0})). (3.33)

In the sequel, in order to simplify notation, we will use the one:

ju(y) := h(y +∆Au)−∆Au − h(y).

The following result is also stated in the proof of Lemma II.5.14 (p.118) of [4]:

Proposition 3.15.

IJc(u)n(dudx) = I(JY )c(u)n
Y (dudx), (3.34)

where JY := {t > 0;nY ({t},R\{0}) > 0}.

We are now in a position to restart our proof of Theorem 2.1. First of all, note
that nY (dudy) satisfies the integrability condition corresponding to (2.5):

Lemma 3.16. ∫
(0,T ]

∫
{y>1}

ey nY (dudy) < ∞.

Proof. Since (Au)u∈[0,T ] is a càdlàg function, the jumps are uniformly bounded;
hence we set M := supu∈[0,T ] |∆Au|. Then, it follows from (3.32) that∫

(0,T ]

∫
{x>1}

ex n(dudx) =

∫
(0,T ]

∫
R\{0}

ey+∆AuI(1,∞)(y +∆Au)n
Y (dudy)

+
∑

u∈(0,t]

(1− nY ({u},R\{0}))e∆AuI(1,∞)(∆Au)

≥
∫
(0,T ]

∫
R\{0}

ey+∆AuI(1,∞)(y +∆Au)n
Y (dudy)
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≥ e−M

∫
(0,T ]

∫
R\{0}

eyI(M+1,∞)(y)n
Y (dudy).

Hence, we have∫
(0,T ]

∫
R\{0}

eyI(M+1,∞)(y)n
Y (dudy) ≤ eM

∫
(0,T ]

∫
{x>1}

ex n(dudx) < ∞.

On the other hand,∫
(0,T ]

∫
R\{0}

eyI(1,M+1](y)n
Y (dudy) ≤ eM+1nY ((0, T ], {y > 1}) < ∞.

Thus, we see that∫
(0,T ]

∫
{y>1}

ey nY (dudy)

≤ eM+1nY ((0, T ], {y > 1}) + eM
∫
(0,T ]

∫
{x>1}

ex n(dudx) < ∞. �

Owing to this lemma, we can apply Theorem 2.1 to the PII-semimartingale
(Yt = Xt−At) and hence (2.6) holds with the characteristics (CY

t , nY (dtdx), BY
t ):

E[eYt ] = exp
[1
2
CY

t +BY
t +

∫
(0,t]

∫
R\{0}

(
ey − 1− h(y)

)
I(JY )c(u)n

Y (dudx)
]

×
∏

u∈(0,t]

e−∆BY
u

[
1 +

∫
R\{0}

(ey − 1)nY ({u}, dy)
]
. (3.35)

Now, in the following, we will show that the right-hand side of (2.6) is actually
equal to E[eXt ].

By the relation (3.34),∫
(0,t]

∫
R\{0}

(ex − 1− h(x))IJc(u)n(dudx)

=

∫
(0,t]

∫
R\{0}

(ey − 1− h(y))I(JY )c(u)n
Y (dudy). (3.36)

Next, by the relation (3.32), we see that

1 +

∫
R\{0}

(ex − 1)n({u}, dx)

= 1 +

∫
R\{0}

(ey+∆Au − 1)nY ({u}, dy) + (e∆Au − 1)(1− nY ({u},R\{0}))

= e∆Au{1 +
∫
R\{0}

(ey − 1)nY ({u}, dy)}. (3.37)

Hence, it follows from that (3.37) and (3.33) that

eBt

∏
u∈(0,t]

e−∆Bu

[
1 +

∫
R\{0}

(ex − 1)n({u}, dx)
]

= eBt

∏
u∈(0,t]

e−∆Bue∆Au

[
1 +

∫
R\{0}

(ey − 1)nY ({u}, dy)
]
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= exp
[
At +BY

t +

∫
(0,t]

∫
R\{0}

ju(y)n
Y (dudy)

+
∑

u∈(0,t]

{h(∆Au)−∆Au}(1− nY ({u},R\{0}))
]

×
∏

u∈(0,t]

exp
[
−
(
∆Au +∆BY

u +

∫
R\{0}

ju(y)n
Y ({u}, dy)

+ {h(∆Au)−∆Au}(1− nY ({u},R\{0}))
)
+∆Au

]
×
[
1 +

∫
R\{0}

(ey − 1)nY ({u}, dy)
]

= eAteB
Y
t

∏
u∈(0,t]

e−∆BY
u

[
1 +

∫
R\{0}

(ey − 1)nY ({u}, dy)
]

× exp
[ ∫

(0,t]

∫
R\{0}

ju(y)n
Y (dudy)−

∑
u∈(0,t]

∫
R\{0}

ju(y)n
Y ({u}, dy)

]
. (3.38)

Moreover, we will show that∫
(0,t]

∫
R\{0}

ju(y)n
Y (dudy) =

∑
u∈(0,t]

∫
R\{0}

ju(y)n
Y ({u}, dy). (3.39)

To this end, we first show that for every ε > 0∫
(0,t]

∫
R\{0}

ju(y)I{|Au|>ε}(u)n
Y (dudy)

=
∑

u∈(0,t]

∫
R\{0}

ju(y)I{|Au|>ε}(u)n
Y ({u}, dy). (3.40)

Since (Au) is a càdlàg function, JA,ε
t := {u ∈ (0, t]; |∆Au| > ε} is a finite set,

and hence we set JA,ε
t = {0 < u1 < u2 < · · · < um < um+1 = t}. Then, for

u ∈ (uk, uk+1), ju(y)IJA,ε
t

(u) = 0. Hence, we see that∫
(0,t]

∫
R\{0}

ju(y)IJA,ε
t

(u)nY (dudy)

=
m∑

k=0

∫
(uk,uk+1]

∫
R\{0}

ju(y)IJA,ε
t

(u)nY (dudy)

=

m∑
k=0

{∫
(uk,uk+1)

∫
R\{0}

ju(y)IJA,ε
t

(u)nY (dudy)

+

∫
{uk+1}

∫
R\{0}

ju(y)IJA,ε
t

(u)nY (dudy)
}

=
m∑

k=0

∫
R\{0}

juk+1
(y)IJA,ε

t
(uk+1)n

Y ({uk+1}, dy)
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=
∑

u∈(0,t]

∫
R\{0}

ju(y)IJA,ε
t

(u)nY ({u}, dy).

Also, note that ∫
(0,t]

∫
R\{0}

|ju(y)|nY (dudy) < ∞

and that ∑
u∈(0,t]

∫
R\{0}

|ju(y)|nY ({u}, dy) < ∞,

(II.5.17 in [4] (p.117)). Hence, we see from the dominated convergence theorem
that

lim
ε↓0

∫
(0,t]

∫
R\{0}

ju(y)IJA,ε
t

(u)nY (dudy) =

∫
(0,t]

∫
R\{0}

ju(y)n
Y (dudy)

and that

lim
ε↓0

∑
u∈(0,t]

∫
R\{0}

ju(y)IJA,ε
t

(u)nY ({u}, dy) =
∑

u∈(0,t]

∫
R\{0}

ju(y)n
Y ({u}, dy).

Therefore, letting ε ↓ 0 in (3.40), we obtain (3.39). Thus, combining (3.39) with
(3.38), we have

eBt

∏
u∈(0,t]

e−∆Bu

[
1 +

∫
R\{0}

(ex − 1)n({u}, dx)
]

= eAteB
Y
t

∏
u∈(0,t]

e−∆BY
u

[
1 +

∫
R\{0}

(ey − 1)nY ({u}, dy)
]
. (3.41)

Finally, by (3.31), (3.36) and (3.41), we see that

exp
[1
2
Ct +Bt +

∫
(0,t]

∫
R\{0}

(
ex − 1− h(x)

)
IJc(u)n(dudx)

]
×

∏
u∈(0,t]

e−∆Bu

[
1 +

∫
R\{0}

(ex − 1)n({u}, dx)
]

= exp
[1
2
CY

t +

∫
(0,t]

∫
R\{0}

(
ey − 1− h(y)

)
I(JY )c(u)n

Y (dudy)
]

× eAteB
Y
t ×

∏
u∈(0,t]

e−∆BY
u

[
1 +

∫
R\{0}

(ey − 1)nY ({u}, dy)
]

= eAt × exp
[1
2
CY

t +BY
t +

∫
(0,t]

∫
R\{0}

(
ey − 1− h(y)

)
I(JY )c(u)n

Y (dudy)
]

×
∏

u∈(0,t]

e−∆BY
u

[
1 +

∫
R\{0}

(ey − 1)nY ({u}, dy)
]
. (3.42)

Combining (3.42) with (3.35), we see that

the right hand side of (2.6) = eAt × E[eYt ] = E[eXt ].

Thus, we have completed our proof of Theorem 2.1.
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