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Abstract. Deep architectures are families of functions corresponding to
deep circuits. Deep Learning algorithms are based on parametrizing such
circuits and tuning their parameters so as to approximately optimize
some training objective. Whereas it was thought too difficult to train
deep architectures, several successful algorithms have been proposed in
recent years. We review some of the theoretical motivations for deep
architectures, as well as some of their practical successes, and propose
directions of investigations to address some of the remaining challenges.

1 Learning Artificial Intelligence

An intelligent agent takes good decisions. In order to do so it needs some form
of knowledge. Knowledge can be embodied into a function that maps inputs
and states to states and actions. If we saw an agent that always took what one
would consider as the good decisions, we would qualify the agent as intelligent.
Knowledge can be explicit, as in the form of symbolically expressed rules and
facts of expert systems, or in the form of linguistic statements in an encyclope-
dia. However, knowledge can also be implicit, as in the complicated wiring and
synaptic strengths of animal brains, or even in the mechanical properties of an
animal’s body. Whereas Artificial Intelligence (AI) research initially focused on
providing computers with knowledge in explicit form, it turned out that much
of our knowledge was not easy to express formally. What is a chair? We might
write a definition that can help another human understand the concept (if he
did not know about it), but it is difficult to make it sufficiently complete for
a computer to translate into the same level of competence (e.g. in recognizing
chairs in images). Much so-called common-sense knowledge has this property.

If we cannot endowe computers with all the required knowledge, an alter-
native is to let them learn it from examples. Machine learning algorithms aim
to extract knowledge from examples (i.e., data), so as to be able to properly
generalize to new examples. Our own implicit knowledge arises either out of
our life experiences (lifetime learning) or from the longer scale form of learning
that evolution really represents, where the result of adaptation is encoded in the
genes. Science itself is a process of learning from observations and experiments in
order to produce actionable knowledge. Understanding the principles by which
agents can capture knowledge through examples, i.e., learn, is therefore a central
scientific question with implications not only for AI and technology, but also to
understand brains and evolution.



Formally, a learning algorithm can be seen as a functional that maps a dataset
(a set of examples) to a function (typically, a decision function). Since the dataset
is itself a random variable, the learning process involves the application of a pro-
cedure to a target distribution from which the examples are drawn and for which
one would like to infer a good decision function. Many modern learning algo-
rithms are expressed as an optimization problem, in which one tries to find a
compromise between minimizing empirical error on training examples and min-
imizing a proxy for the richness of the family of functions that contains the
solution. A particular challenge of learning algorithms for AI tasks (such as un-
derstanding images, video, natural language text, or speech) is that such tasks
involve a large number of variables with complex dependencies, and that the
amount of knowledge required to master these tasks is very large. Statistical
learning theory teaches us that in order to represent a large body of knowledge,
one requires a correspondingly large number of degrees of freedom (or richness of
a class of functions) and a correspondingly large number of training examples. In
addition to the statistical challenge, machine learning often involves a computa-
tional challenge due to the difficulty of optimizing the training criterion. Indeed,
in many cases, that training criterion is not convex, and in some cases it is not
even directly measurable in a deterministic way and its gradient is estimated by
stochastic (sampling-based) methods, and from only a few examples at a time
(online learning).

One of the characteristics that has spurred much interest and research in
recent years is depth of the architecture. In the case of a multi-layer neural
network, depth corresponds to the number of (hidden and output) layers. A
fixed-kernel Support Vector Machine is considered to have depth 2 (Bengio and
LeCun, 2007a) and boosted decision trees to have depth 3 (Bengio et al., 2010).
Here we use the word circuit or network to talk about a directed acyclic graph,
where each node is associated with some output value which can be computed
based on the values associated with its predecessor nodes. The arguments of
the learned function are set at the input nodes of the circuit (which have no
predecessor) and the outputs of the function are read off the output nodes of the
circuit. Different families of functions correspond to different circuits and allowed
choices of computations in each node. Learning can be performed by changing the
computation associated with a node, or rewiring the circuit (possibly changing
the number of nodes). The depth of the circuit is the length of the longest path
in the graph from an input node to an output node.

This paper also focuses on Deep Learning, i.e., learning multiple levels of
representation. The intent is to discover more abstract features in the higher lev-
els of the representation, which hopefully make it easier to separate from each
other the various explanatory factors extent in the data. Theoretical results (Yao,
1985; H̊astad, 1986; H̊astad and Goldmann, 1991; Bengio et al., 2006; Bengio
and Delalleau, 2011; Braverman, 2011), reviewed briefly here (see also a previ-
ous discussion by Bengio and LeCun, 2007b) suggest that in order to learn the
kind of complicated functions that can represent high-level abstractions (e.g., in
vision, language, and other AI-level tasks) associated with functions with many



variations but an underlying simpler structure, one may need deep architectures.
The recent surge in experimental work in the field seems to support this notion,
accumulating evidence that in challenging AI-related tasks – such as computer
vision (Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007; Ranzato
et al., 2008; Lee et al., 2009; Mobahi et al., 2009; Osindero and Hinton, 2008),
natural language processing (NLP) (Collobert and Weston, 2008a; Weston et al.,
2008), robotics (Hadsell et al., 2008), or information retrieval (Salakhutdinov
and Hinton, 2007; Salakhutdinov et al., 2007) – deep learning methods signifi-
cantly out-perform comparable but shallow competitors (e.g. winning the Unsu-
pervised and Transfer Learning Challenge; Mesnil et al., 2011), and often match
or beat the state-of-the-art.

In this paper we discuss some of the theoretical motivations for deep archi-
tectures, and quickly review some of the current layer-wise unsupervised feature-
learning algorithms used to train them. We conclude with a discussion of prin-
ciples involved, challenges ahead, and ideas to face them.

2 Local and Non-Local Generalization: The Challenge
and Curse of Many Factors of Variation

How can learning algorithms generalize from training examples to new cases?
It can be shown that there are no completely universal learning procedures,
in the sense that for any learning procedure, there is a target distribution on
which it does poorly (Wolpert, 1996). Hence, all generalization principles exploit
some property of the target distribution, i.e., some kind of prior. The most
exploited generalization principle is that of local generalization. It relies on a
smoothness assumption, i.e., that the target function (the function to be learned)
is smooth (according to some measure of smoothness), i.e., changes slowly and
rarely (Barron, 1993). Contrary to what has often been said, what mainly hurts
many algorithms relying only on this assumption (pretty much all of the non-
parametric statistical learning algorithms) is not the dimensionality of the input
but instead the insufficient smoothness of the target function1.

To make a simple picture, imagine the supervised learning framework and a
target function that is locally smooth but has many ups and downs in the domain
of interest. We showed that if one considers a straight line in the input domain,
and counts the number of ups and downs along that line, then a learner based
purely on local generalization (such as a Gaussian kernel machine) requires at
least as many examples as there are ups and downs (Bengio et al., 2006).

Manifold learning algorithms are unsupervised learning procedures aiming
to characterize a low-dimensional manifold near which the target distribution
concentrates. Bengio and Monperrus (2005) argued that many real-world mani-
folds (such as the one generated by translations or rotations of images, when the
image is represented by its pixel intensities) are highly curved (translating by 1

1 but of course additional noisy dimensions, although they do not change smoothness
of the target function, require more examples to cancel the noise.



pixel can change the tangent plane of the manifold by about 90 degrees). The
manifold learning algorithms of the day, based implicitly or explicitly on non-
parametric estimation of the local tangent planes to the manifold, are relying on
purely local generalization. Hence they would require a number of examples that
grows linearly with the dimension d of the manifold and the number of patches
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needed to cover its nooks and crannies, i.e., in O
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)d)
examples,

where D is a diameter of the domain of interest and r a radius of curvature.

3 Expressive Power of Deep Architectures

To fight an exponential, it seems reasonable to arm oneself with other expo-
nentials. We discuss two strategies that can bring a potentially exponential
statistical gain thanks to a combinatorial effect: distributed (possibly sparse)
representations and depth of architecture. We also present an example of the
latter in more details in the specific case of so-called sum-product networks.

3.1 Distributed and Sparse Representations

Learning algorithms based on local generalization can generally be interpreted
as creating a number of local regions (possibly overlapping, possibly with soft
rather than hard boundaries), such that each region is associated with its own
degrees of freedom (parameters, or examples such as prototypes). Such learning
algorithms can then learn to discriminate between these regions, i.e., provide a
different response in each region (and possibly doing some form of smooth in-
terpolation when the regions overlap or have soft boundaries). Examples of such
algorithms include the mixture of Gaussians (for density estimation), Gaussian
kernel machines (for all kinds of tasks), ordinary clustering (such as k-means, ag-
glomerative clustering or affinity propagation), decision trees, nearest-neighbor
and Parzen windows estimators, etc... As discussed in previous work (Bengio
et al., 2010), all of these algorithms will generalize well only to the extent that
there are enough examples to cover all the regions that need to be distinguished
from each other.

As an example of such algorithms, the way a clustering algorithm or a nearest-
neighbor algorithm could partition the input space is shown on the left side of
Fig. 1. Instead, the right side of the figure shows how an algorithm based on dis-
tributed representations (such as a Restricted Boltzmann Machine; Hinton et al.,
2006) could partition the input space. Each binary hidden variable identifies on
which side of a hyper-plane the current input lies, thus breaking out input space
in a number of regions that could be exponential in the number of hidden units
(because one only needs a few examples to learn where to put each hyper-plane),
i.e., in the number of parameters. If one assigns a binary code to each region,
this is also a form of clustering, which has been called multi-clustering (Bengio,
2009).

Distributed representations were put forward in the early days of connec-
tionism and artificial neural networks (Hinton, 1986, 1989). More recently, a
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Fig. 1. Contrast beween learning algorithms such as clustering (left side), based on local
generalization, with examples required in each input region distinguished by the learner,
and algorithms based on distributed representations, such as a Restricted Boltzmann
Machine (right side). The latter also splits up the input space in regions but where the
number of parameters or examples required can be much smaller (potentially exponen-
tially smaller) than the number of regions one can distinguish. This is what grants the
possibility of generalizing to regions where no data have been observed.

variation on distributed representations has been explored by many researchers,
which is somehow in between purely local representations and the traditional
dense distributed representations: sparse representations. The idea is that only
a few dimensions of the representations are “active”, with the inactive dimen-
sions basically set to 0 or close to 0. Neurons in the cortex are believed to have a
distributed and sparse representation (Olshausen and Field, 1997), with around
1-4% of the neurons active at any one time (Attwell and Laughlin, 2001; Lennie,
2003). With k out of d active dimensions in a representation, one still gets (po-
tentially) exponentially more representational power than a local representation,
with the number of regions that can be distinguished now being in the order of
n choose k. See Bengio (2009) for a brief overview of the literature on sparse
representations.

3.2 Depth

Depth is a notion borrowed from complexity theory, and that is defined for cir-
cuits. A circuit is a directed acyclic graph where each node is associated with a
computation, and whose output results are used by the successors of that node.
Input nodes have no predecessor and output nodes have no successor. The depth
of a circuit is the longest path from an input to an output node. A long-standing
question in complexity theory is the extent to which depth-limited circuits can
represent functions as efficiently as deeper circuits. A depth-2 circuit (with appro-
priate choice of computational elements, e.g. logic gates or formal neurons) can
compute or approximate any function, but it may require an exponentially large
number of nodes. This is a relevant question for machine learning, because many



learning algorithms learn “shallow architectures” (Bengio and LeCun, 2007b),
typically of depth 1 (linear predictors) or 2 (most non-parametric predictors). If
AI tasks require deeper circuits (and human brains certainly appear deep), then
we should find ways to incorporate depth into our learning algorithms. The con-
sequences of using a too shallow predictor would be that it may not generalize
well, unless given huge numbers of examples and capacity (i.e., computational
resources and statistical resources).

The early results on the limitations of shallow circuits regard functions such
as the parity function (Yao, 1985), showing that logic gates circuits of depth-2
require exponential size to implement d-bit parity where a deep circuit of depth
O(log(d)) could implement it with O(d) nodes. H̊astad (1986) then showed that
there are functions computable with a polynomial-size logic gate circuit of depth
k that require exponential size when restricted to depth k − 1 (H̊astad, 1986).
Interestingly, a similar result was proven for the case of circuits made of linear
threshold units (formal neurons; H̊astad and Goldmann, 1991), when trying to
represent a particular family of functions. A more recent result brings an ex-
ample of a very large class of functions that cannot be efficiently represented
with a small-depth circuit (Braverman, 2011). It is particularly striking that the
main theorem regards the representation of functions that capture dependencies
in joint distributions. Basically, dependencies that involve more than r variables
are difficult to capture by shallow circuits. An r-independent distribution is one
that cannot be distinguished from the uniform distribution when looking only
at r variables at a time. The proof of the main theorem (which concerns distri-
bution over bit vectors) relies on the fact that order-r polynomials over the reals
cannot capture r-independent distributions. The main result is that bounded-
depth circuits cannot distinguish data generated by r-independent distributions
from independent noisy bits. We have also recently shown (Bengio and Delal-
leau, 2011) results for sum-product networks (where nodes either compute sums
or products, over the reals). We present these results in more details below as
an example of the advantage brought by depth in terms of the efficiency of
the representation: we found two families of polynomials that can be efficiently
represented with depth-d circuits, but require exponential size with depth-2 cir-
cuits. Interestingly, sum-product networks were recently proposed to efficiently
represent high-dimensional joint distributions (Poon and Domingos, 2011).

Besides the complexity-theory hints at their representational advantages,
there are other motivations for studying learning algorithms which build a deep
architecture. The earliest one is simply inspiration from brains. By putting to-
gether anatomical knowledge and measures of the time taken for signals to travel
from the retina to the frontal cortex and then to motor neurons (about 100 to
200ms), one can gather that at least 5 to 10 feedforward levels are involved
for some of the simplest visual object recognition tasks. Slightly more complex
vision tasks require iteration and feedback top-down signals, multiplying the
overall depth by an extra factor of 2 to 4 (to about half a second).

Another motivation derives from what we know of cognition and abstrac-
tions: as argued by Bengio (2009), it is natural for humans to represent concepts



at one level of abstraction as the composition of concepts at lower levels. Engi-
neers often craft representations at multiple levels, with higher levels obtained by
transformation of lower levels. Instead of a flat main program, software engineers
structure their code to obtain plenty of re-use, with functions and modules re-
using other functions and modules. This inspiration is directly linked to machine
learning: deep architectures appear well suited to represent higher-level abstrac-
tions because they lend themselves to re-use. For example, some of the features
that are useful for one task may be useful for another, making Deep Learning
particularly well suited for transfer learning and multi-task learning (Caruana,
1995; Collobert and Weston, 2008b; Bengio et al., 2011; Bengio, 2011). Here one
is exploiting the existence of underlying common explanatory factors that are
useful for multiple tasks. This is also true of semi-supervised learning, which ex-
ploits connections between the input distribution P (X) and a target conditional
distribution P (Y |X) (see Weston et al. (2008) for a first application of Deep
Learning to semi-supervised learning). In general these two distributions, seen
as functions of x, may be unrelated to each other. But in the world around us,
it is often the case that some of the factors that shape the input variables X
are predictive of the output variables Y . Deep Learning relies heavily on un-
supervised or semi-supervised learning, and assumes that representations of X
that are useful to capture P (X) are also in part useful to capture P (Y |X). An
extensive study by Erhan et al. (2010) has explored the question of whether
and how this prior may explain the success of the greedy layer-wise unsupervised
pre-training recipe followed in many Deep Learning algorithms, and explained
in Sect. 4.

3.3 A Deep Sum-Product Networks Case Study

Poon and Domingos (2011) introduced deep sum-product networks as a
method to compute partition functions of tractable graphical models. These
networks are analogous to traditional artificial neural networks but with nodes
that compute either products or weighted sums of their inputs. In this setting
the advantage brought by depth may not be obvious: after all, the output value
can always be written as a sum of products of input variables (possibly raised to
some power), and consequently it is easily rewritten as a shallow network with
a sum output unit and product hidden units.

The argument supported by our theoretical analysis (Bengio and Delalleau,
2011) is that a deep architecture is able to compute some functions much more
efficiently than a shallow one. Here we measure “efficiency” in terms of the num-
ber of computational units in the network. Bengio (2009) suggested that some
polynomials could be represented more efficiently by deep sum-product networks,
but without providing any formal statement or proofs. We partly addressed this
void by demonstrating families of circuits for which a deep architecture can be



exponentially more efficient than a shallow one in the context of real-valued
polynomials2.

In the following we briefly review our main results, in which we consider two
families of functions represented by deep sum-product networks (denoted by F
and G). For each family, we establish a lower bound on the minimal number of
hidden units a shallow (depth-2) sum-product network would require to repre-
sent a function of this family, showing it is much less efficient than the deep
representation.

The first family of functions we study is F = ∪n≥4Fn, where Fn is made of
functions built from deep sum-product networks with n = 2k inputs and (even)
depth k that alternate binary product and sum layers (Fig. 2 for the simplest
case, F4).
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Fig. 2. Sum-product network computing some f ∈ F4, i.e., with n=4 inputs and depth
k = log2 n = 2.

The second family of functions is G = ∪n≥2,i≥0Gin such that the sub-family
Gin is made of sum-product networks with n input variables and depth 2i + 1,
that alternate sum and product layers. Each sum or product unit takes n − 1
units from the previous layer as inputs. An example of a network belonging to
G1,3 is shown in Fig. 3 (it has unit summation weights to keep the figure easy
to read). Note that contrary to family F , depth and input size can be varied
independently for networks in G.

The main result for family F is that any shallow sum-product network com-
puting a function in Fn must have at least 2

√
n−1 hidden units. The high-level

proof sketch consists in the following steps (Bengio and Delalleau, 2011):
1. Show that the number of unique products found in the expanded polynomial

representation of f ∈ Fn is 2
√
n−1.

2. Prove that the only possible architecture for a shallow sum-product network
to compute f is to have a hidden layer made of product units, with a sum
unit as output.

2 Here we restrict our definition of “sum-product networks” to those networks whose
summation units have positive incoming weights, even though some of our results
still hold for networks with non-positive weights (Bengio and Delalleau, 2011).
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Fig. 3. Sum-product network computing some g ∈ G1,3.

3. Conclude that the number of hidden units in step 2 must be at least the
number of unique products computed in step 1.
For family G, we obtain that a shallow sum-product network computing gin ∈

Gin must have at least (n− 1)i hidden units. The proof relies on a similar idea,
i.e. we use a lower bound on the number of products found in the expanded
polynomial expansion of g to bound the number of hidden units in a shallow
sum-product network with summation output. In addition, the final result uses
the degree of the output polynomial, which is (n − 1)i, to bound the number
of hidden units in a shallow sum-product network with product output (also
proving there can be no product units in the hidden layer).

In summary, we obtain that functions in families F and G can be com-
puted by a deep sum-product network with exponentially less units
than when computed by a shallow sum-product network. This motivates
using deep sum-product networks to obtain more efficient representations.

4 A Zoo of Learning Algorithms

Greedy Layer-Wise Unsupervised Feature Learning.
Whereas early efforts at training deep architectures were unsuccessful (Bengio
and LeCun, 2007a), a major breakthrough in Deep Learning methods came about
with the use of layer-wise unsupervised learning (Hinton et al., 2006; Bengio
et al., 2007; Ranzato et al., 2007), as a way to initialize a deep supervised neural
network.

Deep Learning usually occurs in two phases: first, unsupervised, layer-wise
training, and second, supervised training of a classifier that exploits what has
been done in the first phase. In the unsupervised phase, each layer is added and
trained greedily, i.e., keeping the earlier layers fixed and ignoring the future in-



teractions with additional layers. Each layer uses the representation learned by
the previous layer as input that it tries to model and transform to a new and bet-
ter representation. Many unsupervised learning algorithms are being explored
for the first phase, including various methods to train Restricted Boltzmann
Machines (RBMs) (Freund and Haussler, 1994; Hinton et al., 2006; Tieleman,
2008; Salakhutdinov and Hinton, 2009; Desjardins et al., 2010) or Deep Boltz-
mann Machines (Salakhutdinov and Hinton, 2010; Lee et al., 2009), different
flavours of auto-encoders (Bengio et al., 2007; Vincent et al., 2008; Larochelle
et al., 2009), and other sparse encoder-decoder systems (Ranzato et al., 2007;
Kavukcuoglu et al., 2009).

The objective stated in the Deep Learning literature is to discover power-
ful representation-learning algorithms, mostly thanks to unsupervised learning
procedures. Ideally, such representations should somehow capture the salient
factors of variation that explain the data, and this can be tested by attempting
to use these learned representations to predict some of these factors, e.g., in a
classification problem.

Boltzmann Machines. The first unsupervised learning algorithm (Hin-
ton and Salakhutdinov, 2006; Hinton et al., 2006) that has been proposed for
training each layer of a deep architecture is based on a Restricted Boltzmann
Machine (Smolensky, 1986), which is an undirected graphical model that is a
particular form of Boltzmann Machine (Hinton et al., 1984). A Boltzmann Ma-
chine is an undirected graphical model for observed variable x based on latent
variable h is specified by an energy function E(x, h):

P (x, h) =
e−E(x,h)

Z

where Z is a normalization constant called the partition function. A Boltzmann
machine is one where E(x, h) is a second-order polynomial in (x, h), e.g.,

E(x, h) = h′Wx+ h′Uh+ x′V x+ b′h+ c′x

and in general both x and h are considered to be binary vectors, which makes
Z intractable except when both x and h have very few components. The coef-
ficients θ = (W,U, V, b, c) of that second-order polynomial are the parameters
of the model. Given an observed x, the inference P (h|x) is generally intractable
but can be estimated by sampling from a Monte-Carlo Markov Chain (MCMC),
e.g. by Gibbs sampling, or using loopy belief, variational or mean-field approx-
imations. Even though computing the energy is easy, marginalizing over h in
order to compute the likelihood P (x) is generally intractable, so that the exact
log-likelihood gradient is also intractable. However, several algorithms have been
proposed in recent years to estimate the gradient, most of them based on the
following decomposition into the so-called “positive phase part” (x is fixed to
the observed value, the gradient term tends to decrease the associated energy)
and “negative phase part” (both x and h are sampled according to P , and the
gradient term tends to increase their energy):

∂

∂θ
(− logP (x)) = Eh

[
∂E(x, h)

∂θ
|x
]
− Ex,h

[
∂E(x, h)

∂θ

]
.



Even though a Boltzmann Machine is a parametric model when we consider the
dimensionality nh of h to be fixed, in practice one allows nh to vary, making
it a non-parametric model. With nh large enough, one can model any discrete
distribution: Le Roux and Bengio (2008) showed that Restricted Boltzmann
Machines (described below) are universal approximators, and since they are
special cases of Boltzmann Machines, Boltzmann Machines also are universal
approximators. On the other hand with nh > 0 the log-likelihood is not anymore
convex in the parameters, and training can potentially get stuck in one of many
local minima.

The Restricted Boltzmann Machine (RBM) is a Boltzmann machine
without lateral interactions, i.e., U = 0 and V = 0. It turns out that the positive
phase part of the gradient can be computed exactly and tractably in the easier
special case of the RBM, because P (h|x) factorizes into

∏
i P (hi|x). Similarly

P (x|h) factorizes into
∏

j P (xj |h), which makes it possible to apply blocked
Gibbs sampling (sampling h given x, then x given h, again h given x, etc.). For
a trained RBM, the learned representation R(x) of its input x is usually taken
to be E[h|x], as a heuristic.

RBMs are typically trained by stochastic gradient descent, using a noisy
(and generally biased) estimator of the above log-likelihood gradient. The first
gradient estimator that was proposed for RBMs is the Contrastive Divergence
estimator (Hinton, 1999; Hinton et al., 2006), and it has a particularly simple
form: the negative phase gradient is obtained by starting a very short chain
(usually just one step) at the observed x and replacing the above expectations
by the corresponding samples. In practice, it has worked very well for unsuper-
vised pre-training meant to initialize each layer of a deep supervised (Hinton
et al., 2006; Bengio et al., 2007; Erhan et al., 2010) or unsupervised (Hinton and
Salakhutdinov, 2006) neural network.

Another common way to train RBMs is based on the Stochastic Maximum
Likelihood (SML) estimator (Younes, 1999) of the gradient, also called Persis-
tent Contrastive Divergence (PCD; Tieleman, 2008) when it was introduced for
RBMs. The idea is simply to keep sampling negative phase x’s (e.g. by blocked
Gibbs sampling) even though the parameters are updated once in a while, i.e.,
without restarting a new chain each time an update is done. It turned out that
SML yields RBMs with much better likelihood, whereas CD updates sometimes
give rise to worsening likelihood and suffer from other issues (Desjardins et al.,
2010). Theory suggests (Younes, 1999) this is a good estimator if the parameter
changes are small, but practice revealed (Tieleman, 2008) that it worked even for
large updates, in fact giving rise to faster mixing (Tieleman and Hinton, 2009;
Breuleux et al., 2011). This is happening because learning actually interacts with
sampling in a useful way, pushing the MCMC out of the states it just visited.
This principle may also explain some of the fast mixing observed in a related
approach called Herding (Welling, 2009; Breuleux et al., 2011).

RBMs can be stacked to form a Deep Belief Network (DBN), a hybrid of
directed and undirected graphical model components, which has an RBM to
characterize the interactions between its top two layers, and then generates the



input through a directed belief network. See Bengio (2009) for a deeper treatment
of Boltzmann Machines, RBMs, and Deep Belief Networks.

Auto-encoders are neural networks which are trained to reconstruct their
input (Rumelhart et al., 1986; Bourlard and Kamp, 1988; Hinton and Zemel,
1994). A one-hidden layer auto-encoder is very similar to an RBM and its re-
construction error gradient can be seen as an approximation of the RBM log-
likelihood gradient (Bengio and Delalleau, 2009). Both RBMs and auto-encoders
can be used as one-layer unsupervised learning algorithms that give rise to a
new representation of the input or of the previous layer. In the same year that
RBMs were successfully proposed for unsupervised pre-training of deep neural
networks, auto-encoders were also shown to help initialize deep neural networks
much better than random initialization (Bengio et al., 2007). However, ordinary
auto-encoders generally performed worse than RBMs, and were unsatisfying be-
cause they could potentially learn a useless identity transformation when the
representation size was larger than the input (the so-called “overcomplete” case).

Sparse coding was introduced in computational neuroscience (Olshausen
and Field, 1997) and produced filters very similar to those observed in cortex
visual area V1 (before similar filters were achieved with RBMs, sparse predic-
tive decomposition, and denoising auto-encoders, below). It corresponds to a
linear directed graphical model with a continuous-valued latent variable associ-
ated with a sparsity prior (Student or Laplace, the latter corresponding to an
L1 penalty on the value of the latent variable). This is like an auto-encoder,
but without a parametric encoder, only a parametric decoder. The “encoding”
corresponds to inference (finding the most likely hidden code associated with
observed visible input) and involves solving a lengthy but convex optimization
problem and much work has been devoted to speeding it up. A very interesting
way to do so is with Predictive Sparse Decomposition (Kavukcuoglu et al.,
2008), in which one learns a parametric encoder that approximates the result of
the sparse coding inference (and in fact changes the solution so that both ap-
proximate encoding and decoding work well). Such models based on approximate
inference were the first successful examples of stacking a sparse encoding (Ran-
zato et al., 2007; Jarrett et al., 2009) into a deep architecture (fine-tuned for
supervised classification afterwards, as per the above greedy-layerwise recipe).

Score Matching is an alternative statistical estimation principle (Hyvärinen,
2005) when the maximum likelihood framework is not tractable. It can be ap-
plied to models of continuous-valued data when the probability function can
be computed tractably up to its normalization constant (which is the case for
RBMs), i.e., it has a tractable energy function. The score of the model is the
partial derivative of the log-likelihood with respect to the input, and indicates in
which direction the likelihood would increase the most, from a particular input
x. Score matching is based on minimizing the squared difference between the
score of the model and a target score. The latter is in general unknown but the
score match can nonetheless be rewritten in terms of the expectation (under the
data generating process) of first and (diagonal) second derivatives of the energy
with respect to the input, which correspond to a tractable computation.



Denoising Auto-Encoders were first introduced by Vincent et al. (2008)
to bypass the frustrating limitations of auto-encoders mentioned above. Auto-
encoders are only meant to learn a “bottleneck”, a reduced-dimension repre-
sentation. The idea of Denoising Auto-Encoders (DAE) is simple: feed the en-
coder/decoder system with a stochastically corrupted input, but ask it to recon-
struct the clean input (as one would typically do to train any denoising system).
This small change turned out to systematically yield better results than those
obtained with ordinary auto-encoders, and similar or better than those obtained
with RBMs on a benchmark of several image classification tasks (Vincent et al.,
2010). Interestingly, the denoising error can be linked in several ways to the
likelihood of a generative model of the distribution of the uncorrupted exam-
ples (Vincent et al., 2008; Vincent, 2011), and in particular through the Score
Matching proxy for log-likelihood (Vincent, 2011): the denoising error corre-
sponds to a form of regularized score matching criterion (Kingma and LeCun,
2010). The link also sheds light on why a denoising auto-encoder captures the
input distribution. The difference vector between the reconstruction and the cor-
rupted input is the model’s guess as to the direction of greatest increase in the
likelihood (starting from a corrupted example), whereas the difference vector be-
tween the corrupted input and the clean original is nature’s hint of a direction of
greatest increase in likelihood (since a noisy version of a training example is very
likely to have a much lower probability than the original under the data gener-
ating distribution). The difference of these two differences is just the denoising
reconstruction error residue.

Noise-Contrastive Estimation is another estimation principle which can
be applied when the energy function can be computed but not the partition
function (Gutmann and Hyvarinen, 2010). It is based on training not only from
samples of the target distribution but also from samples of an auxiliary “back-
ground” distribution (e.g. a flat Gaussian). The partition function is considered
like a free parameter (along with the other parameters) in a kind of logistic re-
gression trained to predict the probability that a sample belongs to the target
distribution vs the background distribution.

Semi-Supervised Embedding is an interesting and different way to use
unlabeled data to learn a representation (e.g., in the hidden layers of a deep
neural network), based on a hint about pairs of examples (Weston et al., 2008).
If two examples in a pair are expected to have a similar semantic, then their
representations should be encouraged to be similar, whereas otherwise their
representations should be at least some distance away. This idea was used in
unsupervised and semi-supervised contexts (Chopra et al., 2005; Hadsell et al.,
2006; Weston et al., 2008), and originates in the much older idea of siamese
networks (Bromley et al., 1993).

Contractive autoencoders (Rifai et al., 2011) minimize a training criterion
that is the sum of a reconstruction error and a “contraction penalty”, which
encourages the learnt representation h(x) to be as invariant as possible to the
input x, while still allowing to distinguish the training examples from each other
(i.e., to reconstruct them). As a consequence, the representation is faithful to



changes in input space in the directions of the manifold near which examples
concentrate, but it is highly contractive in the orthogonal directions. This is
similar in spirit to a PCA (which only keeps the leading directions of variation
and completely ignores the others), but is softer (no hard cutting at a particular
dimension), is non-linear and can contract in different directions depending on
where one looks in the input space (hence can capture non-linear manifolds).
To prevent a trivial solution in which the encoder weights go to zero and the
decoder weights to infinity, the contractive autoencoder uses tied weights (the
decoder weights are forced to be the transpose of the encoder weights). Because
of the contractive criterion, what we find empirically is that for any particular
input example, many of the hidden units saturate while a few remain sensitive
to changes in the input (corresponding to changes in the directions of changes
expected under the data distribution). That subset of active units changes as we
move around in input space, and defines a kind of local chart, or local coordinate
system, in the neighborhood of each input point. This can be visualized to some
extent by looking at the singular values and singular vectors of the Jacobian
matrix J (containing the derivatives of each hidden unit output with respect to
each input unit). Contrary to other autoencoders, one tends to find only few
dominant eigenvalues, and their number corresponds to a local rank or local
dimension (which can change as we move in input space). This is unlike other
dimensionality reduction algorithms in which the number of dimensions is fixed
by hand (rather than learnt) and fixed across the input domain. In fact the
learnt representation can be overcomplete (larger than the input): it is only in
the sense of its Jacobian that it has an effective small dimensionality for any
particular input point. The large number of hidden units can be exploited to
model complicated non-linear manifolds.

5 Principles, Challenges and Ideas Ahead

What lies beyond the principle of local generalization which has already been
very successful in machine learning? The principles of distributed (possibly
sparse) representations and deep circuits make possible other ways to generalize.
Both can exploit a combinatorial effect in order to characterize and differenti-
ate a number of input regions that is exponentially larger than the number of
parameters.

However, these principles also come with challenges, notably a more diffi-
cult non-convex optimization problem. The greedy layer-wise unsupervised pre-
training trick has served well, but more needs to be done in order to globally
train these deep architectures. This optimization difficulty means that the op-
timization problem is not cleanly decoupled from the modeling choices. Some
models may work well in practice because the optimization is easier.

Representation learning algorithms have been found empirically to partly
disentangle the underlying factors of variation, such as geometric factors of vari-
ation (Goodfellow et al., 2009), or domain vs sentiment in sentiment analy-
sis (Glorot et al., 2011). This means that some learned features (some component



of the representation) are more invariant to some factors of variation (compared
to the raw input) and more sensitive to others. Perhaps the most exciting chal-
lenge ahead is the following: why is this apparent disentangling happening, and
can we go even further in that direction? We already know some tricks which
seem to help this disentangling: independence (e.g., as in ICA), sparsity (e.g.,
as in sparse auto-encoders, sparse RBMs, or sparse denoising auto-encoders),
grouping (forcing some groups of learned features to behave as a group, e.g.,
encouraging all of the units in a group to be off together), and slowness (forcing
some units to respond in a temporally coherent manner). We propose to invest
more towards understanding all of these better and exploiting this understand-
ing to yield learning algorithms that better disentangle the underlying factors of
variation in AI-related tasks.
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