
On the Expressive Power of Deep Neural Networks

Maithra Raghu 1 2 Ben Poole 3 Jon Kleinberg 1 Surya Ganguli 3 Jascha Sohl Dickstein 2

Abstract

We propose a new approach to the problem of

neural network expressivity, which seeks to char-

acterize how structural properties of a neural net-

work family affect the functions it is able to com-

pute. Our approach is based on an interrelated

set of measures of expressivity, unified by the

novel notion of trajectory length, which mea-

sures how the output of a network changes as

the input sweeps along a one-dimensional path.

Our findings show that: (1) The complexity of

the computed function grows exponentially with

depth (2) All weights are not equal: trained net-

works are more sensitive to their lower (initial)

layer weights (3) Trajectory regularization is a

simpler alternative to batch normalization, with

the same performance.

1. Introduction

Deep neural networks have proved astoundingly effective

at a wide range of empirical tasks, from image classifica-

tion (Krizhevsky et al., 2012) to playing Go (Silver et al.,

2016), and even modeling human learning (Piech et al.,

2015).

Despite these successes, understanding of how and why

neural network architectures achieve their empirical suc-

cesses is still lacking. This includes even the fundamen-

tal question of neural network expressivity, how the archi-

tectural properties of a neural network (depth, width, layer

type) affect the resulting functions it can compute, and its

ensuing performance.

This is a foundational question, and there is a rich history

of prior work addressing expressivity in neural networks.

However, it has been challenging to derive conclusions that

provide both theoretical generality with respect to choices

of architecture as well as meaningful insights into practical

1Cornell University 2Google Brain 3Stanford University. Cor-
respondence to: Maithra Raghu <maithrar@gmail.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

performance.

Indeed, the very first results on this question take a highly

theoretical approach, from using functional analysis to

show universal approximation results (Hornik et al., 1989;

Cybenko, 1989), to analysing expressivity via comparisons

to boolean circuits (Maass et al., 1994) and studying net-

work VC dimension (Bartlett et al., 1998). While these

results provided theoretically general conclusions, the shal-

low networks they studied are very different from the deep

models that have proven so successful in recent years.

In response, several recent papers have focused on under-

standing the benefits of depth for neural networks (Pas-

canu et al., 2013; Montufar et al., 2014; Eldan and Shamir,

2015; Telgarsky, 2015; Martens et al., 2013; Bianchini and

Scarselli, 2014). These results are compelling and take

modern architectural changes into account, but they only

show that a specific choice of weights for a deeper network

results in inapproximability by a shallow (typically one or

two hidden layers) network.

In particular, the goal of this new line of work has been

to establish lower bounds — showing separations between

shallow and deep networks — and as such they are based

on hand-coded constructions of specific network weights.

Even if the weight values used in these constructions are

robust to small perturbations (as in (Pascanu et al., 2013;

Montufar et al., 2014)), the functions that arise from these

constructions tend toward extremal properties by design,

and there is no evidence that a network trained on data ever

resembles such a function.

This has meant that a set of fundamental questions about

neural network expressivity has remained largely unan-

swered. First, we lack a good understanding of the “typ-

ical” case rather than the worst case in these bounds for

deep networks, and consequently have no way to evalu-

ate whether the hand-coded extremal constructions provide

a reflection of the complexity encountered in more stan-

dard settings. Second, we lack an understanding of upper

bounds to match the lower bounds produced by this prior

work; do the constructions used to date place us near the

limit of the expressive power of neural networks, or are

there still large gaps? Finally, if we had an understanding

of these two issues, we might begin to draw connections

between network expressivity and observed performance.



On the Expressive Power of Deep Neural Networks

Our contributions: Measures of Expressivity and their

Applications In this paper, we address this set of chal-

lenges by defining and analyzing an interrelated set of mea-

sures of expressivity for neural networks; our framework

applies to a wide range of standard architectures, indepen-

dent of specific weight choices. We begin our analysis at

the start of training, after random initialization, and later

derive insights connecting network expressivity and perfor-

mance.

Our first measure of expressivity is based on the notion of

an activation pattern: in a network where the units compute

functions based on discrete thresholds, we can ask which

units are above or below their thresholds (i.e. which units

are “active” and which are not). For the range of standard

architectures that we consider, the network is essentially

computing a linear function once we fix the activation pat-

tern; thus, counting the number of possible activation pat-

terns provides a concrete way of measuring the complexity

beyond linearity that the network provides. We give an up-

per bound on the number of possible activation patterns,

over any setting of the weights. This bound is tight as it

matches the hand-constructed lower bounds of earlier work

(Pascanu et al., 2013; Montufar et al., 2014).

Key to our analysis is the notion of a transition, in which

changing an input x to a nearby input x + δ changes the

activation pattern. We study the behavior of transitions as

we pass the input along a one-dimensional parametrized

trajectory x(t). Our central finding is that the trajectory

length grows exponentially in the depth of the network.

Trajectory length serves as a unifying notion in our mea-

sures of expressivity, and it leads to insights into the be-

havior of trained networks. Specifically, we find that the

exponential growth in trajectory length as a function of

depth implies that small adjustments in parameters lower

in the network induce larger changes than comparable ad-

justments higher in the network. We demonstrate this phe-

nomenon through experiments on MNIST and CIFAR-10,

where the network displays much less robustness to noise

in the lower layers, and better performance when they are

trained well. We also explore the effects of regularization

methods on trajectory length as the network trains and pro-

pose a less computationally intensive method of regulariza-

tion, trajectory regularization, that offers the same perfor-

mance as batch normalization.

The contributions of this paper are thus:

(1) Measures of expressivity: We propose easily com-

putable measures of neural network expressivity that

capture the expressive power inherent in different

neural network architectures, independent of specific

weight settings.

(2) Exponential trajectories: We find an exponen-

tial depth dependence displayed by these measures,

through a unifying analysis in which we study how the

network transforms its input by measuring trajectory

length

(3) All weights are not equal (the lower layers matter

more): We show how these results on trajectory length

suggest that optimizing weights in lower layers of the

network is particularly important.

(4) Trajectory Regularization Based on understanding the

effect of batch norm on trajectory length, we propose

a new method of regularization, trajectory regulariza-

tion, that offers the same advantages as batch norm,

and is computationally more efficient.

In prior work (Poole et al., 2016), we studied the propa-

gation of Riemannian curvature through random networks

by developing a mean field theory approach. Here, we take

an approach grounded in computational geometry, present-

ing measures with a combinatorial flavor and explore the

consequences during and after training.

2. Measures of Expressivity

Given a neural network of a certain architecture A (some

depth, width, layer types), we have an associated function,

FA(x;W ), where x is an input and W represents all the

parameters of the network. Our goal is to understand how

the behavior of FA(x;W ) changes as A changes, for values

of W that we might encounter during training, and across

inputs x.

The first major difficulty comes from the high dimension-

ality of the input. Precisely quantifying the properties of

FA(x;W ) over the entire input space is intractable. As a

tractable alternative, we study simple one dimensional tra-

jectories through input space. More formally:

Definition: Given two points, x0, x1 ∈ R
m, we say x(t)

is a trajectory (between x0 and x1) if x(t) is a curve

parametrized by a scalar t ∈ [0, 1], with x(0) = x0 and

x(1) = x1.

Simple examples of a trajectory would be a line (x(t) =
tx1 + (1 − t)x0) or a circular arc (x(t) = cos(πt/2)x0 +
sin(πt/2)x1), but in general x(t) may be more compli-

cated, and potentially not expressible in closed form.

Armed with this notion of trajectories, we can begin to de-

fine measures of expressivity of a network FA(x;W ) over

trajectories x(t).

2.1. Neuron Transitions and Activation Patterns

In (Montufar et al., 2014) the notion of a “linear region”

is introduced. Given a neural network with piecewise lin-



On the Expressive Power of Deep Neural Networks

ear activations (such as ReLU or hard tanh), the function

it computes is also piecewise linear, a consequence of the

fact that composing piecewise linear functions results in a

piecewise linear function. So one way to measure the “ex-

pressive power” of different architectures A is to count the

number of linear pieces (regions), which determines how

nonlinear the function is.

In fact, a change in linear region is caused by a neuron

transition in the output layer. More precisely:

Definition For fixed W , we say a neuron with piecewise

linear region transitions between inputs x, x+ δ if its acti-

vation function switches linear region between x and x+δ.

So a ReLU transition would be given by a neuron switching

from off to on (or vice versa) and for hard tanh by switch-

ing between saturation at −1 to its linear middle region to

saturation at 1. For any generic trajectory x(t), we can thus

define T (FA(x(t);W )) to be the number of transitions un-

dergone by output neurons (i.e. the number of linear re-

gions) as we sweep the input x(t). Instead of just concen-

trating on the output neurons however, we can look at this

pattern over the entire network. We call this an activation

patten:

Definition We can define AP(FA(x;W )) to be the activa-

tion pattern – a string of form {0, 1}num neurons (for ReLUs)

and {−1, 0, 1}num neurons (for hard tanh) of the network en-

coding the linear region of the activation function of every

neuron, for an input x and weights W .

Overloading notation slightly, we can also define (similarly

to transitions) A(FA(x(t);W )) as the number of distinct

activation patterns as we sweep x along x(t). As each

distinct activation pattern corresponds to a different linear

function of the input, this combinatorial measure captures

how much more expressive A is over a simple linear map-

ping.

Returning to Montufar et al, they provide a construction

i.e. a specific set of weights W0, that results in an exponen-

tial increase of linear regions with the depth of the archi-

tectures. They also appeal to Zaslavsky’s theorem (Stan-

ley, 2011) from the theory of hyperplane arrangements to

show that a shallow network, i.e. one hidden layer, with the

same number of parameters as a deep network, has a much

smaller number of linear regions than the number achieved

by their choice of weights W0 for the deep network.

More formally, letting A1 be a fully connected network

with one hidden layer, and Al a fully connected network

with the same number of parameters, but l hidden layers,

they show

∀WT (FA1([0, 1];W )) < T (FA1([0, 1];W0) (*)

We derive a much more general result by considering the

‘global’ activation patterns over the entire input space, and

prove that for any fully connected network, with any num-

ber of hidden layers, we can upper bound the number of lin-

ear regions it can achieve, over all possible weight settings

W . This upper bound is asymptotically tight, matched by

the construction given in (Montufar et al., 2014). Our result

can be written formally as:

Theorem 1. (Tight) Upper Bound for Number of Activa-

tion Patterns Let A(n,k) denote a fully connected network

with n hidden layers of width k, and inputs in R
m. Then the

number of activation patterns A(FAn,k
(Rm;W ) is upper

bounded by O(kmn) for ReLU activations, and O((2k)mn)
for hard tanh.

From this we can derive a chain of inequalities. Firstly,

from the theorem above we find an upper bound of

A(FAn,k
(Rm;W )) over all W , i.e.

∀W A(FA(n,k)
)(Rm;W ) ≤ U(n, k,m).

Next, suppose we have N neurons in total. Then we want to

compare (for wlog ReLUs), quantities like U(n′, N/n′,m)
for different n′.

But U(n′, N/n′,m) = O((N/n′)mn′

), and so, noting that

the maxima of
(

a
x

)mx
(for a > e) is x = a/e, we get, (for

n, k > e), in comparison to (*),

U(1, N,m) < U(2,
N

2
,m) < · · ·

· · · < U(n− 1,
N

n− 1
,m) < U(n, k,m)

We prove this via an inductive proof on regions in a hy-

perplane arrangement. The proof can be found in the Ap-

pendix. As noted in the introduction, this result differs

from earlier lower-bound constructions in that it is an upper

bound that applies to all possible sets of weights. Via our

analysis, we also prove

Theorem 2. Regions in Input Space Given the correspond-

ing function of a neural network FA(R
m;W ) with ReLU

or hard tanh activations, the input space is partitioned into

convex polytopes, with FA(R
m;W ) corresponding to a dif-

ferent linear function on each region.

This result is of independent interest for optimization – a

linear function over a convex polytope results in a well be-

haved loss function and an easy optimization problem. Un-

derstanding the density of these regions during the training

process would likely shed light on properties of the loss

surface, and improved optimization methods. A picture of

a network’s regions is shown in Figure 1.



On the Expressive Power of Deep Neural Networks

-1 0 1
x0

-1

0

1
x
1

Layer 0

-1 0 1
x0

-1

0

1
Layer 1

-1 0 1
x0

-1

0

1
Layer 2

Figure 1. Deep networks with piecewise linear activations subdi-

vide input space into convex polytopes. We take a three hidden

layer ReLU network, with input x ∈ R
2, and four units in each

layer. The left pane shows activations for the first layer only. As

the input is in R
2, neurons in the first hidden layer have an associ-

ated line in R
2, depicting their activation boundary. The left pane

thus has four such lines. For the second hidden layer each neuron

again has a line in input space corresponding to on/off, but this

line is different for each region described by the first layer activa-

tion pattern. So in the centre pane, which shows activation bound-

ary lines corresponding to second hidden layer neurons in green

(and first hidden layer in black), we can see the green lines ‘bend’

at the boundaries. (The reason for this bending becomes appar-

ent through the proof of Theorem 2.) Finally, the right pane adds

the on/off boundaries for neurons in the third hidden layer, in pur-

ple. These lines can bend at both black and green boundaries, as

the image shows. This final set of convex polytopes corresponds

to all activation patterns for this network (with its current set of

weights) over the unit square, with each polytope representing a

different linear function.

2.1.1. EMPIRICALLY COUNTING TRANSITIONS

We empirically tested the growth of the number of acti-

vations and transitions as we varied x along x(t) to under-

stand their behavior. We found that for bounded non linear-

ities, especially tanh and hard-tanh, not only do we observe

exponential growth with depth (as hinted at by the upper

bound) but that the scale of parameter initialization also af-

fects the observations (Figure 2). We also experimented

with sweeping the weights W of a layer through a trajec-

tory W (t), and counting the different labellings output by

the network. This ‘dichotomies’ measure is discussed fur-

ther in the Appendix, and also exhibits the same growth

properties, Figure 14.

2.2. Trajectory Length

In fact, there turns out to be a reason for the exponential

growth with depth, and the sensitivity to initialization scale.

Returning to our definition of trajectory, we can define an

immediately related quantity, trajectory length

Definition: Given a trajectory, x(t), we define its length,

l(x(t)), to be the standard arc length:

l(x(t)) =

∫

t

∣

∣

∣

∣

∣

∣

∣

∣

dx(t)

dt

∣

∣

∣

∣

∣

∣

∣

∣

dt

Intuitively, the arc length breaks x(t) up into infinitesimal

intervals and sums together the Euclidean length of these

0 2 4 6 8 10 12 14
Network depth

10-1

100

101

102

Tr
an

si
tio

ns
 n

um
be

r

Number of transitions with increasing depth

w50 scl10
w100 scl8
w500 scl5
w700 scl5
w700 scl10
w1000 scl10
w1000 scl16

0 200 400 600 800 1000
Layer width

10-1

100

101

N
um

be
r o

f t
ra

ns
iti

on
s

Number of transitions with increasing width

lay2 scl5
lay2 scl10
lay4 scl5
lay4 scl8
lay6 scl5
lay6 scl8
lay8 scl8
lay10 scl8
lay12 scl8

Figure 2. The number of transitions seen for fully connected net-

works of different widths, depths and initialization scales, with

a circular trajectory between MNIST datapoints. The number of

transitions grows exponentially with the depth of the architecture,

as seen in (left). The same rate of growth is not seen with increas-

ing architecture width, plotted in (right). There is a surprising

dependence on the scale of initialization, explained in 2.2.

Figure 3. Picture showing a trajectory increasing with the depth of

a network. We start off with a circular trajectory (left most pane),

and feed it through a fully connected tanh network with width

100. Pane second from left shows the image of the circular trajec-

tory (projected down to two dimensions) after being transformed

by the first hidden layer. Subsequent panes show projections of

the latent image of the circular trajectory after being transformed

by more hidden layers. The final pane shows the the trajectory

after being transformed by all the hidden layers.

intervals.

If we let A(n,k) denote, as before, fully connected networks

with n hidden layers each of width k, and initializing with

weights ∼ N (0, σ2
w/k) (accounting for input scaling as

typical), and biases ∼ N (0, σ2
b ), we find that:

Theorem 3. Bound on Growth of Trajectory Length Let

FA(x
′,W ) be a ReLU or hard tanh random neural network

and x(t) a one dimensional trajectory with x(t+ δ) having

a non trival perpendicular component to x(t) for all t, δ
(i.e, not a line). Then defining z(d)(x(t)) = z(d)(t) to be

the image of the trajectory in layer d of the network, we

have

(a)

E

[

l(z(d)(t))
]

≥ O

(

σw

√
k√

k + 1

)d

l(x(t))

for ReLUs

(b)

E

[

l(z(d)(t))
]

≥ O





σw

√
k

√

σ2
w + σ2

b + k
√

σ2
w + σ2

b





d

l(x(t))



On the Expressive Power of Deep Neural Networks

1 2 3 4 5 6 7 8 9
Network depth

101

102

103

104

105

Tr
aj

ec
to

ry
 le

ng
th

Trajectory length growth with increasing depth

scl5
scl8
scl12
scl16
scl20
scl32

Figure 4. We look at trajectory growth with different initializa-

tion scales as a trajectory is propagated through a convolutional

architecture for CIFAR-10, with ReLU activations. The analy-

sis of Theorem 3 was for fully connected networks, but we see

that trajectory growth holds (albeit with slightly higher scales) for

convolutional architectures also. Note that the decrease in trajec-

tory length, seen in layers 3 and 7 is expected, as those layers are

pooling layers.

for hard tanh

That is, l(x(t) grows exponentially with the depth of the

network, but the width only appears as a base (of the expo-

nent). This bound is in fact tight in the limits of large σw

and k.

A schematic image depicting this can be seen in Figure 3

and the proof can be found in the Appendix. A rough out-

line is as follows: we look at the expected growth of the

difference between a point z(d)(t) on the curve and a small

perturbation z(d)(t+dt), from layer d to layer d+1. Denot-

ing this quantity
∣

∣

∣

∣δz(d)(t)
∣

∣

∣

∣, we derive a recurrence relat-

ing
∣

∣

∣

∣δz(d+1)(t)
∣

∣

∣

∣ and
∣

∣

∣

∣δz(d)(t)
∣

∣

∣

∣ which can be composed

to give the desired growth rate.

The analysis is complicated by the statistical dependence

on the image of the input z(d+1)(t). So we instead form

a recursion by looking at the component of the difference

perpendicular to the image of the input in that layer, i.e.
∣

∣

∣

∣

∣

∣δz
(d+1)
⊥

(t)
∣

∣

∣

∣

∣

∣, which results in the condition on x(t) in the

statement.

In Figures 4, 12, we see the growth of an input trajectory

for ReLU networks on CIFAR-10 and MNIST. The CIFAR-

10 network is convolutional but we observe that these lay-

ers also result in similar rates of trajectory length increases

to the fully connected layers. We also see, as would be

expected, that pooling layers act to reduce the trajectory

length. We discuss upper bounds in the Appendix.

For the hard tanh case (and more generally any bounded

non-linearity), we can formally prove the relation of trajec-

tory length and transitions under an assumption: assume

that while we sweep x(t) all neurons are saturated un-

less transitioning saturation endpoints, which happens very

Figure 5. The number of transitions is linear in trajectory length.

Here we compare the empirical number of transitions to the length

of the trajectory, for different depths of a hard-tanh network. We

repeat this comparison for a variety of network architectures, with

different network width k and weight variance σ
2
w.

rapidly. (This is the case for e.g. large initialization scales).

Then we have:

Theorem 4. Transitions proportional to trajectory length

Let FAn,k
be a hard tanh network with n hidden layers each

of width k. And let

g(k, σw, σb, n) = O





√
k

√

1 +
σ2
b

σ2
w





n

Then T (FAn,k
(x(t);W ) = O(g(k, σw, σb, n)) for W ini-

tialized with weight and bias scales σw, σb.

Note that the expression for g(k, σw, σb, n) is exactly the

expression given by Theorem 3 when σw is very large and

dominates σb. We can also verify this experimentally in

settings where the simpilfying assumption does not hold,

as in Figure 5.

3. Insights from Network Expressivity

Here we explore the insights gained from applying

our measurements of expressivity, particularly trajectory

length, to understand network performance. We examine

the connection of expressivity and stability, and inspired

by this, propose a new method of regularization, trajectory

regularization that offers the same advantages as the more

computationally intensive batch normalization.

3.1. Expressivity and Network Stability

The analysis of network expressivity offers interesting

takeaways related to the parameter and functional stabil-

ity of a network. From the proof of Theorem 3, we saw

that a perturbation to the input would grow exponentially

in the depth of the network. It is easy to see that this anal-

ysis is not limited to the input layer, but can be applied to

any layer. In this form, it would say

A perturbation at a layer grows exponentially in the

remaining depth after that layer.

This means that perturbations to weights in lower layers

should be more costly than perturbations in the upper lay-



On the Expressive Power of Deep Neural Networks

0.0 0.5 1.0 1.5 2.0
Noise magnitude

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

CIFAR 10 accuracy against noise in diff layers

lay01
lay02
lay03
lay04
lay05
lay06
lay07

Figure 6. We then pick a single layer of a conv net trained to high

accuracy on CIFAR10, and add noise to the layer weights of in-

creasing magnitudes, testing the network accuracy as we do so.

We find that the initial (lower) layers of the network are least ro-

bust to noise – as the figure shows, adding noise of 0.25 magni-

tude to the first layer results in a 0.7 drop in accuracy, while the

same amount of noise added to the fifth layer barely results in a

0.02 drop in accuracy. This pattern is seen for many different ini-

tialization scales, even for a (typical) scaling of σ2
w = 2, used in

the experiment.

ers, due to exponentially increasing magnitude of noise,

and result in a much larger drop of accuracy. Figure 6, in

which we train a conv network on CIFAR-10 and add noise

of varying magnitudes to exactly one layer, shows exactly

this.

We also find that the converse (in some sense) holds: after

initializing a network, we trained a single layer at different

depths in the network and found monotonically increasing

performance as layers lower in the network were trained.

This is shown in Figure 7 and Figure 17 in the Appendix.

0 100 200 300 400 500
Epoch Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train Accuracy Against Epoch

0 100 200 300 400 500
Epoch Number

Test Accuracy Against Epoch
lay 2
lay 3
lay 4
lay 5
lay 6
lay 7
lay 8
lay 9

Figure 7. Demonstration of expressive power of remaining depth

on MNIST. Here we plot train and test accuracy achieved by train-

ing exactly one layer of a fully connected neural net on MNIST.

The different lines are generated by varying the hidden layer cho-

sen to train. All other layers are kept frozen after random initial-

ization. We see that training lower hidden layers leads to better

performance. The networks had width k = 100, weight variance

σ
2
w = 1, and hard-tanh nonlinearities. Note that we only train

from the second hidden layer (weights W
(1)) onwards, so that

the number of parameters trained remains fixed.

3.2. Trajectory Length and Regularization: The Effect

of Batch Normalization

Expressivity measures, especially trajectory length, can

also be used to better understand the effect of regulariza-

tion. One regularization technique that has been extremely

successful for training neural networks is Batch Normal-

ization (Ioffe and Szegedy, 2015).

in c1 c2 p1 c3 c4 c5 p2 fc1 fc2

Trajectory length

101

102

103

104

105

La
y
e
r 

d
e
p
th

CIFAR10 Trajectory growth 
 without Batch Norm

0

1189

10512

40744

72389

104035

137262

142009

156250

Figure 8. Training increases trajectory length even for typical

(σ2
w = 2) initialization values of σw. Here we propagate a cir-

cular trajectory joining two CIFAR10 datapoints through a conv

net without batch norm, and look at how trajectory length changes

through training. We see that training causes trajectory length

to increase exponentially with depth (exceptions only being the

pooling layers and the final fc layer, which halves the number of

neurons.) Note that at Step 0, the network is not in the exponen-

tial growth regime. We observe (discussed in Figure 9) that even

networks that aren’t initialized in the exponential growth regime

can be pushed there through training.

By taking measures of trajectories during training we find

that without batch norm, trajectory length tends to increase

during training, as shown in Figures 8 and Figure 18 in

the Appendix. In these experiments, two networks were

initialized with σ2
w = 2 and trained to high test accuracy on

CIFAR10 and MNIST. We see that in both cases, trajectory

length increases as training progresses.

A surprising observation is σ2
w = 2 is not in the exponential

growth increase regime at initialization for the CIFAR10

architecture (Figure 8 at Step 0.). But note that even with a

smaller weight initialization, weight norms increase during

training, shown in Figure 9, pushing typically initialized

networks into the exponential growth regime.

While the initial growth of trajectory length enables greater

functional expressivity, large trajectory growth in the learnt

representation results in an unstable representation, wit-

nessed in Figure 6. In Figure 10 we train another conv

net on CIFAR10, but this time with batch normalization.

We see that the batch norm layers reduce trajectory length,

helping stability.

3.3. Trajectory Regularization

Motivated by the fact that batch normalization decreases

trajectory length and hence helps stability and generaliza-

tion, we consider directly regularizing on trajectory length:



On the Expressive Power of Deep Neural Networks

0 20000 40000 60000 80000 100000 120000
Train Step

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Sc
al

ed
 w

ei
gh

t v
ar

ia
nc

e

CIFAR-10 scaled weight variances with training

lay 01
lay 02
lay 03
lay 04
lay 05
lay 06
lay 07

Figure 9. This figure shows how the weight scaling of a CIFAR10

network evolves during training. The network was initialized with

σ
2
w = 2, which increases across all layers during training.

in c1 c2 bn1 p1 c3 c4 c5 bn2 p2 fc1 bn3 fc2 bn4

Layer depth

102

103

104

105

106

107

T
ra

je
ct

o
ry

 l
e
n
g
th

CIFAR10: Trajectory growth with 
 Batch Norm

0

395

7858

156250

Figure 10. Growth of circular trajectory between two datapoints

with batch norm layers for a conv net on CIFAR10. The network

was initialized as typical, with σ
2
w = 2. Note that the batch norm

layers in Step 0 are poorly behaved due to division by a close to 0

variance. But after just a few hundred gradient steps and contin-

uing onwards, we see the batch norm layers (dotted lines) reduce

trajectory length, stabilising the representation without sacrificing

expressivity.

we replace every batch norm layer used in the conv net

in Figure 10 with a trajectory regularization layer. This

layer adds to the loss λ(current length/orig length), and

then scales the outgoing activations by λ, where λ is a pa-

rameter to be learnt. In implementation, we typically scale

the additional loss above with a constant (0.01) to reduce

magnitude in comparison to classification loss. Our results,

Figure 11 show that both trajectory regularization and batch

norm perform comparably, and considerably better than not

using batch norm. One advantage of using Trajectory Reg-

ularization is that we don’t require different computations

to be performed for train and test, enabling more efficient

implementation.

4. Discussion

Characterizing the expressiveness of neural networks, and

understanding how expressiveness varies with parameters

of the architecture, has been a challenging problem due to

the difficulty in identifying meaningful notions of expres-

sivity and in linking their analysis to implications for these

networks in practice. In this paper we have presented an

0 20000 40000 60000 80000 100000 120000 140000 160000

Train step

0.70

0.75

0.80

0.85

0.90

T
e
st

 A
cc

u
ra

cy

CIFAR10 Accuracy for 
 trajectory and batch norm reguarlizers

batch norm

traj reg

no batch norm or traj reg

Figure 11. We replace each batch norm layer of the CIFAR10

conv net with a trajectory regularization layer, described in Sec-

tion 3.3. During training trajectory length is easily calculated as

a piecewise linear trajectory between adjacent datapoints in the

minibatch. We see that trajectory regularization achieves the same

performance as batch norm, albeit with slightly more train time.

However, as trajectory regularization behaves the same during

train and test time, it is simpler and more efficient to implement.

interrelated set of expressivity measures; we have shown

tight exponential bounds on the growth of these measures

in the depth of the networks, and we have offered a uni-

fying view of the analysis through the notion of trajectory

length. Our analysis of trajectories provides insights for the

performance of trained networks as well, suggesting that

networks in practice may be more sensitive to small per-

turbations in weights at lower layers. We also used this to

explore the empirical success of batch norm, and developed

a new regularization method – trajectory regularization.

This work raises many interesting directions for future

work. At a general level, continuing the theme of ‘prin-

cipled deep understanding’, it would be interesting to link

measures of expressivity to other properties of neural net-

work performance. There is also a natural connection be-

tween adversarial examples, (Goodfellow et al., 2014), and

trajectory length: adversarial perturbations are only a small

distance away in input space, but result in a large change in

classification (the output layer). Understanding how trajec-

tories between the original input and an adversarial pertur-

bation grow might provide insights into this phenomenon.

Another direction, partially explored in this paper, is regu-

larizing based on trajectory length. A very simple version

of this was presented, but further performance gains might

be achieved through more sophisticated use of this method.

Acknowledgements

We thank Samy Bengio, Ian Goodfellow, Laurent Dinh,

and Quoc Le for extremely helpful discussion.



On the Expressive Power of Deep Neural Networks

References

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez,

Laurent Sifre, George Van Den Driessche, Julian Schrit-

twieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. Nature, 529(7587):

484–489, 2016.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Gan-

guli, Mehran Sahami, Leonidas J Guibas, and Jascha

Sohl-Dickstein. Deep knowledge tracing. In Advances in

Neural Information Processing Systems, pages 505–513,

2015.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White.

Multilayer feedforward networks are universal approxi-

mators. Neural networks, 2(5):359–366, 1989.

George Cybenko. Approximation by superpositions of a

sigmoidal function. Mathematics of control, signals and

systems, 2(4):303–314, 1989.

Wolfgang Maass, Georg Schnitger, and Eduardo D Son-

tag. A comparison of the computational power of sig-

moid and Boolean threshold circuits. Springer, 1994.

Peter L Bartlett, Vitaly Maiorov, and Ron Meir. Almost lin-

ear vc-dimension bounds for piecewise polynomial net-

works. Neural computation, 10(8):2159–2173, 1998.

Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On

the number of response regions of deep feed forward net-

works with piece-wise linear activations. arXiv preprint

arXiv:1312.6098, 2013.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and

Yoshua Bengio. On the number of linear regions of deep

neural networks. In Advances in neural information pro-

cessing systems, pages 2924–2932, 2014.

Ronen Eldan and Ohad Shamir. The power of depth

for feedforward neural networks. arXiv preprint

arXiv:1512.03965, 2015.

Matus Telgarsky. Representation benefits of deep feedfor-

ward networks. arXiv preprint arXiv:1509.08101, 2015.

James Martens, Arkadev Chattopadhya, Toni Pitassi, and

Richard Zemel. On the representational efficiency of re-

stricted boltzmann machines. In Advances in Neural In-

formation Processing Systems, pages 2877–2885, 2013.

Monica Bianchini and Franco Scarselli. On the complex-

ity of neural network classifiers: A comparison between

shallow and deep architectures. Neural Networks and

Learning Systems, IEEE Transactions on, 25(8):1553–

1565, 2014.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-

Dickstein, and Surya Ganguli. Exponential expressivity

in deep neural networks through transient chaos. In Ad-

vances in neural information processing systems, pages

3360–3368, 2016.

Richard Stanley. Hyperplane arrangements. Enumerative

Combinatorics, 2011.

Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing inter-

nal covariate shift. In Proceedings of the 32nd Inter-

national Conference on Machine Learning, ICML 2015,

Lille, France, 6-11 July 2015, pages 448–456, 2015.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. CoRR,

abs/1412.6572, 2014.

D. Kershaw. Some extensions of w. gautschi’s inequalities

for the gamma function. Mathematics of Computation,

41(164):607–611, 1983.

Andrea Laforgia and Pierpaolo Natalini. On some inequal-

ities for the gamma function. Advances in Dynamical

Systems and Applications, 8(2):261–267, 2013.

Norbert Sauer. On the density of families of sets. Journal of

Combinatorial Theory, Series A, 13(1):145–147, 1972.


