On the Expressive Power of OCL*

Luis Mandel' and Marfa Victoria Cengarle?

! Forschungsinstitut fiir Angewandte Software-Technologie (FAST e. V.)
Arabellastr. 17, D-81925 Munich, Germany
mandel@fast.de
2 Ludwig-Maximilians-Universitiat Miinchen.
Oettingenstr. 67, D-80538 Munich, Germany

cengarle@informatik.uni-muenchen.de

Abstract. This paper examines the expressive power of OCL in terms
of navigability and computability. First the expressive power of OCL
is compared with the relational calculus; it is showed that OCL is not
equivalent to the relational calculus. Then an algorithm computing the
transitive closure of a binary relation —operation that cannot be encoded
in the relational calculus— is expressed in OCL. Finally the equivalence
of OCL with a Turing machine is pondered.

1 Introduction

The Object Constraint Language (OCL), developed within IBM and based on
IBEL (Integrated Business Engineering Language, IBM) and on Syntropy [4], is
part of the Unified Modeling Language (UML) from version 1.1 on. This exten-
sion has been designed to augment a class diagram with additional information
which cannot be otherwise expressed by UML diagrams; previous versions of
UML have only allowed the definition of constraints as annotations in an in-
formal textual way. OCL allows the definition of integrity constraints at the
user level, and it has also been used for the formalization of the metamodel of
UML. The introduction of a constraint language is an important step towards
the formalization of system specification. Constraints represent necessary con-
ditions for a domain to constitute a model of the static aspects of the specified
system. OCL is based on standard set theory and it was designed to specify
invariants of classes and types in the class model, to specify type invariant of
stereotypes, to describe pre- and postconditions on operations and methods, to
describe guards; it is also suited to specify queries in the database sense. That is,
OCL can be used to write expressions that evaluate to “true” or “false” and also
to write expressions that once evaluated return the values respectively satisfying
the constraint specified by those query expressions.

In [6] some weak points of OCL have been shown, for example the differ-
ence between data values and object instances is not clear. Normally data val-
ues are immutable whereas objects (or class instances) are mutable. The term

* This work was partially supported by the Bayerische Forschungsstiftung.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 854874l 1999.
© Springer-Verlag Berlin Heidelberg 1999

On the Expressive Power of OCL 855

value/object as well as the term subtype/subclass is not consistently used in the
specification document of OCL [9]. In fact, the specification document is very
informal and not even the examples given there are consistent with their English
explanation. Moreover there it is said that an OCL expression can be part of
a guard but neither examples nor explanation of how guards work are given.
Some steps have been done in order to formalize it, for example in [10] a formal
semantics of OCL has been proposed.

This paper aims at examining the completeness of OCL. We show that OCL
is not powerful enough to denote any query expression of the relational calculus.
However, by means of OCL it is possible to calculate the transitive closure of a
relation. We also show that any primitive recursive function can be calculated
by an OCL expression, and hint that OCL is not Turing complete.

The paper is organized as follows. Section Blbriefly introduces “OCL by exam-
ples.” Section Blstudies the expressive power of OCL: Section B demonstrates
that the expressiveness of OCL is not as powerful as the relational calculus, in
Section it is shown how the transitive closure of a relation can be computed
in OCL, and in Section the Turing incompleteness of OCL is shown. Finally
in Section [some conclusions are drawn.

2 OCL Examples

This section briefly introduces the OCL language using the example of a class
hierarchy of a diagram editor; see Fig. [1 The editor supports the notion of
group of graphic elements. A document consists of pages, and a page consists
of graphic elements. Graphic elements are either geometric figures or groups of
at least two graphic elements; a graphic element can be member of at most one
group. Graphic elements can be moved, rotated, etc. Geometric figures are either
one dimensional (points and curves) or two dimensional (circles, ellipses, etc.).
Two dimensional figures can be filled with a color.

The diagram of Fig. [[] can be enhanced with OCL constraints that further
restrict the possible system states. OCL expressions are either of an OCL prede-
fined type or of a class of the class model to which the expressions are attached.
OCL expressions compute values without changing the system state. OCL uses
dot notation for accessing the attributes of objects. The attribute radius of the
class Circle is accessed by the expression Circle.radius. If all the instances of
that class are restricted to have a positive radius, a constraint Circle.radius
> 0 can be written. The result type of this expression is Boolean, establishing
an invariant for the class Circle. Alternatively, one can write

Circle
self.radius > 0 -- two dashes precede a comment

where the name of the class underlined is the context of the constraint, and an
occurrence of self in it refers to any instance of that class.

A basic data structure of OCL is Set. The expression self.vertices in the
context Polygon computes the set of all the vertices of a polygon object and
returns a value of type Set (Point). A further data structure Bag which stands

856 Luis Mandel and Maria Victoria Cengarle

Document

GraphicObject
{abstract}

,,,,,, flip() = rotate (180.0)

elements

move(x:Real,y:Real){abstract}
} contains 2.* rotate(angle:Real){abstract}
flip() {abstract}

&

Group GeoFigure
1 {abstract}
container
R move(x:Real,y:Real) %
! rotate(angle:Real) ‘ ‘
I
) OneDim TwoDim
. {abstract} {abstract}
move(x) = forall e in x.elements: move(e)
Lﬁ fill(c:Color){abstract}
Curve Point ‘ \
Poi x,y:Real Circle Ellipse Polygon
move(x:Real,y:Real) controlPoints move(x:Real,y:Real)
% . i .
rotate(angle:Real) {ordered} rotate(angle:Real) | center radius:Real distance:Real
flip() {overrides} 1 <> move(x:Real,y:Real) move(x:Real,y:Real)
1 move(x:Real,y:Real) "
rotate(angle:Real) ate(angle:Real) rotate(angle:Real)
i N rotate(angle:Real -
vertices |3+ 2| foci flip{overrides} file:Colon) fill(c:Color)
fill(c:Color)

1
1 ‘ {ordered}

Fig. 1. A diagram editor

for a multiset, i.e. a set with possibly repeated elements. Besides sets and bags
another data structure is Sequence as usual denoting ordered bags. All these
data structures are parametric, one writes Set (T), Bag(T), and Sequence (T) for
T a type, and sets, bags, and sequences are subtypes of the abstract parametric
class Collection. In the context of Group the query self.elements returns a
set whose cardinality is calculated by applying the feature size associated with
collections:

Group
self.elements->size

The result of this expression is of type Integer and is restricted to values greater
than or equal to 2 by the multiplicity at the elements end of the aggregation
contains between Group and GraphicObject.

On the Expressive Power of OCL 857

OCL provides universal and existential quantification. A constraint of the
Polygon class is that any two vertex points of a polygon must be in different
positions. This is expressed using the feature forAll as follows:

Polygon
self.vertices->forAll(pl, p2 : Point |
(pl.x = p2.x and pl.y = p2.y) implies pl = p2)

This expression has type Boolean.

OCL also allows the navigation through the information using queries. For
instance, the bag containing the surface of each circle with center p can be
computed using the feature collect as in the following expression (where the
classname with small initial is used if the association end has no rolename):

p.circle->collect(3.14*radius)

whose result type is Bag(Real).

allInstances is a feature associated with any type that returns the set of all
instances of the given type. For example the set of polygons which are triangles
is calculated as follows:

Polygon.allInstances->select(p : Polygon | p.vertices->size = 3)

A powerful feature of collections is iterate, by means of it many other ones
can be implemented. iterate traverses a collection, performs a calculation with
each of its elements, and stores the results in an accumulator, whose last value
is the result of the iterate expression. For instance the sum of the surfaces of
all the circles present in the model is calculated by the following expression:

Circle.allInstances->iterate(c : Circle ; —-- iteration variable
sum : Real = 0 -- accumulator with initial value O
| sum + 3.14 * c.radius * c.radius) -- new value of sum

- this occurrence of sum refers to its rvalue

A more involved example is the calculation of the set of all the polygons with at
least one vertex in common with a given polygon pO:

Polygon.allInstances->iterate(pl : Polygon ;
cv : Set(Polygon) = Set{} -- accumulator, initially the empty set
| if p1l <> p0 and
(pl.vertices->intersection(p0.vertices))->notEmpty
then cv->including(pl) else cv endif)

It is worth mentioning that OCL does not have the concept of tuple. Moreover
collections (i.e. sets, sequences and bags), which could be used to simulate tuple
functions, are flat, that is, in OCL there is no possibility to create a set of sets,
for example (if a query returns a set of sets, then this result is flattened).

3 Completeness

This section examines the expressive power of OCL from three different view-
points. First we ponder if the operations of the relational calculus can be formu-
lated in OCL, second we try to compute the transitive closure of a relation (which
is an operation that cannot be expressed by means of the relational calculus),
and third we consider the Turing completeness of OCL.

858 Luis Mandel and Maria Victoria Cengarle

3.1 Equivalence of OCL and Relational Calculus

In this section we show that OCL is not complete in the sense defined by Ullman
(see [13]) i.e. it is not possible to express in OCL the five basic operations of
the relational algebra. We also show that some of the derived expressions of the
relational algebra are primitive of OCL or can be expressed using OCL. Given
that OCL does not have the concept of tuple, some operations like for instance
the projection trivially cannot be expressed in OCL.

There are three abstract query languages, namely the relational algebra,
the tuple relational calculus, and the domain relational calculus. They are all
equivalent in expressive power to the each other and were proposed by Codd [3]
to represent the minimun capability of any reasonable query language using the
relational model. Moreover, as stated in [13]:

A language that can (at least) simulate tuple calculus, or equivalently,
relational algebra or domain calculus, is said to be complete.

Query languages for the relational model break down into two broad classes:

algebraic languages: queries are expressed by applying operators to relations;
predicate calculus languages: a desired set of tuples is described by specify-
ing a predicate the tuples must satisfy.

As shown in the previous section, on the one hand OCL expressions define the set
of elements satisfying a constraint expression, and on the other some operators
can be applied to sets of instances. Therefore OCL follows a mixed model. We
now consider how to express the operations of the relational algebra in OCL.

Union is a primitive operation for collections in OCL and is expressed as:

set->union(set2 : Set(T)) : Set(T)
bag->union(bag2 : Bag(T)) : Bag(T)
sequence->union(sequence2 : Sequence(T)) : Sequence(T)

Both collections must be of the same type; only the union of sets and bags is
allowed.

Difference is also a primitive operation for sets and is expressed as follows:
set - (set2 : Set(T)) : Set(T)

Difference is not defined for other subtypes of collection.

Cartesian product is not directly expressible in ocLfl Moreover, if an OCL
expression computes a value of type T, then T either is a class present in the

The only mention of Cartesian product in [9] is when introducing the extended

variant of the forAll operation, namely the one with more than one itera-
tor: collection->forAll(el,e2 | <Boolean-expression-on-el-and-e2>), which
in fact is a forAll on the Cartesian product of the collection with itself. The re-
sult of an expression of this form is Boolean.

On the Expressive Power of OCL 859

Fig. 2. Cartesian product

class diagram being navigated or is a primitive type of OCL; in other words,
any operation that computes values of another type cannot be expressed in
OCL. However, if it is indispensable to add to a class diagram constraints only
expressible using the Cartesian product of classes R and S, then a further class RS
should be included, associated with R and S as shown in Fig.[2], and the following
OCL expression should be attached that guarantees that the set of instances of
RS in fact always is the Cartesian product of R and S:

R.allInstances->union(S.allInstances)->forAll(r, s : oclAny
| if r.oclType.name=s.oclType.name
then true
else RS.allInstances->exists(t : RS | t.r=r and t.s=s) endif)

We take the union of the set of instances of class R and the set of instances
of class S, and test if every two elements of this set either are of the same
type (given that we cannot compare types, we compare their names) or there
is an instance of class RS such that it is associated to both of them. Note that
R.allInstances is of type Set(R) and S.allInstances is of type Set(S), and
then the union of these two sets is of type Set(oclAny) where oclAny is the
supertype of all types in the model. An alternative is to build a set of pairs
(r,s) with r an instance of R and s an instance of S, where pairs are sim-
ulated by sequences of two elements. Unfortunately this is impossible since in
OCL all collections of collections are automatically flattened. Still we can build
a sequence {rl,s1,r1,s2,...,rl1,sN,r2,s1,...,rM,sN} such that any subse-
quence {rI,sJ} (i.e. a subsequence of two elements beginning at an odd position)
represents an element of the Cartesian product of R and S, such that conversely
if r is an instance of R and s is an instance of S then there is a subsequence
{r,s} of rs beginning at an odd position. This is achieved as follows:

R.allInstances->iterate(r : R ;
rs : Sequence(oclAny) = Sequence{}
| S.allInstances->iterate(s : S ;
rsl : Sequence(oclAny) = rs
| rsi->append(r)->append(s)
))

rs is the sequence encoding the Cartesian product of R and S, which is of type
Sequence (oclAny) since we do not know of another supertype of both R and S.
The accumulator rs1 is needed because the return value of the inner iteration
is the last value of its accumulator, and then rs can be properly updated.

Projection is possible for just one attribute using the collect on collections:

collection->collect (attrName)

860 Luis Mandel and Maria Victoria Cengarle

The result of such an expression is Bag(T) if T is the type of values for attrName;
in order to eliminate duplicates, one can use the operation asSet of bags:

collection->collect (attrName)->asSet

and in this way a result of type Set (T) is obtained. Given that the Cartesian
product is not expressible in OCL, the projection on more than one attribute
cannot be expressed in OCL cither[d If we need the projection of the set of
instances of a class on more than one attribute, say al, ..., aN, then —similarly
to the alternative proposed for the Cartesian product— we can build the sequence
of n x m values (where n = N and m is the number of instances currently present
in the class, say R, to be projected) as follows:

R.allInstances->iterate(r : R ;
proj : Sequence(oclAny) = Sequence{}
| proj—>append(r.al)->...->append(r.aN))

Selection can be expressed by using the select operation on collections:

collection->select(Boolean-expr)
Some derived operations have also a representation in OCL.

Intersection is a primitive in OCL for sets and bags, and is written as follows:

set->intersection(set2 : Set(T)) : Set(T)
set->intersection(bag : Bag(T)) : Set(T)
bag->intersection(bag2 : Bag(T)) : Bag(T)
bag->intersection(set : Set(T)) : Set(T)

Join of two relations is the selection of those tuples of a Cartesian product whose
i-th component is in the relation @ with the corresponding (r+ j)-th component.
Given that we cannot compute Cartesian products, we assume that there is a
class RS whose set of instances invariantly is the Cartesian product of the sets
of instances of classes R and S (cf. paragraph on Cartesian product above) and
we compute the join of R and S w.r.t. attributes a and b in the relation theta
(assuming that 6 is expressible in OCL) as follows:

RS.alllnstances->select(t : RS | t.r.a theta t.s.b)

If alternatively we have built the sequence rs = {r1,s1, ...} (see above para-
graph on Cartesian product), then the join can likewise be stored in a sequence
as follows:

Sequence{l..(rs->size)/2}->iterate(i : Integer ;

join : Sequence(oclAny) = Sequence{}

| if (rs->at(2*i-1)).a theta (rs->at(2%i)).Db
then join->append(rs->at(2*i-1))->append(rs->at (2*i))
else join endif)

2 Notice that in general it cannot be ensured that the projection of a set of instances
of a class (i.e. a set of n-tuples) is of a type present in the model, thus an operation
returning such a set is not expressible in OCL; cf. discussion above on Cartesian
products in OCL.

On the Expressive Power of OCL 861

Here rs is the sequence containing the Cartesian product of R and S, and
Sequence{l.. (rs->size)/2} is the sequence of integer numbers between 1 and
the size of rs (which we know of even length) divided by two, whose elements
are used to index the sequence rs. Each element in rs at an odd position is an
element of R and each element in rs at an even position is an element of S; each
element in rs at an odd position is paired with its following in rs. If their a
resp. b attribute are in the relation theta, then both of them are stored in the
result accumulator join. (Note that, given that we cannot store values in vari-
ables, in the above algorithm we should replace every one the four occurrences of
rs by the algorithm computing it, besides the first which could also be replaced
by R.allInstances->size * S.alllnstances->size. This fact would repre-
sent a problem if two different computations of rs yield sequences in different
order.)

Natural join is similarly calculated: if al, ..., aN are all the attributes in both
R and S with the same name, then

RS.allInstances->select(t : RS | t.r.al = t.s.al and
. t.r.aN = t.s.aN)

or alternatively

Sequence{l..(rs->size)/2}->iterate(i : Integer ;
join : Sequence(oclAny) = Sequence{} |
if (rs->at(2*i-1)).al = (rs->at(2#i)).al and
(rs->at(2*i-1)).aN = (rs->at(2%i)).aN
then join->append(rs->at(2*i-1))->append(rs->at(2*i))
else join endif)

The obvious conclusion is that OCL is incomplete. Completeness can be
achieved by just including a concept of tuple functions (or creation of virtual
classes) and a mechanism for creating instances of any type or class. These
instances are of course not meant to be included to the current model of the class
diagram but to allow navigation on a higher level of abstraction. The question is
if in an object-oriented environment this is needed: one can argue that projection
is not necessary since one can handle the whole object and use only the attrbutes
of interest, and that if the Cartesian product is needed then the classes involved
will be anyway connected in some form or another (e.g. by an association).

3.2 Transitive Closure of a Relation

Data manipulation languages normally have capabilities beyond those of rela-
tional calculus, like arithmetic operations, assignment commands, and aggregate
functions. Often algebraic expressions must involve some arithmetic operations
like @ < b+ ¢; notice that e.g. + does not appear in the relational algebra.
The assignment of a computed relation to be the value of a relation name is
undoubtedly useful, see discussion about Cartesian product or projection in the
previous section. Furthermore some operations like sum, average, max, min are

862 Luis Mandel and Maria Victoria Cengarle

also desirable as aggregate functions, that can be applied to columns of a relation
to obtain a single quantity. For these reasons a (complete) query language with
such capabilities is said to be more than complete [13, p. 175]. OCL includes the
following arithmetic and aggregate functions:

type of operands|operations

Real =,4+,—,%*,/, abs, floor, max, min, <,>, <=,>=
Integer =,+, —,*, /, abs, div, mod, max, min

Boolean =, or, xor, and, not, implies, if-then-else>

String =, size, concat, toUpper, toLower, substring
Enumeration =, <>

Notice that Integer is a subclass of Real, that is, for each formal parameter
of type Real an actual parameter of type Integer can be used. OCL does not
include assignment commands.

Some languages are more than complete even after eliminating the above
mentioned functions. For example QBE (Query-by-Example, see [13]) allows the
computation of the transitive closure of a relation. The transitive closure BT of
a relation R C A x A is the least transitive relation containing R:

1. zRy = zRTy;
2. (x R" y Ay R" z) = zR"z;
3. if S satisfies (1) and (2), then R C S.

The transitive closure of a relation cannot be expressed in relational algebra or
relational calculus; see [2] [I]. The transitive closure of a relation is needed in our
example of Fig. [lif we want to ensure that no instance of Group is (recursively)
an element of itself, since what we require is the non-reflexivity of the transitive
closure of the relation contains. In the remainder of this section we study how
to express this constraint in OCL.

left/ «

Fig. 3. An association class R from class A to class A

First of all what we need is a relation that, as R above, is a subset of the
Cartesian product of a set A with itself. In the framework of UML class diagrams,
the easiest is to have an association class (and not just an association name)
as depicted in Fig. Bl We therefore lift the association name contains to an

3 In the specification document [9] of OCL, the if-then-else operation is listed

among the Boolean ones, of course just the first argument of an if-then-else op-
eration has to be of type Boolean and its result value is of the (least) supertype of
the types of the then-branch and of the else-branch.

On the Expressive Power of OCL 863

Contains ‘
AN GraphicObject
N {abstract}

elements

move(x:Real,y:Real){abstract}
2.* rotate(angle:Real){abstract}
flip() {abstract}

0

G
s roup

container

move(x:Real,y:Real)
rotate(angle:Real)

Fig. 4. The Contains association class

association class as pictured in Fig.[d Notice that the relation Contains might
include pairs of objects of different classes, like an instance of Group containing
an instance of (a subclass of the abstract class) GeoFigure. The subset (which
we call r) of instances of Contains that includes only the desired pairs, namely
r = Contains N (Group x Group), can be computed as follows:

-- algorithm computing r included in Group x Group:
Contains.allInstances->iterate(pair : Contains;
r : Set(Contains) = Set{}
| if pair.elements.oclIsTypeOf (Group)
then r->including(pair) else r endif)

Let us remark that, in the above query, every pair is just one pair of an in-
stance of Group and a single instance of GraphicObject, which can be referred
to by container resp. elements. The class GraphicObject is abstract, that
means, any of its instances must be an instance of any of its concrete subclasses.
In the iteration, therefore, we only include those pairs whose GraphicObject-
component is of type Group. Now the Warshall’s algorithm (see e.g. [5]) can be
applied to r and in this way a new set s of instances of Contains is computed
that is the transitive closure of r:

-- algorithm computing s, the transitive closure of r:
Group.allInstances->iterate(g3 : Group ;
s : Set(Contains) = r
| Group.alllnstances->iterate(g2 : Group ;
s2 : Set(Contains) = s
| Group.allInstances->iterate(gl : Group ;
sl : Set(Contains) = s2
| if si1->exists(cl,c2 : Contains |
(cl.container=gl and cl.elements=g2) or
(cl.container=gl and cl.elements=g3 and

864 Luis Mandel and Maria Victoria Cengarle

c2.container=g3 and c2.elements=g2))
then sl->including(c) else sl endif
-- where: c : Contains with c.container=gl and c.elements=g2

)))

In the above algorithm the sets s1 and s2 had to be declared in order for
s to be properly updated. The variant of exists with two iterators used in
this algorithm is inexistent in OCL. However, given the equivalences (Jx)¢ =

~(Va)— and (3x)(Jy)e = (Vo) (Fy)p = (Vo) (Vy) e = (V) (Vy) e,
collection->exists(el,e2 | <Boolean-expr-on-el-and-e2>)

is the abbreviation we use for
not collection->forAll(el,e2 | not <Boolean-expr-on-el-and-e2>).
The OCL constraint we are looking for is the non-reflexivity of the set s:
not s->exists(d : Contains | d.container=d.elements)

The desired OCL constraint is therefore the following:

not
Group.allInstances->iterate(g3 : Group ;
s : Set(Contains) = Contains.alllnstances->iterate(pair : Contains;
r : Set(Contains) = Set{}
| if pair.elements.oclIsTypeOf (Group)
then r->including(pair) else r endif
)
| Group.allInstances->iterate(g2 : Group ;
s2 : Set(Contains) = s
| Group.allInstances->iterate(gl : Group ;
sl : Set(Contains) = s2
| if s1->exists(cl,c2 : Contains |
(cl.container=gl and cl.elements=g2) or
(cl.container=gl and cl.elements=g3 and
c2.container=g3 and c2.elements=g2))
then sil->including(c) else sl endif
-- where: c : Contains with c.container=gl and c.elements=g2
)))->exists(d : Contains | d.container=d.elements)

Here we discover a problem: the instance c of Contains with c.container=g1
and c.elements=g2, necessary when computing s for recording partial paths,
cannot be created. This instance is not meant to be added to the actual state of
the model, the same as many sets and such that can be calculated using OCL
are not meant to be added to the actual state of the model. Furthermore, and
differently to what was remarked in Section [3.J] about Cartesian product and
projection, we are not trying to generate an instance of an unknown type but of
a type present in the class diagram. An alternative would be to manipulate, in-
stead of a set s of instances of Contains, a set s’ of pairs of instances of Group
(represented by a sequence of length two) such that, if the sequence {gl,g2}

On the Expressive Power of OCL 865

belongs to s’, then there is a path in r from g1 to g2. Unfortunately this is im-
possible since within OCL all collections of collections are automaticaly flattened
(it is not specified what type has the result of flattening a set of sequences).

The third idea that comes to mind, in order to overcome nested collections,
is to manipulate a sequence t with an even number of elements such that if
gl and g2 belong to t, gl is at an odd position i of t, and g2 is at position
i+1, then there is a path in r from g1 to g2. This seems to be a satisfactory
solution, the problematic sentence s1->including(c) could then be replaced by
t1->append(gl)->append (g2) (also in this case we need auxiliary variables t1
and t2). Now, the initial value of t is not r but

t : Sequence(Group)
= r->iterate(pair : Contains ;
res : Sequence(Group) = Sequence{}
| res—>append(pair.container)->append(pair.elements))

Also the algorithm computing the transitive closure of r has to be accordingly
adapted wherever s, s1 or s2 are used. There is just one more place where one of
these variables is used, namely when the existence is asked of two pairs c1 and
c2 in s1 that satisfy certain property. Now we have to look for the existence of
two subsequences of length two both beginning at an odd position and satisfying
the same property. We access the subsequences using an index that points to
their position in t. We replace the test

s1->exists(cl,c2 : Contains |

(cl.container=gl and cl.elements=g2) or
(cl.container=gl and cl.elements=g3 and
c2.container=g3 and c2.elements=g2))

by the following

Sequence{l..(t1->size)/2}->exists(i,j : Integer |
(t1->at(2%i-1) = gl and tl->at(2*i) = g2) or
(t1->at(2*i-1) = gl and tl->at(2*i) = g3 and
t1->at(2%j-1) = g3 and tl->at(2*j) = g2))

where Sequence{l.. (t1->size)/2} is the sequence of integer numbers between
1 and the size of t1 (which we know of even length) divided by two, and the
elements of this sequence are used to index the sequence t1.

Finally in a similar way we can test the non-reflexivity of t:

not Sequence{l..(t->size)/2}->exists(i : Integer
| t—>at(2xi-1) = t->at(2%i))

There is still a last hurdle to surmount. t is just a mnemonic we have used,
that has to be replaced by the algorithm that computes it, since we cannot
use a variable. t occurs three times in the above test of non-reflexivity, and we
would like to calculate it only once. Moreover, if we replace each one of the
three occurrences of t in the test above, then we cannot be sure that each in-
stance of the sequence is equal to another one, and in particular when testing
if t->at(2*i) = t->at(2*i+1) it is absolutely necessary that both t’s at each

866 Luis Mandel and Maria Victoria Cengarle

side of the equation are equal. The only constructs using new names are the op-
erations iterating on collections, and of them only iterate allows for a variable
of an arbitrary type (namely the accumulator) and the assignment of an arbi-
trary value to this variable. But the last value of the accumulator is the return
value of an iterate, and we need a Boolean. We can therefore just assume that
the different occurrences of the algorithm computing t return always the same
sequence. The resulting algorithm is as follows:

not Sequence{1l..(
-t
Group.allIlnstances->iterate(g3 : Group ;
t : Sequence(Group) = -- r
Contains.allInstances->iterate(pair : Contains;
r : Set(Contains) = Set{}
| if pair.elements.oclIsTypeOf (Group)
then r->including(pair) else r endif
)->iterate(pair : Contains ;
res : Sequence(Group) = Sequence{}
| res->append(pair.container)->append(pair.elements)
)
| Group.allInstances->iterate(g2 : Group ;
t2 : Sequence(Group) =t
| Group.allIlnstances->iterate(gl : Group ;
tl : Sequence(Group) = t2
| if Sequence{l..(t1->size)/2}->exists(i,j : Integer |
(t1->at(2*i-1) = gl and ti1->at(2*i) = g2) or
(t1->at(2*i-1) = gl and tl->at(2*i) = g3 and
t1->at(2*j-1) = g3 and tl->at(2*j) = g2))
then tl->append(gl)->append(g2) else tl endif

)))
->size)/2}->exists(i : Integer
I -t
Group.allIlnstances->iterate(g3 : Group ;
t : Sequence(Group) = -- r

Contains.allInstances->iterate(pair : Contains;
r : Set(Contains) = Set{}
| if pair.elements.oclIsTypeOf (Group)
then r->including(pair) else r endif
)->iterate(pair : Contains ;
res : Sequence(Group) = Sequence{}
| res—>append(pair.container)->append(pair.elements)
)
| Group.alllnstances->iterate(g2 : Group ;
t2 : Sequence(Group) =t
| Group.allIlnstances->iterate(gl : Group ;
tl : Sequence(Group) = t2
| if Sequence{l..(t1->size)/2}->exists(i,j : Integer |
(t1->at(2*i-1) = gl and tl->at(2*i) = g2) or
(t1->at(2*i-1) = gl and tl1->at(2*i) = g3 and
t1->at(2xj-1) = g3 and tl->at(2xj) = g2))

On the Expressive Power of OCL 867

then tl->append(gl)->append(g2) else tl endif

)))

—>at(2*i-1) =

-t

Group.allIlnstances->iterate(g3 : Group ;
t : Sequence(Group) = -- r

Contains.allInstances->iterate(pair : Contains;
r : Set(Contains) = Set{}
| if pair.elements.oclIsTypeOf (Group)
then r->including(pair) else r endif
)->iterate(pair : Contains ;
res : Sequence(Group) = Sequence{}
| res—>append(pair.container)->append(pair.elements)
)
| Group.allInstances->iterate(g2 : Group ;
t2 : Sequence(Group) =t
| Group.allIlnstances->iterate(gl : Group ;
tl : Sequence(Group) = t2
| if Sequence{l..(t1->size)/2}->exists(i,j : Integer |
(t1->at(2*i-1) = gl and ti1->at(2*i) = g2) or
(t1->at(2*i-1) = gl and t1->at(2*i) = g3 and
t1->at(2*j-1) = g3 and tl->at(2*j) = g2))
then tl->append(gl)->append(g2) else tl endif

)))
->at (2*i)
)

Although the computation capabilities for computing the transitive closure
of a binary relation are present in OCL, here again a concept of tuple functions
would have made the above algorithm considerably simpler. At this point we
want to remark the notion of relational completeness as formulated in [8, p. 94]:

In language implementations, the following two operations are needed
to assure relational completeness:

(a) The ability to represent assignments, that is, the ability to create
new relations to store the results of relational algebra operations
that are also relations. [...]

(b) The ability to compute transitive closures which enables recursion
and/or nesting of relational algebra operations to express expressions
of arbitrary complexity. [...]

Also Codd (see [3]) asserted the need for more than complete languages, provid-
ing tuple and aggregate functions.
3.3 Turing Completeness

This section addresses the Turing completeness of OCL. We show that primi-
tive recursive functions are expressible in OCL and hint why general recursive

868 Luis Mandel and Maria Victoria Cengarle

functions cannot be expressed in OCL. In order to do so, we show that LOOP-
programs can and WHILE-programs cannot be written in OCL (see [11]).
The syntax of LOOP-programs is as follows:

P:=X < X+C|X <~ X—C|LOOP X DO PEND|P ; P
Xu=xo|z1|x2]|... (variables)
C:==01]2]... (constants)

The semantics of LOOP-programs is straightforward. The value assignment
x; < xj + c is interpreted as usual, that is, the new value of the variable z; is
the value of x; plus c. The value assignment x; <- z; — c is the non-negative
subtraction, that is, if ¢ > x; then the new value of z; is 0 otherwise the value of
x; minus c. A LOOP-program of the form P, ; P, is interpreted as the execu-
tion of P, and afterwards the execution of P». Finally a LOOP-program of the
form LOOP x; DO P END is interpreted as follows: the program P is executed n
times, where n is the value of the variable x; at the beginning (i.e. the change
of the value of z; within P does not affect the number of repetitions). Given a
LOOP-program that computes a k-ary function f, it is assumed that the input
values n1,...,ny are initially stored in the variables x1,...,xx, that any other
variable has initial value 0, and that the result f(ni,...,ng) is stored in the
variable x(after execution of the program.

LOOP-programs are WHILE-programs, and additionally if P is a WHILE-
program then WHILE x; # 0 DO P END is a WHILE-program. The semantics of
the new construct is the following: the program P is repeatedly executed as long
as the value of z; is different from 0. (The LOOP construct becomes superfluous,
LOOP z DO P END can be simulated by WHILE y #£0 DO P ; y:=y— 1 END.)

Every LOOP-program can be computed by an OCL expression. Indeed, given
a LOOP-program P computing a k-ary function and using auxiliary variables
Tkt1,---, 2y, we write an OCL expression that manipulates an array vals; of
r —+ 1 values (representing the values of the variables x, ..., x,) and returns the
first value of this array after executing the translation of P:

Sequence{l..1}->iterate(it : Integer ; -- iterator, will be ignored
vals; : Sequence(Integer) = {0,n1,...,n%, 0,...,0 }
——
(r—k) times
| trans(P,1)
)->first

The return value of the above expression is the first value of the sequence vals;
after (iterating one time) the execution of ¢rans(P, 1). Initially vals; stores the
value n; for the variable z; (i = 1,...,k) and 0 otherwise. In general, the re-
turn value of trans(P,n) with n € IN is stored in vals,. The OCL expression
trans(P,n) is defined by induction on P as follows:

— The translation ¢rans(P,n) of a program P of the form z; <- z;+c¢ depends
on i and j and is defined by:
o trans(z; <- x; +c,n) =
vals,->iterate(val : Integer ;
newvals : Sequence(Integer) = Sequence{}

On the Expressive Power of OCL

| if newvals->size = ¢
then newvals->append(val+c)
else newvals->append(val) endif)
e if 4 > j, then
trans(xz; <- x; +¢,n) =
vals,->iterate(val : Integer ;
newvals : Sequence(Integer) = Sequence{}
| if newvals->size = ¢
then newvals->append(newvals->at (j+1)+c)
else newvals->append(val) endif)
o if i < j, then
trans(xz; <= x; +¢,n) =
vals,->iterate(val : Integer ;
newvals : Sequence(Integer) = Sequence{}
| if newvals->size = j

then (newvals->subSequence(1,4)) - (D
—->append (val+c)
->union(newvals->subSequence(i+2,5)) -- (2)
->append(val)

else newvals->append(val) endif)l

869

— The translation trans(P,n) of a program P of the form z; <- z; —c depends
not only on 7 and j but also on the values of z; and ¢, and is defined by:

e trans(z; <- x; —c,n) =
vals,->iterate(val : Integer ;
newvals : Sequence(Integer) = Sequence{}
| if newvals->size = ¢
then newvals->append(if val<c then O else val-c endif)
else newvals->append(val) endif)
e if 4 > j, then
trans(xz; <= x; —c¢,n) =
vals,->iterate(val : Integer ;
newvals : Sequence(Integer) = Sequence{}
| if newvals->size = ¢
then newvals->append(if newvals->at(j+1)<c then 0
else newvals->at(j+1)-c endif)
else newvals->append(val) endif)
o if i < j, then
trans(z; <- x; —c,m) =
vals,->iterate(val : Integer ;
newvals : Sequence(Integer) = Sequence{}
[if newvals->size = j
then (newvals->subSequence(1,17)) - (1)
->append(if val<c then 0 else val-c endif)

* Notice that ¢ < j implies 4 + 1 < j, therefore it might be incorrect to speak of
the subsequence of newvals starting at i + 2 and ending at j, see statement above
commented with (2). The same w.r.t. the sentence commented with (1) if ¢ = 0.
[9] does specify the result of extracting a subsequence whose upper position number
is less than its lower position number, we therefore assume that in such a case the

subsequence is empty.

870 Luis Mandel and Maria Victoria Cengarle

->union(newvals->subSequence(i+2,5)) -- (2)
->append (val)
else newvals->append(val) endif)fi
— trans(LOOP z; DO P END,n) =
Sequence{1..vals, —>at (i+1)}->iterate(it : Integer ; -- will be ignored
valspt1 : Sequence(Integer) = vals,
| trans(P,n+ 1))
— trans(P1 ; Pa,n) =
Sequence{l..2}->iterate(step : Integer ;
vals,t+1 : Sequence(Integer) = vals,
| if step = 1 then trans(Pi,n+ 1) else trans(P2,n + 1) endif)

The number n accompanying the definition of ¢rans allows for the definition of
new variables that do not shadow previously (in the outer block) defined ones.

So for instance the function f(n,m) = n 4+ m is computed by the program
X0 <- X1 + X2 and can be encoded as the following LOOP-program P

X0 <- X1 + 0 ; -- P1
LOOP X2 DO -- P2

X0 <- X0 +1 -- P21
END

which is translated to OCL by successively calculating trans as follows:

1. Sequence{l..1}->iterate(it : Integer ;
valsl : Sequence(Integer) = {0,n,m} | trans(P,1))->first
2. Sequence{l..1}->iterate(it : Integer ;
valsl : Sequence(Integer) = {0,n,m}
| Sequence{l..2}->iterate(step : Integer ;
vals2 : Sequence(Integer) = valsl
| if step = 1 then trans(P1,2) else trans(P2,2) endif))->first
3. Sequence{l..1}->iterate(it : Integer ;
valsl : Sequence(Integer) = {0,n,m}
| Sequence{l..2}->iterate(step : Integer ;
vals2 : Sequence(Integer) = valsl
| if step =1
then vals2->iterate(val : Integer ;
newvals : Sequence(Integer) = Sequence{}
| if newvals->size = 1
then (newvals->subSequence(1,0))->append(val+0)
->union(newvals->subSequence (0+2,1)) ->append (val)
else newvals->append(val)
endif)
else Sequence{l..vals2->at(2+1)}->iterate(it : Integer ;
vals3 : Sequence(Integer) = vals2
| trans(P21,3))
endif)
)->first

® Here again we assume that the subsequence (1) of newvals starting at 1 and ending
at i is empty if ¢ = 0, and that the subsequence (2) of newvals starting at ¢ +2 and
ending at j is empty if i +1 = j.

On the Expressive Power of OCL 871

4. Sequence{l..1}->iterate(it : Integer ;
valsl : Sequence(Integer) = {0,n,m}
| Sequence{l..2}->iterate(step : Integer ;
vals2 : Sequence(Integer) = valsl
| if step =1
then vals2->iterate(val : Integer ;
newvals : Sequence(Integer) = Sequence{}
| if newvals->size = 1
then (newvals->subSequence(1,0))->append(val+0)
->union(newvals->subSequence (0+2,1)) ->append (val)
else newvals->append(val)
endif)
else Sequence{l..vals2->at(2+1)}->iterate(it : Integer ;
vals3 : Sequence(Integer) = vals2
| vals3->iterate(val : Integer ;
newvals : Sequence(Integer) = Sequence{}
| if newvals->size = 0
then newvals->append(val+1)
else newvals->append(val) endif)
)
endif)
)->first

We now prove that the OCL expression defined in terms of a LOOP-program
computes the same function.

Proposition 1. Let P be a LOOP-program used in a context where only vari-

ables among xo, ..., x, are used. For any mo,...,my,my,...,m, € IN, for any
n € IN, if the variable x; changes its value from m; to m; (i = 0,...,r) af-
ter the execution of P, then wals, changes its value from {mg,...,m.} to
{m{,...,m.} after the execution of trans(P,n).

Proof. The thesis is proved by induction on the structure of P.

— (Pisz; <= z;%c¢)
Trivial.
— (P is LOOP z; DO P’ END)
trans(P, k) = Sequence{l..vals,->at(j+1)}->iterate(i : Integer ;
valsgy1 : Sequence(Integer) = vals,
| trans(P',k+1))
By IH, for any my,...,m;,m},...,m!. € IN, for any n € IN, if the variable
x; changes its value from m; to m} (i = 1,...,r) after the execution of P’,
then vals,, changes its value from {mg, ...,m,} to {m() s« ..,m.} after the
execution of trans(P’,n), in particular for n = k + 1.
Therefore, if valsy = {lp,...,[,}, then valsy—>at (j+1) = [;, valsy4 is
initialized by trans(P, k) with the value of valsy, and if after [; successive
executions of P’ the variable x; changes its value from I; to [}, then after

872 Luis Mandel and Maria Victoria Cengarle

l; successive executions of trans(P’,k + 1) valsyii changes its value from
{o, ...,y to{l,... L}
Given that the last value of valsgi is the return value of trans(P, k), the
thesis holds.
- (P is P1 5 PQ)

trans(P, k) = Sequence{l..2}->iterate(step : Integer ;

valsyyi : Sequence(Integer) = vals,

| if step = 1

then trans(Pi,k+1) else trans(Ps, k+ 1) endif)
This case is also trivial by TH.
O

Hence, every LOOP function is also computable using an OCL expression.

Consider now the WHILE construct of WHILE-programs. The iterating con-
struct iterate runs through a collection (randomly ordered if not a sequence)
from its beginning to its end. Thus, an iterate terminates if, and only if, the
collection is finite. Notice that, on the one hand and according to [9] p. 13], there
are three ways of getting a collection:

1. by a literal, e.g. Set{1,2,5,3}, or
2. by a navigation, e.g. Polygon self.vertices, or
3. by operations on collections, e.g. set—>union(set2).

The first two possibilities return a finite collection, and finite collections are
closed under the operations mentioned as third possibility But, on the other
hand, the feature allInstances associated with the type oclType of types re-
turns a set; see [9, p. 20]. That is, by writing Integer.allInstances (or even
Real.allInstances) we could also obtain an infinite collection.

In any way, an iterate either performs a previously determined number of
iterations or does not terminate, since there is no possibility of interrupting an
iterate (like e.g. the break command of C). In other words, the WHILE construct
cannot be encoded in OCL, and thus semidecidable problems in general cannot
be solved using OCL.

Therefore, given that the class of primitive recursive functions coincides with
the class of LOOP-computable functions and that the class of p-recursive func-
tions coincides with the class of WHILE-computable functions (see [11]), OCL
allows only for the definition of primitive recursive functions (or totally undefined
functions if Integer.allInstances is a valid OCL expression).

4 Conclusions

OCL brought to UML 1.1 two advantages: At metalevel it has been used for the
definition of the UML metamodel and at user level it can be used to describe
additional constraints about the objects in the model, constraints that cannot be
described in a graphic way. OCL can also be used as a navigation language. We

5 This is also true for the negation given the (implicit) closed world assumption.

On the Expressive Power of OCL 873

have shown that OCL is not as expressive as the relational calculus and therefore
it is incomplete as query language in the database sense. On the other hand we
have shown that in OCL the transitive closure of a relation, operation that cannot
be expressed in relational calculus, can be computed by an OCL expression
(assuming some kind of determinism when constructing twice a sequence); the
resulting code is somehow tricky and neither intuitive nor easy to read. Both
relational completeness and an easier to read OCL expression computing the
transitive closure of a binary relation can be achieved by just adding a concept of
tupling. Finally we demonstrated that OCL can compute any primitive recursive
function and hinted that not any recursive function can be computed by an OCL
expression; in other words, OCL is not equivalent to a Turing machine.

Since we first wrote this article, a book [T4] on OCL was published that
completes the original OCL specification with many and detailed examples; un-
fortunately, some questions like e.g. the result type of flattening collections in
general is still missing. Due to the ambiguities, some inconsistencies and the lack
of formality of the OCL specification some authors have suggested to replace it
by other well-founded language such as EER (see [6]) or CASL (see [12] and also
[7]). It is expected that new revisions of UML will also bring to the community
a new revised version of OCL or, may be better, a new approach to facilitate
navigation and specification of model properties in a formal way.

References

[1] A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Sizth
ACM Symposium on Principles of Programming Languages (POPL79, proceed-
ings), pages 110-117, 1979.

[2] P. Atzeni and V. D. Antonellis. Relational database theory. The Benjamin/-
Cummings Publishing Company, Inc., 1993.

[3] E. F. Codd. Relational Completeness of Data Base Sublanguages. In R. Rustin,
editor, Data Base Systems, pages 65-98. Prentice Hall, Englewood Cliffs, New
Jersey, 1972.

[4] S. Cook and J. Daniels. Designing Object Systems—Object Oriented Modeling
with Syntropy. Prentice Hall, 1994.

[5] J. L. Gersting. Mathematical Structures for Computer Science. Computer Science
Press, 3rd edition, 1993.

[6] M. Gogolla and M. Richters. On Constraints and Queries in UML. In M. Schader
and A. Korthaus, editors, Proc. UML’97 Workshop ‘The Unified Modeling Lan-
guage - Technical Aspects and Applications’, pages 109—121. Physica-Verlag, Hei-
delberg, 1997.

[7] P. D. Mosses. CoFI: The common framework initiative for algebraic specifica-
tion and development. In M. Bidoit and M. Dauchet, editors, TAPSOFT ’97:
Proceedings of the Seventh Joint Conference on Theory and Practice of Software
Development, Tth International Joint Conference CAAP/FASE, number 1214 in
LNCS, Lille, France, Apr. 1997. Springer.

[8] E. Ozkarahan. Database Machines and Database Management. Prentice Hall,
1986.

[9) RATIONAL Software Corporation. Object Constraint Language Specification,
Sept. 1997. Version 1.1. Available at www.rational.com/uml/.

874

[10]

[14]

Luis Mandel and Maria Victoria Cengarle

M. Richters and M. Gogolla. On Formalizing the UML Object Constraint Lan-
guage OCL. In T.-W. Ling, editor, Proc. 17th Int. Conf. Conceptual Model-
ing (ER’98). Springer, Berlin, LNCS, 1998.

U. Schoning. Theoretische Informatik — kurzgefafit. Spektrum Akademischer Ver-
lag, 2nd edition, 1995.

The CoFI Task Group on Language Design. CASL: The common algebraic
specification language: Summary. Available at www.brics.dk/Projects/CoFI/-
Documents/CASL/Summary/, 1998.

J. D. Ullman. Principles of Database Systems. Computer Software Engineering
Series. Computer Science Press, 1982.

J. B. Warmer and A. B. Kleppe. The Object Constraint Language: Precise Mod-
eling with UML. Addison-Wesley, 1999.

	Introduction
	OCL Examples
	Completeness
	Equivalence of OCL and Relational Calculus
	Transitive Closure of a Relation
	Turing Completeness

	Conclusions

