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The continuous run-time monitoring of the behavior of a system is a technique that is used both as
a complementary approach to formal verification and testing to ensure reliability, as well as a means
to discover emergent properties in a distributed system, like intrusion and event correlation. The
monitors in all these scenarios can be abstractly viewed as automata that process a (unbounded)
stream of events to and from the component being observed, and raise an “alarm” when an error

or intrusion is discovered. These monitors indicate the absence of error or intrusion in a behavior
implicitly by the absence of an alarm.

In this paper we study the power of randomization in run-time monitoring. Specifically, we
examine finite memory monitoring algorithms that toss coins to make decisions on the behavior
they are observing. We give a number of results that characterize, topologically as well as with
respect to their computational power, the sets of sequences the monitors permit. Finally, we give
the exact complexity characterization of the problems of determining whether the monitor permits
any sequence (emptiness) and whether the monitor permits all sequences (universality). These
decision problems help determine if the monitor is non-trivial”.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification; F.1.1 [Theory of

Computation]: Models of Computation; F.1.2 [Theory of Computation]: Modes of Computation

1. INTRODUCTION

Monitoring the dynamic behavior of a system component at run-time is an important tech-

nique that has widespread applications. It is used to detect erroneous behavior in a com-

ponent that either has undergone insufficient testing or has been developed by third party

vendors. It is also used to discover emergent behavior in a distributed network like intru-

sion, or more generally, perform event correlation. As a consequence, run-time monitoring

or run-time verification, has received a lot of attention from the research community; the

reader is referred to [rv- 2007] for a discussion of some of the practical and theoretical

issues in the area.

In all these scenarios, the monitor can be abstractly viewed as an algorithm that observes

an unbounded stream of events to and from the component being examined. Based on what

the monitor has seen up until some point, the monitor may decide that the component is

behaving erroneously (or is under attack) and raise an “alarm”, or may decide that nothing

worrisome has been observed. Hence, the absence of an error (or intrusion) is indicated
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implicitly by the monitor by the absence of an alarm. On the flip side, a behavior is deemed

incorrect by the monitor based on what has been observed in the past, and this decision is

independent of what maybe observed in the future. Given these observations, it is well

understood [Schneider 2000] that deterministic monitoring algorithms can correctly detect

the violations of only safety properties [Alpern and Schneider 1985; Lamport 1985; Sistla

1985]. However, in practice, properties other than safety are also monitored by either

under or over approximating them to safety properties [Amorium and Rosu 2005; Margaria

et al. 2005], or by using a multi-valued interpretation of whether formula holds on a finite

prefix [Pnueli and Zaks 2006; Bauer et al. 2006].

While the use of statistical techniques is ubiquitous in intrusion detection systems, only

recently was the study of designing randomized monitors for formally specified properties

initiated [Sistla and Srinivas 2008]. In this paper, we continue this line of research, and

investigate the expressive power of randomization in the context of run-time monitoring.

More precisely, we study the power of finite state probabilistic monitors (FPMs). A FPM is

a finite state automaton on infinite strings that chooses the next state based on a probability

distribution in addition to input symbol read, and has a special reject state. Once in the

reject state, the automaton remains in that state on all future inputs; this corresponds to the

fact that once a behavior is deemed incorrect, it does not matter what events are seen in

the future. Apart from their practical relevance, FPMs are natural models of computation,

that can either be seen as a particular generalization of probabilistic finite automata [Rabin

1963; Salomaa 1973; Paz 1971] or Hidden Markov Chains from finite strings to infinite

strings, or as a specialization of probabilistic Büchi automata introduced in [Baier and

Gröβer 2005].

One of our main objectives in this paper is to study the relationship between classes

of properties that admit monitors with one-sided errors and two-sided errors, and those

with deterministic monitors. We say that a property is monitorable with strong acceptance

(MSA) if there is a monitor for the property that never deems a correct behavior to be

erroneous, but may occasionally pass an incorrect behavior. On the other hand, a property

is monitorable with weak acceptance (MWA) if there is a monitor that may raise false

alarms on a correct behavior, but would never fail to raise an alarm on an incorrect one.

Similarly we define classes of properties that have monitors with two-sided errors. We say

a property is monitorable with strict cut-points (MSC) if, for some x, there is monitor such

that on behaviors α satisfying the property, the probability that the monitor rejects α is

strictly less than x. Finally, a property is monitorable with non-strict cut-points (MNC) if,

for some x, there is monitor such that on behaviors α satisfying the property, the probability

that the monitor rejects α is at most x.

Our main expressiveness results are summarized in Figure 1. We show that while the

class MSA is exactly the class of ω-regular safety properties, the class MNC not only con-

tains all ω-regular safety properties, but also contains some non-regular safety properties.

However, even though the class MNC is uncountable, it is properly contained in the class

of all safety properties. The classes MWA and MSC allow us to go beyond deterministic

monitoring along a different axis. We show that MWA strictly contains all the ω-regular al-

most safety properties1. Even though, MWA contains some non-regular properties, they are

very close to being ω-regular. More precisely, we show that the safety closure of any prop-

erty in MWA (i.e., the smallest safety property containing it) and the safety closure of its

1An almost safety property is a countable union of safety properties.
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complement, are both ω-regular. We note here that if we were to define the class MWA for

probabilistic automata over finite strings then we will only obtain regular languages. We

show that MWA is strictly contained in MSC which in turn is strictly contained in the class

of all almost safety properties. Finally, we show that MSC and MNC are incomparable.

We also consider a couple of sub-classes of FPMs. Let us call an FPM M x-robust if

for some ǫ > 0, the probability that M rejects any string is bounded away from x by ǫ,

i.e., it either rejects a string with probability greater than x+ ǫ or with probability less than

x − ǫ. A robustly monitorable property then is just a property that has a robust monitor.

Robustly monitorable properties are a natural class of properties. They are the constant

space analogs of the complexity classes RP and co-RP, when x is 0 or 1. They also are a

generalization of the notion of isolated cut-points [Rabin 1963; Salomaa 1973; Paz 1971]

in finite string probabilistic automata to infinite strings. We show that robustly monitorable

properties are exactly the same class as ω-regular safety properties.

In addition to the expressiveness results, we characterize the exact complexity of check-

ing whether the monitor’s language is empty and whether it is universal. Emptiness and

universality, apart from being natural decision problems, are important for a couple of rea-

sons in this context. First, they help determine if the designed monitor is non-trivial: if the

language of a monitor is empty then it means that it is too conservative, and if the language

is universal then it means that it is too liberal. Next, the FPMs we consider could be used

to model systems, like those modeled by special kinds of Hidden Markov Chains that have

a sink state. The emptiness and universality can be seen as natural problems verifying

properties of the Hidden Markov Chain model of the system.

Our results for the decision problems are as follows. We show that the emptiness prob-

lems for monitors with one sided error, i.e., for the classes MSA and MWA, are PSPACE-

complete. These results are interesting in the light of the fact that checking non-emptiness

of a non-deterministic finite state automaton on infinite strings, with respect to any of

the commonly used acceptance conditions, is in polynomial time. We also show that the

emptiness problem for monitors with two sided errors is undecidable. More specifically,

we show that the emptiness problem for the class MNC is R.E.-complete, while it is co-

R.E.-complete for the class MSC. Next, we show that the universality problem for the class

MSA is NL-complete while for MWA it is PSPACE-complete. This problem is co-R.E.-

complete for the class MNC, while it is Π1
1-complete for MSC. Many of these results, for

both the lower and upper bounds, are quite surprising, and their proofs are quite non-trivial.

All these results are summarized in the table 2.

Paper Outline. The rest of paper is organized as follows. We first discuss related work.

Then in Section 2 we give basic definitions and properties of safety and almost safety

languages. We formally define FPM’s in Section 3 and the language classes MSA, MWA,

MNC and MSC. Our expressiveness results are presented in Section 4 and the complexity,

decidability results are presented in Section 5. We conclude in Section 6.

1.1 Related Work

There is a lot of work in run-time monitoring with respect to formal properties using deter-

ministic algorithms; a good starting point for these are proceedings of the Runtime Verifi-

cation (RV) Workshop over the past few years [rv- 2007]. In the paper we look at the use

of randomization in the context of monitoring algorithms, continuing the line of work that

was initiated in [Sistla and Srinivas 2008]. Please note, there has also been work on design-

ing randomized monitors for probabilistic systems [Sammapun et al. 2007]; in this paper
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we focus our attention on the analysis of non-probabilistic systems. The FPMs that we

consider here are a special kind of probabilistic Büchi automata, introduced in [Baier and

Gröβer 2005], with a designated reject state. We draw upon, and generalize, many of the

proof techniques introduced in the context of finite strings and probabilistic automata [Ra-

bin 1963; Salomaa 1973; Paz 1971] to infinite strings. In particular, the pumping lemma

and its proof presented here, is closely related to a similar result in the context of finite

strings (though it is generalized here to infinite strings). Also, the proof that robust moni-

tors define ω-regular languages is inspired by a similar result for finite strings by Rabin [Ra-

bin 1963], that says that probabilistic finite automata with isolated cut-points define regular

(finite word) languages. However, our generalization to infinite words, crucially relies on

the fact that robust monitors define safety languages, and no such topological property is

relied upon in the finite case.

2. PRELIMINARIES

Sequences. Let S be a finite set. We let |S| denote the cardinality of S. Let κ = s1, s2, . . .
be a possibly infinite sequence over S. The length of κ, denoted as |κ|, is defined to be

the number of elements in κ if κ is finite, and ω otherwise. S∗ denotes the set of finite

sequences, S+ the set of finite sequences of length ≥ 1 and Sω denotes the set of infinite

sequences. If η is a finite sequence, and κ is either a finite or an infinite sequence then ηκ
denotes the concatenation of the two sequences in that order. If R ⊆ S∗ and R′ ⊆ S∗∪Sω,

the set RR′ = {ηκ | η ∈ R and η ∈ R′}.
For integers i and j such that 1 ≤ i ≤ j < |κ|, κ[i : j] denotes the (finite) sequence

si, . . . sj and the element κ(i) denotes the element si. A finite prefix of κ is any κ[1 : j] for

j < |κ|. We denote the set of κ’s finite prefixes by Pref (κ).

Languages. Given a finite alphabet Σ, a language L of finite words over Σ is a set of finite

sequences over Σ and a language L of infinite words over Σ is a set of infinite sequences

over Σ.

Metric topology on Σω. Given a finite alphabet Σ, one can define a metric d : Σω×Σω →
R+ on Σω as follows. For α1, α2 ∈ Σω, α1 6= α2, d(α1, α2) = 1

2j where j is the unique

integer such that α1(j) 6= α2(j) and ∀i < j, α1(i) = α2(i). Also d(α, α) = 0 for all

α ∈ Σω. Given α ∈ Σω and r ∈ R, the set B(α, r) = {β | d(α, β) < r} is said to be an

open ball with center α and radius r. A language L ⊆ Σω is said to be open if for every

α ∈ L there is a rα such that B(α, rα) ⊆ L. It can be shown that a language L is open iff

L = LΣω for some L ⊆ Σ∗. A language L is closed if its complement Σω \ L is open.

Given a language L ⊆ Σω, the set cl(L) = {α | ∀r,B(α, r)∩L 6= ∅} is the smallest closed

set containing L.

Safety Languages. Given an alphabet Σ and a language L ⊆ Σω, we denote the set of

prefixes of L by Pref (L), i.e., Pref (L) =
⋃

α∈L Pref (α). Following [Lamport 1985;

Alpern and Schneider 1985], a language L is a safety property (also, called safety language)

if for every α ∈ Σω: Pref (α) ⊆ Pref (L) ⇒ α ∈ L . In other words, L is a safety

property if it is limit closed – for every infinite string α, if every prefix of α is a prefix of

some string in L, then α itself is in L. Safety languages coincide exactly with the closed

languages in the metric topology d defined above [Perrin and Pin 2004]. We will denote
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the set of safety languages by Safety.

Almost Safety Languages. It is well known that the class of safety languages are closed

under finite union and countable intersection [Sistla 1985], but not under countable unions.

We say that a language L is an almost safety property/language if it is a countable union

of safety languages, i.e., L := ∪0≤i<∞Li where Li, for 0 ≤ i < ∞, is a safety

language. For L, as given above, and i ≥ 0, let Mi = ∪0≤j≤iLj . It is easy to see

that, for each i ≥ 0, Mi is a safety language and Mi ⊆ Mi+1. Thus the languages

M0, ...,Mi, ... form an increasing chain of safety languages with L as its limit. Thus,

we see that, although an almost safety language is not a safety language, it nevertheless

can be approximated more and more accurately by safety languages. Please note that the

complement of an almost safety property can be written as a countable intersection of

open sets of the metric topology d defined above. We will denote the set of almost safety

languages by AlmostSafety.

Automata and ω-regular Languages. A Büchi automaton A on infinite strings over a

finite alphabet Σ is a 4-tuple (Q,∆, q0, F ) where Q is a finite set of states, ∆ ⊆ Q×Σ×Q
is a transition relation, q0 ∈ Q is an initial state, and F ⊆ Q is a set of accepting/final

automaton states. If for every q ∈ Q and a ∈ Σ, there is exactly one q′ such that (q, a, q′) ∈
∆ then A is called a deterministic automaton. Let α = a1, . . . be an infinite sequence over

Σ. A run r of A on α is an infinite sequence r0, r1, . . . over Q such that r0 = q0 and for

every i > 0, (ri−1, ai, ri) ∈ ∆. The run r is accepting if some state in F appears infinitely

often in r. The automaton A accepts the string α if it has an accepting run over α. The

language accepted (recognized) by A, denoted by L(A), is the set of strings that A accepts.

A language L′ is called ω-regular if it is accepted by some finite state Büchi automaton.

We will denote the set of ω-regular languages by Regular. Regular is closed under finite

boolean operations.

A language L ∈ Regular ∩ AlmostSafety iff there is a deterministic Büchi automaton

which accepts its complement Σω \ L [Perrin and Pin 2004; Thomas 1990]. It is well-

known that a language L ∈ Regular ∩ Safety iff there is a deterministic Büchi automaton

A = (Q, ∆, q0, {qr}) such that ∀a ∈ Σ, (qr, a, qr) ∈ ∆ and A recognizes the complement

Σω \L. A language L ∈ Regular∩Safety iff there is a Büchi automaton A (not necessarily

deterministic) such that each state of A is a final state [Perrin and Pin 2004]. This implies

that a language L ∈ Safety is ω-regular iff the set of finite prefixes of L, Pref (L) ⊆ Σ∗,

is a regular language (here Pref (L) is a language of finite words).

Probability Spaces. Let V be a set and E be a set of subsets of V . We say that E is a σ-

algebra on V if E contains the empty set, is closed under complementation and also under

finite as well as countable unions. Let F be a set of disjoint subsets of V . A σ-algebra

generated by F is the smallest σ-algebra that contains F . A probability space is a triple

(V,E, µ) where E is a σ-algebra on V and µ is a probability function [Papoulis and Pillai

2002] on E.

3. FINITE STATE PROBABILISTIC MONITORS

We will now define finite state probabilistic monitors which can be viewed as probabilis-

tic automata over infinite strings that have a special reject state. The transition relation

from a state on a given input is described as a probability distribution that determines the

probability of transitioning to that state. The transition relation ensures that the probability
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of transitioning from the reject state to a non-reject state is 0. A FPM can thus be seen

as a generalization of deterministic finite state monitors where the deterministic transition

is replaced by a probabilistic transition. Alternately, it can be viewed as the restriction

of probabilistic monitors [Sistla and Srinivas 2008] to finite memory. From an automata-

theoretic viewpoint, they are special cases of probabilistic Büchi automata described in

[Baier and Gröβer 2005] which generalized the probabilistic finite automata [Rabin 1963;

Salomaa 1973; Paz 1971] on finite words to infinite words. The main difference here is that

instead of having a set of accepting states, we have one (absorbing) reject state. Formally,

Definition: A finite state probabilistic monitor (FPM) over a finite alphabet Σ is a tuple

M = (Q, qs, qr, δ) where Q is a finite set of states; qs ∈ Q is the initial state; qr ∈ Q is

the reject state, and; δ : Q × Σ × Q → [0, 1] is the probabilistic transition relation such

that for all q ∈ Q and a ∈ Σ,
∑

q′∈Q δ(q, a, q′) = 1 and δ(qr, a, qr) = 1. In addition, if

δ(q, a, q′) is a rational number for all q, q′ ∈ Q, a ∈ Σ, then we say that M is a rational

finite state probabilistic monitor (RatFPM).

It will be useful to view the transition function δ of a FPM on an input a as a matrix δa

with the rows labeled by “current” state and “columns” labeled by next state and the entry

δa(q, q′) denoting the probability of transitioning from q to q′. Formally,

Notation: Given a FPM, M = (Q, qs, qr, δ) over Σ, and a ∈ Σ, δa is a square matrix

of order |Q| such that δa(q, q′) = δ(q, a, q′). Given a word u = a1a2 . . . an ∈ Σ+, δu

is the matrix product δa1
δa2

. . . δan
. Please note that δǫ is not defined. However, we shall

sometimes abuse notation and say that δǫ(q1, q2) is 1 if q1 = q2 and 0 otherwise. For

Q1 ⊆ Q, we say δu(q, Q1) =
∑

q1∈Q1
δu(q, q1).

Intuitively, the matrix entry δu(q, q′) denotes the probability of being in q′ after having

read the input word u and having started in q. Please note that
∑

q′∈Q δu(q, q′) = 1 for all

u ∈ Σ+ and q, q′ ∈ Q.

The behavior of a FPM M on an input word α = a1a2, . . . , . can be described as

follows. The FPM starts in the initial state qs and if reading input symbols a1a2a3 . . . ai

results in state q, then it moves to state q′ with probability δai+1
(q, q′) on symbol ai+1.

An infinite sequence of states, ρ ∈ Qω, is a run of the FPM M. We say that a run ρ is

rejecting if the reject state occurs infinitely often in ρ. A run ρ is said to be accepting if the

run is not a rejecting run. In order to determine the probability of rejecting the word α, the

FPM M can be thought of as a infinite state Markov chain which gives rise to the standard

probability measure on Markov Chains [Vardi 1985; Kemeny and Snell 1976]:

Definition: Given a FPM, M = (Q, qs, qr, δ) on the alphabet Σ and a word α ∈ Σω,

the probability space generated by M and α is the probability space (Qω,FM,α, µM,α)
where

—FM,α is the smallest σ-algebra on Qω generated by the collection {Cη |η ∈ Q+} where

Cη = {ρ ∈ Qω | η is a prefix of ρ}.

—µM,α is the unique probability measure on (Qω,FM,α) such that µM,α(Cq0...qn
) is

—0 if q0 6= qs,

—1 if n = 0 and q0 = qs, and

—δ(q0, α(1), q1) . . . δ(qn−1, α(n), qn) otherwise.

The set of rejecting runs and the set of accepting runs for a given word α can be shown to

be measurable which gives rise to the following definition.
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Definition: Let µM,α be the probability measure defined by the FPM, M = (Q, qs, qr, δ)
on Σ and the word α ∈ Σω. Let rej = {ρ ∈ Qω | qr occurs infinitely often in ρ} and

acc = Qω \ rej. The quantity µM,α(rej) is said to be the probability of rejecting α and will

be denoted by µrej
M, α. The quantity µM,α(acc) is said to be the probability of accepting α

and will be denoted by µacc
M, α. We have that µrej

M, α + µacc
M, α = 1.

Please note that as the probability of transitioning from a reject state to a non-reject state

is 0, the probability of rejecting an infinite word can be seen as a limit of the probability of

rejecting its finite prefixes. This is the content of the following Lemma.

LEMMA 3.1. For any FPM, M = (Q, qs, qr, δ) over Σ, and any word α = a1a2 . . . ... ∈
Σω, the sequence of reals numbers {δa1a2...an

(qs, qr) | n ∈ N} is an increasing sequence.

Furthermore, µrej
M, α = limn→∞ δa1a2...an

(qs, qr).

The rest of this section is organized as follows. We first present some special monitors

and technical constructions involving FPMs. We then conclude this section by introducing

the class of monitorable languages that we consider in this paper.

3.1 Some Tools and Techniques

The special monitors and monitor constructions that we present in this section, will be used

both in the definition of the classes of monitorable languages, as will as in establishing

the expressiveness results in Section 4. We will also generalize the pumping lemma for

probabilistic automata over finite words to FPMs.

Scaling acceptance/rejection probabilities. Given a FPM M and a real number x ∈
[0, 1], we can construct monitors, where the acceptance (or rejection) probability of a word

is scaled by a factor x. We begin by proving such a proposition for accptance probabilities,

before turning our attention to rejection probabilities.

PROPOSITION 3.2. Given a FPM, M on Σ, and a real number x ∈ [0, 1], there is a

FPM, Mx, such that for any α ∈ Σω, µacc
Mx, α = x × µacc

M, α.

PROOF. Let M = (Q, qs, qr, δ). Pick a new state qs0
not in Q and let Mx = (Q ∪

{qs0
}, qs0

, qr, δx) where the transition function δx is defined as follows. For each a ∈ Σ

—δx(q, a, q′) = δ(q, a, q′) if q, q′ ∈ Q.

—δx(qs0
, a, q′) = x × δ(qs, a, q′) if q′ ∈ Q \ {qr}.

—δx(qs0 , a, qr) = 1 − x + x × δ(qs, a, qr).

—δx(q, a, q′) = 0 if q′ = qs0
.

Now, for any u ∈ Σ∗, we can show by induction that δx(qs, u, qr) = (1 − x) + x ×
δ(qs, u, qr) and δx(qs, u, q) = x × δ(qs, u, q) for q 6= qr. Using Lemma 3.1, we get the

desired result.

Similarly we can construct a FPM Mx which scales the probability of rejecting any

word by a factor of x.

PROPOSITION 3.3. Given a FPM, M on Σ, and a real number x ∈ [0, 1], there is a

FPM, Mx, such that for any α ∈ Σω, µrej
Mx, α = x × µrej

M, α.
PROOF. Let M = (Q, qs, qr, δ). Pick two new states qr0 and qr1 not occurring in Q

and let Mx = (Q∪ {qr0
, qr1

}, qs, qr0
, δx) where δx is defined as follows. For each a ∈ Σ
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—δx(q, a, q′) = δ(q, a, q′) if q, q′ ∈ Q \ {qr}.

—δx(qr, a, qr0
) = x.

—δx(qr, a, qr1) = 1 − x.

—δx(q, a, q) = 1 if q ∈ {qr0 , qr1}.

—δx(q, a, q′) = 0 if none of the above hold.

Now, for any u ∈ Σ∗ and a ∈ Σ, we can show by induction that δx(qs, ua, qr0) = x ×
δ(qs, u, qr). Using Lemma 3.1, we get the desired result.

We get as an immediate consequence of Proposition 3.2 and Proposition 3.3.

PROPOSITION 3.4. Given a FPM M on Σ and a real number x ∈ [0, 1], there are

FPM’s Mx and Mx such that for any α ∈ Σω, µacc
Mx, α = x × µacc

M, α and µrej
Mx, α =

x × µrej
M, α.

Product automata. Given two FPM’s, M1 and M2, we can construct a new FPM M
such that the probability that M accepts a word α is the product of the probabilities that

M1 and M2 accept the same word α.

PROPOSITION 3.5. Given two FPM, M1 and M2 on Σ, there is a FPM, M1 ⊗ M2

such that for any α ∈ Σω, µacc
M1⊗M2, α = µacc

M1, α × µacc
M2, α.

PROOF. Let M1 = (Q1, qs1
, qr1

, δ1) and M2 = (Q2, qs2
, qr2

, δ2). Pick a new state qr

not occurring in Q1 ∪ Q2. Let M1 ⊗M2 = (Q, qs, qr, δ) where

—Q = {qr} ∪ ((Q1 \ {qr1
}) × (Q2 \ {qr2

}))

—qs = (qs1
, qs2

)

—For each a ∈ Σ,

—δ((q1, q2), a, (q′1, q
′
2)) = δ1(q1, a, q′1)δ2(q2, a, q′2).

—δ((q1, q2), a, qr) = 1 −
∑

q 6=qr
δ((q1, q2), a, q).

—δ(qr, a, qr) = 1 and δ(qr, a, q) = 0 for q 6= qr.

Given any finite word u ∈ Σ+, we can shown by induction on the length of u that for any

q1, q
′
1 ∈ Q1\{qr1

} and q2, q
′
2 ∈ Q2\{qr2

}, we have δu((q1, q2), (q
′
1, q

′
2)) = δ1(q1, u, q′1)×

δ2(q2, u, q′2).
Now, given a α = a0a1 . . ., let uj = a1 . . . aj . Using Lemma 3.1, we get

µacc
M1⊗M2, α = 1 − µrej

M1⊗M2, α

= 1 − limj→∞ δuj
(qs, qr)

= limj→∞(1 − δuj
(qs, qr))

= limj→∞(
∑

q 6=qr
δuj

(qs, q))

= limj→∞
∑

q′
1 6=qr1

∑

q′
2 6=qr2

(δ1(qs1
, uj , q

′
1)δ2(qs2

, uj , q
′
2))

= limj→∞((
∑

q′
1 6=qr1

δ1(qs1 , uj , q
′
1))

×(
∑

q′
2 6=qr2

δ2(qs2 , uj , q
′
2))

= limj→∞(1 − δ1(qs1 , u, qr1))
×(1 − δ2(qs2

, u, qr2
))

= µacc
M1, α × µacc

M2, α.
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Given two FPM’s, M1 and M2, we can construct a new FPM M such that the proba-

bility that M rejects a word α is the product of the probabilities that M1 and M2 reject

the same word α.

PROPOSITION 3.6. Given two FPM, M1 and M2 on Σ, there is a FPM, M1 × M2

such that for any α ∈ Σω, µrej
M1×M2, α = µrej

M1, α × µrej
M2, α.

PROOF. Let M1 = (Q1, qs1 , qr1 , δ1) and M2 = (Q2, qs2 , qr2 , δ2). Let M1 ×M2 =
(Q, qs, qr, δ) where

—Q = Q1 × Q2

—qs = (qs1
, qs2

)

—qr = (qr1
, qr2

)

—For each a ∈ Σ, δ((q1, q2), a, (q′1, q
′
2)) = δ1(q1, a, q′1)δ2(q2, a, q′2).

Given any finite word u ∈ Σ+, we can show by induction on the length of u that for any

q1, q
′
1 ∈ Q1 and q2, q

′
2 ∈ Q2, we have δu((q1, q2), (q

′
1, q

′
2)) = δ1(q1, u, q′1)× δ2(q2, u, q′2).

The result now follows from Lemma 3.1.

A Pumping Lemma. Pumping Lemmas are often used to demonstrate that a language is

not recognized by a specific type of automaton. We present here a pumping lemma for

probabilistic monitors. Please note that the pumping lemma and the proof is a generaliza-

tion of the pumping lemma for probabilistic automata over finite words [Nasu and Honda

1968; Paz 1971] and the generalization relies on the fact that the probability of rejection of

an infinite word can be taken as a limit of probability of rejection of its finite prefixes (see

Lemma 3.1).

LEMMA 3.7. Given a FPM, M on Σ, and a finite word u ∈ Σ+, there are real numbers

c0, . . . ck−1 ∈ R (depending only upon M and u) such that for all v ∈ Σ+, α ∈ Σω,

µrej

M, vukα
= ck−1µ

rej

M, vuk−1α
+ . . . + c0µ

rej
M, vα

and ck−1 + . . . + c0 = 1.

PROOF. Let M = (Q, qs, qr, δ). Consider the matrix δu. From elementary linear alge-

bra there is a polynomial p(x) = xk − ck−1x
k−1 − ck−2x

k−2 − . . . − c0 (the minimal

polynomial of δu) such that

(1) p(δu) = 0 and

(2) p(λ) = 0 where λ is an eigenvalue of δu.

Since p(δu) = 0, we get δk
u = ck−1δ

k−1
u + . . . c0I where I is the identity matrix. Now

if α = a1a2 . . ., we get for each n > 0,

δvδk
uδa1...an

= ck−1δvδk−1
u δa1...an

+ . . . + c0δvδa1...an
.

This implies that

δvuka1...an
= ck−1δvuk−1a1...an

+ . . . + c0δva1...an
.

Thus,

δvuka1...an
(qs, qr) = ck−1δvuk−1a1...an

(qs, qr) + . . . + c0δva1...an
(qs, qr).
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Taking the limit (n → ∞) on both sides, we get by Lemma 3.1

µrej

M, vukα
= ck−1µ

rej

M, vuk−1α
+ . . . + c0µ

rej
M, vα.

Now, please note that 1 is an eigenvalue of δu (with an eigenvector all of whose entries are

1). Thus, we get p(1) = 0 which implies that ck−1 + . . . + c0 = 1.

Two monitors. We will now define two monitors that will be used for proving expressive-

ness results. These monitors will be defined on the alphabet Σ = {0,1}. By associating

the numeral 0 to 0 and associating the numeral 1 to 1, we can associate α = a1a2 . . . ∈ Σ
to a real number bin(α) by thinking of α as the “binary” real number 0.a1a2 . . .. Formally,

Definition: Let Σ = {0,1}, bin(0) = 0 and bin(1) = 1. We define the functions bin(·) :

Σ+ → [0, 1] as bin(a1a2 . . . ak) =

j=k
∑

j=1

aj

2j
, and bin(·) : Σω → [0, 1] as bin(a1a2 . . .) =

j=∞
∑

j=1

aj

2j
. If x ∈ [0, 1] is an irrational number, let wrd(x) ∈ Σω be the unique word such

that bin(wrd(x)) = x.

The following proposition will be useful.

PROPOSITION 3.8. Let Σ = {0,1} and let x ∈ [0, 1] be an irrational number. Then

the languages Lx = {α ∈ Σω | bin(α) ≤ x} and Lx = {α ∈ Σω | bin(α) < x} are not

ω-regular.

PROOF. We will just show that Lx is not ω-regular. The proof of non-ω-regularity of

Lx is similar.

Please note that the language Lx defines an equivalence relation (the Myhill-Nerode

equivalence) on Σ∗– u ≡Lx
v iff for all α ∈ Σω, uα ∈ Lx ⇔ vα ∈ Lx. If Lx is ω-regular,

then there should be only a finite number of ≡Lx
classes (see [Thomas 1990]). We will

show that this is not the case.

By confusing 0 with the numeral 0 and 1 with the numeral 1, consider the binary ex-

pansion of x = .a1a2 . . .. Let wrd(x) = a1a2 . . . and for each i > 0, xi be the suffix

aiai+1 . . .. Since x is irrational, no two suffixes xi and xj for i < j can be the same

infinite word.

So given i < j, let ui = a1a2 . . . ai and uj = a1a2 . . . aj . Let k be the smallest natural

number such that ai+k 6= aj+k. Let β = ai+1ai+2 . . . ai+k−110
ω. Please note that

β = aj+1aj+2 . . . aj+k−110
ω. There are two cases: either ai+k = 1 and aj+k = 0,

or ai+k = 0 and aj+k = 1. If ai+k = 1 and aj+k = 0, it can be easily shown that

bin(uiβ) < x while bin(ujβ) > x. If ai+k = 0 and aj+k = 1, bin(uiβ) > x while

bin(ujβ) < x. Hence ui 6≡Lx
uj for i < j. Thus, Lx is not ω-regular.

We point out here that the proof of non-ω-regularity of Lx,Lx is a modification of the

proof that the language of finite words {u ∈ Σ∗ | bin(u) < x} is not regular (see [Paz

1971; Salomaa 1973]).

We can construct two monitors whose probability of accepting a word α is bin(α) and

1 − bin(α) respectively as follows.
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LEMMA 3.9. Let Σ = {0,1}. There are RatFPM ’s, MId and M1−Id on Σ, such

that for any word α ∈ Σω,

µacc
MId, α = bin(α) and µacc

M1−Id, α = 1 − bin(α).

PROOF. Let Q = {q0, q1, q2} and δ : Q × Σ × Q → [0, 1] be defined as follows.

The states q1 and q2 are absorbing, i.e., δ(q1,0, q1) = δ(q1,1, q1) = δ(q2,0, q2) =
δ(q2,1, q2) = 1. For transitions out of q0, δ(q0,0, q0) = δ(q0,0, q1) = δ(q0,1, q0) =
δ(q0,1, q2) = 1

2 Let MId = (Q, q0, q1, δ) and M1−Id = (Q, q0, q2, δ).
Given u ∈ Σ+, it can be easily shown by induction (on the length of u) that δu(q0, q0) =

1
2|u| , δu(q0, q2) = bin(u) and δu(q0, q1) = 1 − bin(u) − 1

2|u| . Using Lemma 3.1, it can

easily shown that for any word α ∈ Σω, µacc
MId, α = 1− µrej

MId, α = bin(α) and µacc
M1−Id, α =

1 − µrej
M1−Id, α = 1 − bin(α).

We point out here that if we consider the reject state as an accept state and view the monitor

M1−Id as a probabilistic automaton over finite words, the resulting automaton is the prob-

abilistic automaton (see [Salomaa 1973]) often used to show that non-regular languages

are accepted by probabilistic automaton.

3.2 Monitored languages

We conclude this section, by defining the classes of probabilistic monitors that we will

consider in this paper. Recall that in the case of deterministic monitors, the language

rejected is defined as the set of words upon which the monitor reaches the “unique” reject

state. The language permitted by the monitor is defined as the complement of the words

rejected. For probabilistic monitoring, on the other hand, the set of languages permitted

may depend upon the probability of rejecting a word. In other words, it is reasonable to

think of a language permitted by a FPM to be the set of words which are rejected with a

probability strictly less than (or just less than) a threshold x. This gives rise to the following

definition.

Definition: Given a FPM M on Σ and x ∈ [0, 1],

—R<x(M) = {α ∈ Σω | µrej
M, α < x}.

—R≤x(M) = {α ∈ Σω | µrej
M, α ≤ x}.

Thus potentially, given x ∈ [0, 1], we can define two subclasses of languages over an

alphabet Σ— {L | ∃M s.t. L = R<x(M)} and {L | ∃M s.t. L = R≤x(M)}. It turns out

that as long as x is strictly between 0 and 1, the exact value of x does not affect the classes

defined.

LEMMA 3.10. Let M be a FPM on an alphabet Σ. Then, given x1, x2 ∈ (0, 1), there

is a M′ such that R≤x1
(M) = R≤x2

(M′) and R<x1
(M) = R<x2

(M′).

PROOF. First consider the case x2 ≤ x1. Let x3 = x2

x1
. By Proposition 3.4, there is an

FPM Mx3 such that for all α ∈ Σ such that µrej
Mx3 , α = x3 × µrej

M, α. An easy calculation

shows that R≤x2
(Mx3) = R≤x1

(M) and R<x2
(Mx3) = R<x1

(M).
Now, consider the case x1 ≤ x2. Let x3 = 1−x2

1−x1
. By Proposition 3.4, there is an FPM
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Mx3
such that for all α ∈ Σ such that µacc

Mx3
, α = x3 × µacc

M, α. Now for any word α,

µrej
Mx3 , α ≤ x2 ⇔ 1 − x2 ≤ 1 − µrej

Mx3 , α

⇔ 1 − x2 ≤ µacc
Mx3

, α

⇔ 1 − x2 ≤ x3 × µacc
M, α

⇔ 1 − x1 ≤ µacc
M, α

⇔ 1 − µacc
M, α ≤ x1

⇔ µrej
M, α ≤ x1.

Hence, R≤x2(Mx3) = R≤x1(M). Similarly, R<x2(Mx3) = R<x1(M).

Please note that R<0(M) = ∅ and R≤1(M) = Σω for any FPM. Hence, we restrict

our attention to four classes of languages as follows.

Definition: Given an alphabet Σ and a language L ⊆ Σω.

—L is said to be monitorable with strong acceptance if there is a monitor M such that

L = R≤0(M). We will denote the class of such properties by MSA.

—L is said to be monitorable with weak acceptance if there is a monitor M such that

L = R<1(M). We will denote the class of such properties by MWA.

—L is said to be monitorable with strict cut-point if there is a monitor M and 0 < x < 1
such that L = R<x(M). Such properties will be denoted by MSC.

—L is said to be monitorable with non-strict cut-point if there is a monitor M and 0 <
x < 1 such that L = R≤x(M). Such properties will be denoted by MNC.

We point out here that in the literature on probabilistic automata over finite words [Rabin

1963; Paz 1971; Salomaa 1973], there is usually no distinction between strict and non-strict

inequality. Also, if we were to define the classes MWA and MSA for probabilistic automata

over finite words, they will turn out to be subclasses of regular languages. As we will see,

over infinite words, while the class of languages MSA coincides with ω-regular and safety

languages, the class MWA may contain non-ω-regular languages.

4. EXPRESSIVENESS

In this Section, we will compare the relative expressiveness of the class of Languages

MSA, MWA, MSC and MNC defined in Section 3.2. For this Section, we will assume

that the alphabet Σ is fixed unless otherwise stated. We will also assume that Σ contains

at least 2 elements (if Σ contains only one element, then Σω consists of exactly only one

element). We summarize our results in Figure 1 below. The rest of this section is organized

as follows. We begin by establishing the results for the classes MSA and MNC. We then

consider the classes MWA and MSC. We conclude the section by proving the results for

robust monitors.

4.1 Monitored Languages MSA and MNC.

Please recall that given an alphabet Σ, MSA= {L ⊆ Σω | ∃ FPM M s.t. L = R≤0(M)}
and MNC= {L ⊆ Σω |∃FPMM and x ∈ (0, 1) s.t. L = R≤x(M)}. We start by showing

that both MSA and MNC are subclasses of safety languages.

THEOREM 4.1. MSA,MNC ⊆ Safety.
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Regular ∩ Safety

=

MSA (4.3)

=

Robust (4.13)

Regular

∩

AlmostSafety

MWA MSC

AlmostSafety

MNC Safety

Not Comparable (4.15)

4.1,4.6
4.2,4.4

4.8 4.10

4.7,4.11

Fig. 1. An arrow from class A to B indicates the strict containment of class A in B. The

numbers on the arrows refer to the theorem in the paper that establishes this relationship.

PROOF. Let M = (Q, qr, qs, δ) be a FPM on an alphabet Σ and let 0 ≤ x < 1. It suf-

fices to show that the set L = Σω \R≤x(M) is an open set. Pick any word α = a1a2 . . . ∈

L. Then, we must have by definition and Lemma 3.1, µrej
M, α = lim

n→∞
δa1...an

(qs, qr) > x.

Hence, there is l > 0 such that δa1...al
(qs, qr) > x. Now, consider the open ball B(α, 1

2l ) =

a1 . . . alΣ
ω. Clearly α ∈ B and again by Lemma 3.1, µrej

M, β ≥ δa1...an
(qs, qr) > x for

any β ∈ a1 . . . alΣ
ω. Thus B(α, 1

2l ) ⊆ L. Hence, L is an open set.

We will now show that any ω-regular safety language is contained in the classes MSA

and MNC.

THEOREM 4.2. Regular ∩ Safety ⊆ MSA and Regular ∩ Safety ⊆ MNC.

PROOF. If L is ω-regular and safety, then there is a deterministic Büchi automaton

B = (Q,∆, qs, {qr}) with (qr, a, qr) ∈ ∆ for each a ∈ Σ such that Σω \ L is the

language recognized by B (see Section 2). Now consider the FPM, M = (Q, qs, qr, δ)
where δ(q, a, q′) is 1 if (q, a, q′) ∈ ∆ and is 0 otherwise. It can be shown easily that

µrej
M, α = 0 ⇔ α ∈ L and µrej

M, α = 1 ⇔ α ∈ Σω \ L. Hence L = R≤x(M) for all

0 ≤ x < 1.

We will now show that the the class of ω-regular and safety languages coincides exactly

with the class MSA. Thus, as a consequence of Theorem 4.2, MSA ⊆ MNC.

THEOREM 4.3. MSA= Regular ∩ Safety.

PROOF. In light of Theorem 4.2, we only need to show that MSA⊆ Regular ∩ Safety.

Pick L ∈MSA. Let M = (Q, qs, qr, δ) be a monitor such that R≤0(M) = L. Please

note that L is a safety language by Theorem 4.1. Thus, it suffices to show that Σω \ L is

ω-regular.

Now, in order to show that Σω \ L is a ω-regular set, consider the Büchi automaton

B = (Q,∆, qs, {qr}) where (q, a, q′) ∈ ∆ iff δ(q, a, q′) > 0. Let L1 be the language

recognized by B. We claim that L1 = Σω \ L.

It is easy to show that a word α = a1a2 . . . ∈ L1 iff there is a finite prefix a1 . . . al

of α and a sequence of states q0 = qs, q1, . . . ql = qr such that (qi, a, qi+1) ∈ ∆ for

all 0 ≤ i < l. Since (qi, a, qi+1) ∈ ∆ iff δ(q, a, q′) > 0, it can be easily shown that

(qi, a, qi+1) ∈ ∆ for all 0 ≤ i < l iff δa1...al
(qs, qr) > 0. Thus α ∈ L1 iff there is a finite

prefix a1 . . . al such that δa1...al
(qs, qr) > 0. In light of Lemma 3.1, α ∈ L1 iff µrej

M, α > 0.

Thus, L1 = Σω \ L as required.
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Hence, we have MSA ⊆ MNC ⊆ Safety. We will now show that each of these contain-

ments is strict. Please note that since our alphabet is finite, the set MSA= Regular∩Safety

is countable while the set Safety is uncountable. We can show that the set MNC contains an

uncountable number safety languages that are not ω-regular. The proof uses the automa-

ton M(1−Id) constructed in Lemma 3.9. As we pointed out before, the same automaton

viewed as probabilistic automaton over finite words is often used to prove that non-regular

languages (of finite words) can be recognized by probabilistic finite automata.

THEOREM 4.4. The class MNC contains an uncountable number of safety languages

which are not ω-regular. Thus MSA ( MNC.

PROOF. It suffices to prove the result for the case where the alphabet contains two ele-

ments. Let Σ = {0,1}. Consider the FPM M(1−Id) constructed in Lemma 3.9. We have

for every word α ∈ Σω, µrej
M(1−Id), α = 1 − µacc

M(1−Id), α = bin(α). Thus, for each irrational

x ∈ (0, 1), the language R≤x(M(1−Id)) = {α | bin(α) ≤ x} which is not a ω-regular

language by Proposition 3.8.

One may argue that the non-regularity in Theorem 4.4 is a consequence of the irrationality

of cut-point x in the proof. However,

PROPOSITION 4.5. There is a RatFPM , M on Σ = {0,1}, such that the language

R≤ 1
2
(M) is not ω-regular.

PROOF. Consider the FPM MId constructed in Lemma 3.9. Let M = MId ⊗ MId

as defined in Proposition 3.5. Now, µacc
M, α = µacc

MId, α × µacc
MId, α = (bin(α))2. Thus,

µrej
MId, α = 1 − (bin(α))2. Hence, R≤ 1

2
(M) = {α | bin(α) ≥

√

1
2} which is not ω-

regular by Proposition 3.8, and the fact that the class of ω-regular languages is closed

under complementation.

We finally show that class of safety languages strictly contains strictly the class MNC.

THEOREM 4.6. MNC ( Safety.

PROOF. In light of Theorem 4.1, we just need to show that the containment is strict. Let

Σ = {0,1}. We need to show that there is a safety language L ⊆ Σω such that for any

monitor M and x ∈ (0, 1), L 6= R≤x(M). Let L = {0j
1(0∗

1)∗0j
1 | j ∈ N, j > 0}. Let

L1 = LΣω and L = Σω \ L1. Now L1 is an open set and hence L is a safety language.

Assume that there is some M and some x ∈ (0, 1) such that L = R≤x(M). Then by

Lemma 3.7, there are constants c0, c1, . . . , ck ∈ R such that for all α ∈ Σω µrej

M, 0kα
=

ck−1µ
rej

M, 0k−1α
+ . . . + c0µ

rej
M, α and ck−1 + . . . + c0 = 1.

Consider the set Pos = {i | ci > 0} and let i1, i2, . . . , ir be an enumeration of the

elements of Pos. Please note that Pos is a non-empty set (otherwise ci’s do not add up-to

1).

Let α = 010
i1+1

10
i2+1 . . .10

ir+1
1

ω. Please note that L = R≤x(M) by assumption.

For each i ∈ POS, we have µrej

M, 0iα
> x and for i /∈ Pos, µrej

M, 0iα
≤ x. Now, we have

µrej

M, 0kα
− x

= ck−1µ
rej

M, 0k−1α
+ . . . + c0µ

rej
M, α − x × 1 =

= ck−1µ
rej

M, 0k−1α
+ . . . + c0µ

rej
M, α − x(ck−1 + . . . + c0)

= ck−1(µ
rej

M, 0k−1α
− x) + . . . + c0(µ

rej
M, α − x).
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Now, the left-hand side of the above equation is ≤ 0 as µrej

M, 0kα
≤ x. The right hand side

is > 0 as ci > 0 ⇒ µrej

M, 0iα
− x > 0 and ci ≤ 0 ⇒ µrej

M, 0iα
− x ≤ 0. Thus, we obtain a

contradiction.

Consider the language L ⊆ Σ+ defined in the proof above. We point out here that the

language LΣ∗ is often used as an example to show that there are context-free languages

over finite words which are not accepted by any probabilistic automaton [Paz 1971]. The

proof uses the pumping lemma for probabilistic finite words and is similar to the proof

outlined above. Summarizing the results of this Section, we have Regular∩ Safety = MSA

( MNC ( Safety.

4.2 Monitored Languages MWA and MSC.

Recall that given an alphabet Σ, MWA= {L ⊆ Σω | ∃ FPM M s.t. L = R<1(M)}
and MSC= {L ⊆ Σω | ∃ FPM M and x ∈ (0, 1) s.t. L = R<x(M)}. Note that if

we were to allow for “infinite” state monitoring, the class MWA would coincide with

AlmostSafety [Sistla and Srinivas 2008]. However, FPM’s as defined in this paper have

only finite memory. We start by showing that both MWA and MSC are subclasses of al-

most safety languages. Recall that a language L ⊆ Σω is an almost safety language if and

only if it can written as a countable union of safety languages. Of course, the containment

MWA ⊆ AlmostSafety can also be viewed as a special case of correspondence between

AlmostSafety and the monitoring with infinite states [Sistla and Srinivas 2008].

THEOREM 4.7. MWA, MSC ⊆ AlmostSafety.

PROOF. Please note that for any FPM M, any 0 < x ≤ 1 and any word α ∈ Σω,

we have R<x(M) = ∪∞
j=1{α | µrej

M, α ≤ x −
1

j
}. The result follows by observing that

{α | µrej
M, α ≤ x − 1

j
} is a safety language for each j by Theorem 4.1.

We will now show that the class of ω-regular and almost safety languages is strictly

contained in the class MWA. The proof of containment relies on the fact that if a lan-

guage L ⊆ Σω is ω-regular and almost safety then its complement is recognized by a

deterministic Büchi automaton [Perrin and Pin 2004; Thomas 1990] (see Section 2). Once

this is observed, the proof of containment follows the lines of the proof of the fact that

every AlmostSafety language is monitorable with infinite “memory” [Sistla and Srinivas

2008]. The strictness of the containment is witnessed by a probabilistic monitor which is a

modified version of the probabilistic Büchi automaton defined in [Baier and Gröβer 2005].

THEOREM 4.8. Regular ∩ AlmostSafety ( MWA.

PROOF. We first show that Regular ∩ AlmostSafety ⊆ MWA. Let L ∈ Regular ∩
AlmostSafety. Since L is ω-regular and almost safety, there is a deterministic Büchi au-

tomaton B = (Q,∆, qs, Qf ) such that Σω \ L is the language recognized by B. Now pick

a new state qr and consider the FPM, M = (Q ∪ {qr}, qs, qr, δ) where for each a ∈ Σ

δ(q, a, q′) =























1
2 q ∈ Qf , q′ = qr
1
2 q ∈ Qf , q ∈ Q, (q, a, q′) ∈ ∆
1 q = q′ = qr

1 q ∈ Q \ Qf , q ∈ Q, (q, a, q′) ∈ ∆
0 otherwise
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It can be shown easily that L = R<1(M). Hence, Regular ∩ AlmostSafety ⊆ MWA.

In order to show that the containment is strict, we just need to show that there is a FPM

M such that R<1(M) is not a ω-regular language. Let Σ = {0,1} and consider the FPM,

M = {Q, qs, qr, δ} where Q = {qs, q, qr} and δ is defined as follows. δ(qs,1, qr) =
1, δ(qs,0, q) = 1

2 , δ(qs,0, qs) = 1
2 , δ(q,0, q) = 1, δ(q,1, qs) = 1 and δ(qr,0, qr) =

δ(qr,1, qr) = 1.

Now, it can be easily checked that R<1(M) is the union of two disjoint languages

L1 = 00
∗(100

∗
1)∗0ω and L2 = {0n110

n210
n31...... |

∞
∏

k=1

(1− (1/2)nk) > 0}. Now L1

is a ω-regular language, but L2 is not. Thus, R<1(M) is not a ω-regular language.

We will shortly show that the class MWA is strictly contained in the class MSC. However,

before we proceed, we will need the following lemma which shows that even if a language

L ∈ MWA is not ω-regular, the languages cl(L) and cl(Σω \ L) must be ω-regular. Recall

that for a language L1, cl(L1) is the smallest safety language containing L1. Hence, ω-

regularity of cl(L1) and cl(Σω \ L1) is a necessary (but not sufficient) condition for an

almost safety language L1 to belong to MWA.

LEMMA 4.9. Let L ∈ MWA. Then the safety languages cl(L) and cl(Σω \ L) are

ω-regular. There is an almost safety language L1 such that cl(L1) and cl(Σω \ L1) are

ω-regular but L 6∈ MWA.

PROOF. Let M = (Q, qs, qr, δ) be such that L = R<1(M). For q ∈ Q \ {qr}, let

Mq = (Q, q, qr, δ), i.e., the FPM obtained by making q the initial state.

We first show that cl(L) is ω-regular. Please note that if L is empty, then this is trivially

true. Let L be non-empty. Let Q0 = {q ∈ Q|q 6= qr and there is some α s.t. µacc
Mq, α > 0}.

Consider the Büchi automaton B = (Q0,∆, qs, Q0) where ∆(q, a, q′) iff δ(q, a, q′) > 0.

We claim that the language L(B) recognized by B is the set cl(R<1(M)). Please note

that since the set of accepting states of B is the set of states of B, the language L(B) is a

safety language. Hence, in order to show that L(B) = cl(R<1(M)), it suffices to show

that L(B) ⊆ cl(R<1(M)) and R<1(M) ⊆ L(B).
We first show that L(B) ⊆ cl(R<1(M)). Let α = a1a2 . . . ∈ B and for x > 0 let

B(α, x) be the open ball of radius x centered at α. Pick k > 0 such that 1
2k < x. Clearly,

a1a2 . . . akΣω ⊆ B(α, x). Therefore, it suffices to show that a1a2 . . . akΣω ∩R<1(M) 6=
∅. Now since α ∈ B, there are some k + 1 states q0 = qs, q1, . . . qk ∈ Q0 such that

(q0, a1, q1), (q1, a2, q2), . . . , (qk−1, ak, qk) ∈ ∆. By definition δ(qi, ai, qi+1) > 0 for

each 0 ≤ i < k and there is word β such that µacc
Mqk

, β > 0. Consider the word α1 =

a0a1 . . . akβ. It can be easily shown that µacc
M, α1

> 0. Thus a1a2 . . . akΣω∩R<1(M) 6= ∅.

Now we show that R<1(M) ⊆ L(B). Pick α = a1a2an . . . ∈ R<1 and fix it. In order

to show that α ∈ B, by Koning’s lemma, it suffices to show that for each k there is a path in

B from qs on input symbols a1, a2 . . . ak−1. Let αk = akak+1 . . . and uk = a1a2 . . . ak−1.
We have by definition µacc

M, α > 0. Please note that it can be shown that for each k,

µacc
M, α =

∑

q∈Q\{qr}
δuk

(qs, q)µ
acc
Mq, αk

. Now since µacc
Mq, β = 0 for every q ∈ Q\(Q0∪{qr})

and β ∈ Σω, we get that µacc
M, α =

∑

q∈Q0

δuk
(qs, q)µ

acc
Mq, αk

. If there is no path on input

a1a2 . . . ak−1 in the automaton B, then δuk
(qs, q) = 0 for every q ∈ Q0 which contradicts
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µacc
M, α > 0. Hence, there is a path in B on input symbols a1, a2 . . . ak−1.
Now in order to show that cl(Σω \ R<1(M)) is ω-regular, we construct the Büchi

automata B = (ρ,∆, {qs}, ρ) where ρ ⊆ ℘(Q) (the power-set of Q) and ∆ are de-

fined as follows. A set Q1 ⊆ Q belongs to ρ iff there is a β ∈ Σω such that for any

q ∈ Q1, µ
rej
Mq, β = 1. Please note that {qs} ∈ ρ. Now (Q1, a,Q2) ∈ ∆ iff post(Q1, a) =

{q′ |∃q ∈ Q1 s.t. δ(q, a, q′) > 0} ⊆ Q2. We can once again show that cl(Σω\R<1(M)) =
L(B).

However, the ω-regularity of cl(L) and cl(Σω \L) is not sufficient to guarantee inclusion

of L in MWA. Let Σ = {0,1}. Now, consider the Language L2 = {0,1}∗11{0,1}ω. The

set L2 is an open set and hence an almost safety language . Let L1 = L2∪{010
2
10

3
1 . . .}.

Now, the set {010
2
10

3
1 . . .} is a closed set and hence an almost safety language. It can

be easily shown that cl(L1) = Σω and cl({0,1}ω \ L1) = {0,1}ω \ L2 both of which are

ω-regular.

Now, we show that L1 6= R<1(M1) for any FPM M1 by contradiction. Suppose

there is a M′ such that L = R<1(M
′). Then, by the Lemma 3.7, there are real numbers

c0, . . . ck−1 ∈ R such that for all v ∈ Σ+, α ∈ Σω,

µrej

M′, v0kα
= ck−1µ

rej

M′, v0k−1α
+ . . . + c0µ

rej
M′, vα

and ck−1 + . . . + c0 = 1.

Now, pick v1 = 010
2 . . .10

k+1
1. and α1 = 0010

k+3
10

k+4
1 . . .. We get

µrej

M′, v10
kα1

= ck−1µ
rej

M′, v10
k−1α1

+ . . . + c0µ
rej
M′, v1α1

.

Now v10
jα1 ∈ Σω \ L1 for all 0 ≤ j < k. Hence, µrej

M′, v10
jα1

= 1 for all 0 ≤ j < k.

Hence, we get

µrej

M′, v0kα
= ck−1 + . . . + c0 = 1.

However, v10
kα1 = 010

2
10

3 . . . ∈ L1 and therefore

µrej

M′, v0kα
< 1.

Thus, we have arrived at a contradiction.

We are ready to show that the class MSC strictly contains the class MWA.

THEOREM 4.10. MWA ( MSC.

PROOF. We start by showing that MWA ⊆ MSC. Given an FPM M and x ∈ (0, 1), let

M′ = Mx be the FPM defined in Proposition 3.4 such that µrej
M′, α = x×µrej

M, α for every

word α. Now, it follows easily that R<1(M) = R<x(M′). Hence, MWA ⊆ MSC.

In order to show that the containment is strict, construct M as in the proof of Theo-

rem 4.5 such that for every α, µrej
M, α = 1 − (bin(α))2. Thus, R< 1

2
(M) = {α | bin(α) >

√

1
2}. Now, it can be shown that cl(R< 1

2
(M)) = {α | bin(α) ≥

√

1
2} which is not

ω-regular by Proposition 3.8. Thus, if there is some FPM M′ such that R<1(M
′) =

R< 1
2
(M) then cl(R<1(M

′)) is not ω-regular which contradicts Lemma 4.9.

Finally, we show that the class MSC is strictly contained in the class of almost safety

languages. The proof is similar to the proof of Theorem 4.6 which showed that there is a

safety language L that is not contained in MNC. Indeed the same safety language used in
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the proof of Theorem 4.6 (any safety language is also an almost safety language) witnesses

the strictness of the containment MSC ⊆ AlmostSafety.

THEOREM 4.11. MSC ( AlmostSafety.

PROOF. Please note that MSC ⊆ AlmostSafety as a consequence of Theorem 4.7.

Consider the safety language L defined in the proof of Theorem 4.6 as follows. Let

L = {0j
1(0∗

1)∗0j
1|j ∈ N, k > 0}. Let L1 = LΣω and L = Σω \ L1. We can show that

L 6∈ MSC by an argument similar to proof of L /∈MNC sketched in Theorem 4.7.

Summarizing the results of this Section, we have Regular ∩ AlmostSafety ( MWA

( MSC ( AlmostSafety. Please note that since MSA coincides with ω-regular safety

languages, MSA is strictly contained in MWA and MSC. Also, since there are ω-regular

almost safety languages which are not safety, it follows immediately that neither MWA nor

MSC is contained in MNC. Therefore, a natural question to ask is if MNC ⊆ MSC? We

will answer the question in negative in Section 4.3 as the proof requires a result which we

will prove in Section 4.3.

4.3 Robust Monitors

In this Section, we will show that the class MNC 6⊆ MSC. The proof will utilize a result on

robust monitors. Robust monitors are probabilistic FPM’s such that there is a separation

between probability of rejecting a word in the language permitted by the monitor and the

probability of rejecting a word in the language rejected by the monitor. Formally,

Definition: A FPM, M on Σ, is said to be a x-robust for x ∈ (0, 1) if there is an ǫ > 0
such that for any α ∈ Σω, |µrej

M, α − x| > ǫ.

Observe that if M is x-robust then the languages R<x(M) and R≤x(M) coincide. Ro-

bustness is a generalization of the concept of isolated cut-points defined for probabilistic

automata over finite words [Rabin 1963] - x is said to be an isolated cut-point for a prob-

abilistic automaton over finite words if there is an ǫ > 0 such that for every finite word

u the probability of accepting u is bounded away from x by ǫ. It was shown in [Rabin

1963] that if x is an isolated cut-point then the language of finite words accepted by the

probabilistic automaton is a regular language. We can generalize this result to probabilistic

monitors and demonstrate that the language R<x(M) is a ω-regular safety language. The

proof relies on the fact that R≤x(M) is a safety language which implies that ω-regularity

of R≤x(M) is equivalent to the regularity of the set of its finite prefixes (see Section 2).

This observation is crucial in the proof; whereas the result in [Rabin 1963] does not depend

on any such topological consideration. The proof that the set of finite prefixes of R≤x(M)
is regular, however, does follow an argument similar to the result in [Rabin 1963]. The

proof depends on the following result, proved in [Rabin 1963].

PROPOSITION 4.12. Given n ∈ N, n > 0, let Pn ⊆ Rn be the set of vectors defined as

{(ξ1, . . . ξn) | 0 ≤ ξj ≤ 1,
∑n

j=1 ξj = 1}. Given ǫ ∈ R, ǫ > 0, let U ⊆ Pn be a set such

that for any (ξ1, . . . ξn), (ξ′1, . . . ξ
′
n) ∈ U ,

∑n
j |ξj − ξ′j | > ǫ. Then U must be finite.

Using the above observation, we can show,

THEOREM 4.13. Let M be x-robust for some x ∈ (0, 1). Then R<x(M) = R≤x(M)
is a ω-regular safety language.
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PROOF. Let M = (Q, qs, qr, δ) be x-robust and let ǫ > 0 be such that |µrej
M, α − x| > ǫ

for all α ∈ Σω. Let L = R≤x(M) and let L ⊆ Σ∗ be the set of finite prefixes of L. In

other words L = {u ∈ Σ∗ | ∃α ∈ Σω s. t. uα ∈ L}.
Since L is a safety language, in order to prove that L is ω-regular, it suffices to show that

L is a regular language (viewed as a language over finite words). We will demonstrate that

L is a regular language by demonstrating that it has finite Myhill-Nerode index, i.e., the

number of equivalence classes ≡L is finite. Recall that for two finite words u1, u2 ⊆ Σ∗,

u1 ≡L u2 if for all v ∈ Σ∗, u1v ∈ L iff u2v ∈ L.
Now assume that u1 and u2 are two finite words such that u1 6≡L u2. Then, there is

some v ∈ Σ∗ such that either u1v ∈ L and u2v 6∈ L or u1v 6∈ L and u2v ∈ L.

First, consider the case u1v ∈ L and u2v 6∈ L. Now, since u1v ∈ L, there is some

α ∈ Σω such that u1vα ∈ L. Pick one such word, say α0 and fix it. Thus u1vα0 ∈ L. Also

since u2v 6∈ L, u2vα0 6∈ L. By definition of L, we get µrej
M, u1vα0

≤ x and µrej
M, u2vα0

> x.

Since x is an isolated cut-point, we get µrej
M, u1vα0

< x − ǫ and µrej
M, u2vα0

> x + ǫ.

By Lemma 3.1, there exists a finite prefix of α0, say v′, such that δu1vv′(qs, qr) <
x − ǫ and δu2vv′(qs, qr) > x + ǫ. Thus, δu2vv′(qs, qr) − δu1vv′(qs, qr) > 2ǫ. Now,

δu2vv′(qs, qr) − δu1vv′(qs, qr) =
∑

q∈Q(δu2
(qs, q) − δu1

(qs, q))δvv′(q, qr). Thus, we get

that
∑

q∈Q(δu2(qs, q) − δu1(qs, q))δvv′(q, qr) > 2ǫ.

Now, we have that
∑

q∈Q(δu2(qs, q) − δu1(qs, q))δvv′(q, qr) ≤
∑

q∈Q |δu2(qs, q) −
δu1

(qs, q)||δvv′(q, qr)|. Since 0 ≤ δvv′(q, qr) ≤ 1, we get
∑

q∈Q |δu2
(qs, q)−δu1

(qs, q)| ≥
∑

q∈Q(δu2
(qs, q) − δu1

(qs, q))δvv′(q, qr) > 2ǫ. Similarly, if u1v 6∈ L and u2v ∈ L then
∑

q∈Q |δu2
(qs, q) − δu1

(qs, q)| > 2ǫ.

Therefore, if u1 6≡L u2, it must be the case that
∑

q∈Q |δu2
(qs, q) − δu1

(qs, q)| > 2ǫ.

Also, please note that
∑

q∈Q δu1(qs, q) =
∑

q∈Q δu2(qs, q) = 1. By Proposition 4.12, it

follows that there can only finite number of equivalence classes.

The above proof is sound even if only one side of the rejection probabilities is bounded

away. Therefore, we get the following corollary.

COROLLARY 4.14. Let M be a monitor such that there is an ǫ > 0 such that for each

α ∈ Σω either µrej
M, α = 1 or µrej

M, α ≤ 1 − ǫ, then R<1(M) ∈ Regular ∩ Safety.

PROOF. Follows immediately from the fact that M is 1 − ǫ
2 -robust and R<1(M) =

R<1− ǫ
2
(M) ∈ Regular ∩ Safety.

Now, we are ready to show that MSC and MNC are incomparable.

THEOREM 4.15. MSC 6⊆ MNC and MNC 6⊆ MSC.

PROOF. Observe that since MSC contains almost safety languages that are not safety

languages MSC 6⊆ MNC. In order to show that MNC 6⊆ MSC, let Σ = {0,1}. We will

show that there is a RatFPM M on Σ, such that for any FPM M′ on Σ, and any x ∈ [0, 1],
R≤ 15

16
(M) 6= R<x(M′).

Now, by repeated use of Lemma 3.9, Proposition 3.5 and Proposition 3.6, we can con-

struct a RatFPM M such that for all α ∈ Σω, µacc
M, α = (bin(α))4(1 − bin(α)2)2. Now

a word α ∈ R≤ 15
16

(M) ⇔ µrej
M, α ≤ 15

16 ⇔ 1 − µacc
M, α ≤ 15

16 ⇔ 1
16 ≤ (bin(α))4(1 −

bin(α)2)2 ⇔ 1
4 ≤ bin(α)2(1 − bin(α)2) ⇔ 0 ≤ −1

4 + bin(α)2(1 − bin(α)2) ⇔ 0 ≤
−( 1

2 − bin(α)2)2 ⇔ 1√
2

= bin(α).
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EMPTINESS UNIVERSALITY

MSA PSPACE-complete (Theorems 5.1 and 5.6) NL-complete (Theorems 5.10 and 5.16)

MWA PSPACE-complete (Theorems 5.4 and 5.6) PSPACE-complete (Theorems 5.13 and 5.17)

MSC co-R.E.-complete (Theorems 5.4 and 5.8) Π1

1
-complete (Theorems 5.15 and 5.19)

MNC R.E.-complete (Theorems 5.5 and 5.9) co-R.E.-complete (Theorems 5.14 and 5.18)

Fig. 2. Table summarizing the complexity of the emptiness and universality problems for

the various classes of monitors.

Now there is only one word β, namely wrd( 1√
2
), (the “binary exapansion” of 1√

2
) such

that bin(β) = 1√
2
. Thus R≤ 15

16
(M) = {wrd( 1√

2
)}. Now, R≤ 15

16
(M) is not ω-regular since

every ω-regular language must contain an ultimately periodic word [Perrin and Pin 2004;

Thomas 1990], and wrd( 1√
2
) is not ultimately periodic (as 1√

2
is irrational).

We proceed by contradiction. Suppose there is some M′ and x such that R≤ 15
16

(M) =

R<x(M′). Let y = µrej

M′, wrd( 1√
2
)
. By definition y < x and for all words α 6= wrd( 1√

2
),

µrej
M′, α ≥ x. Let x1 = x+y

2 . Clearly M′ is x1-robust. Thus, by Theorem 4.13, R<x1
(M′)

is ω-regular. This contradicts the fact that R<x1
(M′) = R≤ 15

16
(M) = wrd( 1√

2
) is not

ω-regular.

5. DECISION PROBLEMS

In this section, we consider the problems of checking emptiness and universality of RatF-

PMs (with rational cut-points). Emptiness and universality, while being natural decision

problems considered in automata theory, are important in determining that the monitors

designed are non-trivial: if the language of a monitor is empty then it means that it is too

conservative, and if the language is universal then it means that it is too liberal. Our results

for these problems are summarized in Figure 2.

A few comments about these results are in order. First, please note that the distinction be-

tween strict inequality and equality also shows up in the complexity of decision procedures

for emptiness and universality problems. Also please note that, except for universality of

MSC, all of the decision problems is in arithmetic hierarchy. For MSC’s, the universal-

ity problem is in analytical hierarchy and is Π1
1-complete. Also, recall that a monitor is

a special case of Probabilistic Buchi automata [Baier and Gröβer 2005] and by consider-

ing the non-reject states of a monitor M as accept states of Probabilsitic Buchi Automata

B, the emptiness problem of R<1(M) is the emptiness problem of Probabilistic Buchi

Automata B. For general Buchi automata, the emptiness problem was shown to be unde-

cidable [Baier et al. 2008]; we thus have identified a restricted class of Probabilistic Buchi

Automata for which the problem is decidable. Finally, we point out that by again consider-

ing the non-reject states of a monitor M as accept states of Probabilsitic Buchi Automata

B, the universality problem of R<1(M) is the emptiness problem of almost-sure semantics

(as defined in [Baier et al. 2008]) of Probabilistic Buchi Automata B. The latter problem

was shown to be in EXPSPACE in [Baier et al. 2008]. We have thus demonstrated a (tight)

PSPACE-bound for a restricted class of Probabilistic Buchi Automata.

5.1 Emptiness Problem: Upper Bounds

In this section we will prove the upper bounds for the emptiness problem for monitors in

the classes MSA, MWA, MSC, and MWA. We will asumme that the automata given as input
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to the emptiness problem is a RatFPM i.e., a probabilistic monitor with rational transition

probabilities.

MSA: We begin by considering the class of monitors in MSA. We show that the emptiness

problem is in PSPACE by reducing it to the universality problem of Büchi automata.

THEOREM 5.1. Let M = (Q, qs, qr, δ) be a RatFPM on an alphabet Σ. The problem

of checking the emptiness of R≤0(M) is in PSPACE.

PROOF. We construct a non-deterministic Büchi automaton M′, which essentially the

same as M, except that the transition probabilities are discarded. Formally, M′ =
(Q,∆, qs, qr) where ∆ = {(q, a, q′) | δ(q, a, q′) > 0}. Note that qr is the only final

state of the Büchi automaton M′. It is easy to see that R≤0(M) = ∅ iff L(M′) = Σω

where L(M′) is the the language accepted by the Büchi automaton M′. The universality

problem for Büchi automata is known to be in PSPACE, and hence the result follows.

MWA and MSC: Next we establish that for monitors in MWA and MSC, the emptiness

problems are in PSPACE and R.E., respectively. The proofs for both of these rely on a

technical lemma that we state and prove before presenting the upper bound for the empti-

ness problem. We begin with some definitions that we will need.

Definition: For an FPM M = (Q, qs, qr, δ), the deterministic graph associated with it

is the edge-labeled multi-graph (2Q,E), where E ⊆ 2Q × Σ × 2Q is defined as follows:

(S, a, S′) ∈ E iff S′ = {q′ ∈ Q | ∃q ∈ S s.t. δ(q, a, q′) > 0}. We denote the deterministic

graph of M by G(M).
A vertex S ∈ 2Q of G(M) will be said to be good if qr /∈ S. A cycle in G(M) is a

sequence of edges (S0, a0, S1), (S1, a1, S2), ..., (Sn−1, an−1, Sn) such that S0 = Sn; S0

is the starting vertex of the cycle, and a0 . . . an−1 is the input sequence associated with the

cycle. Finally, we say that the cycle is good if all the nodes on it are good.

LEMMA 5.2. Let M = (Q, qs, qr, δ) be a FPM on an alphabet Σ, and x ∈ (0, 1].
The language R<x(M) is non-empty iff there exists a finite word u, a set S ⊆ Q such

that S lies on a good cycle in G(M), and δu(qs, S) > 1 − x, where δu(qs, S) =
∑

q′∈S δu(qs, q
′).

PROOF. We prove the “if” part of the lemma as follows. Let u, S be such that δu(qs, S) >
1−x and S lies on a good cycle in G(M). Let C be the good cycle on which S lies. With-

out loss of generality, we assume that S is the starting state of C and v is the finite input

sequence associated with C. Since C is a good cycle and δu(qs, S) > 1− x, it is not diffi-

cult to see that, for α = uvω, µacc
M, α > 1−x, and hence µrej

M, α < x. Thus α ∈ R<x(M).
The “only if” part of the lemma is proved as follows. Assume that for some α ∈ Σω,

µrej
M, α < x. This means µacc

M, α > 1 − x. Let α = α1, ... and k = 2|Q|. Note that

the number of states of G(M) is bounded by k. For every, j ≥ 1, let Tj be the set of all

q′ ∈ Q such that δα[j+1:j+k](q
′, qr) > 0; i.e., Tj is the set of all states from which qr can

be reached on the input sequence α[j + 1 : j + k].
Claim: There exists an i ≥ 0 such that for every j ≥ i, δα[1:j](qs, Tj) < x.

Before proving the above claim, let us observe that the “only if” part of the lemma

follows from it. Let i ≥ 1 be such that δα[1:i](qs, Ti) < x. Let Si be the set of q′ ∈ Q \ Ti

such that δα[1:i](qs, q
′) > 0. It is easy to see that δα[1:i](qs, Si) > 1 − x. Note that from

each of the states in Si, the state qr can not be reached in the automaton M on the input
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sequence α[i + 1 : i + k]. From this it follows that, the sequence Si, Si+1, ..., Si+k of

vertices of G(M) reached on the input sequence α[i + 1 : i + k] starting from Si are all

good. Since k equals the number of vertices of G(M), using pigeon hole principle, we see

that the above sequence contains a cycle and it is a good cycle. Furthermore, we see that

δα[1:j](qs, Sj) > 1 − x for every j such that i ≤ j ≤ i + k. Thus, the “only if” part of the

lemma follows.

Proof of the claim: We conclude this proof by showing the claim by contradiction. As-

sume the claim is not true. This means there exist infinite number of values of j such that

δα[1:j](qs, Tj) ≥ x. This implies that there exists an infinite sequence of natural numbers

j0 < j1 < ... < jℓ... such that for each ℓ ≥ 0, δα[1:jℓ](qs, Tjℓ
) ≥ x and jℓ+1 ≥ jℓ + k.

Let p be the value min{δu′(q′, qr) | u
′ ∈ Σk, δu′(q′, qr) > 0}; note that this value is well

defined and > 0. For every ℓ ≥ 0, let Fℓ = δα[1:jℓ](qs, qr), i.e., it is the probability that

M is in state qr after the finite prefix α[1 : jℓ]. It is easy to see that for every ℓ > 0,

Fℓ+1 ≥ Fℓ + (x − Fℓ)p = (1 − p)Fℓ + xp. By induction on ℓ, it follows that

Fℓ+1 ≥ (1 − p)lF1 + xp
∑

0≤r<ℓ

(1 − p)r

From this, we see that,

( lim
ℓ→∞

Fℓ) ≥ xp
∑

0≤r<∞
(1 − p)r = x

Hence µrej
M, α ≥ x, which contradicts the fact that α ∈ R<x(M).

An immediate consequence of the proof of Lemma 5.2 is that non-emptiness of R<x(M)
for an FPM M means that there is an ultimately periodic word in R<x(M).

COROLLARY 5.3. Let M = (Q, qs, qr, δ) be a FPM on an alphabet Σ, and x ∈
(0, 1]. R<x(M) 6= ∅ if and only if there exist u, v ∈ Σ∗ such that uvω ∈ R<x(M).

We thus obtain the upper bounds for checking the emptiness of MWA and MSC.

THEOREM 5.4. Let M = (Q, qs, qr, δ) be a RatFPM on an alphabet Σ, and rational

x ∈ (0, 1) be a rational number. Emptiness of R<1(M) can be determined in PSPACE,

while emptiness of R<x(M) can be determined in co-R.E..

PROOF. From Lemma 5.2, we know that if R<x(M) is non-empty then there is u, S
such that S is on a good cycle and δu(qs, S) > 1 − x. So the algorithm for checking

non-emptiness, non-deterministically guesses S ⊆ Q and the string u. Then the semi-

decision first checks that S is on a good cycle of G(M), which can be done space that is

polynomial in the size of M without explicitly constructing G(M). Next, it is easy to see

that there is a semi-decision procedure to check if δu(qs, S) > 1 − x. This proves that the

non-emptiness of R<x(M) is recursively enumerable.

Based on the observations in the previous paragraph, in order to prove that non-emptiness

of R<1(M) is in PSPACE, all we need to show is that the check δu(qs, S) > 0 can be

accomplished in PSPACE. Notice that δu(qs, S) > 0 iff the vertex S′ reached on the se-

quence u in G(M) is such that S ∩S′ 6= ∅. Thus the PSPACE upper bound can be shown

by observing that this check can be done by guessing the symbols of u incrementally fol-

lowing a path in G(M).
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MNC: We will conclude this section on upper bounds by showing that the emptiness prob-

lem for MNC is recursively enumerable.

THEOREM 5.5. Let M = (Q, qs, qr, δ) be a RatFPM on an alphabet Σ, and rational

x ∈ (0, 1) be a rational number. The problem of checking the emptiness of R≤x(M) is in

R.E..

PROOF. A collection W ⊆ Σ+ of finite strings, will be called a witness, if for every

u ∈ W , δu(qs, qr) > x and for every α ∈ Σω, there is u ∈ W such that u is a prefix of

α. Observe that if there is a witness set W then for every α ∈ Σω, µrej
M, α > x, and so

R≤x(M) = ∅.

Our main observation is that R≤x(M) = ∅ if and only if there is a finite set W ⊆ Σ+

such that W is a witness. Before proving this, let us note that this gives us a semi-decision

procedure to check the emptiness of R≤x(M). The algorithm to check emptiness will

guess a finite set of finite strings W , and check that W is indeed a witnessing set. It is easy

to see that checking if W is a witness is decidable, which proves the theorem.

We now prove the key technical claim that R≤x(M) = ∅ if and only if there is a finite

set W ⊆ Σ+ such that W is a witness. Clearly, the existence of a finite witnessing set

implies that R≤x(M) = ∅, and so the main challenge is in proving the converse.

Let R≤x(M) = ∅. Consider the set G = {u ∈ Σ∗ | δu(qs, qr) ≤ x}. Note that the

empty string ǫ ∈ G. The set G can be viewed as vertices of a Σ-branching tree, because

G is prefix closed. We will abuse notation and view G both as a tree and a collection of

strings. Suppose G is not finite. Then by König’s Lemma, G has an infinite path, which

means that there is α ∈ Σω such that every prefix of α is in G. This means that for every

prefix u of α, δu(qs, qr) ≤ x, and hence µrej
M, α ≤ x. This contradicts our assumption that

R≤x(M) = ∅. Hence G must be finite.

Consider the set W = (GΣ) \G. Observe that W is finite. Second since W ⊆ Σ+ \G,

we have for every u ∈ W , δu(qs, qr) > x. Finally, since G is finite, for every α ∈ Σω,

there are infinite number of prefixes of α that are not in G; from this, it follows that there

is a u ∈ W such that u is a prefix of α. This shows that W is a finite witness set, and this

completes the proof of the theorem.

5.2 Emptiness Problem: Lower Bounds

In this section, we will show that the upper bounds proved in Section 5.1 for the various

classes of monitors are tight. We will first prove lower bounds for MWA and MSA, before

we consider the classes MSC and MNC.

MWA and MSA: We will show the PSPACE-hardness of the emptiness problem for MWA

and MSA.

THEOREM 5.6. For a RatFPM M, the problems of checking the emptiness of R≤0(M)
and R<1(M) are PSPACE-hard.

PROOF. The PSPACE-hardness problem for R<1(M) might appear deceptively sim-

ilar to the PSPACE-hardness of the universality of non-deterministic automata; however,

we could not find any easy reduction from the later to the former problem. We prove

the hardness result by reducing the membership problem for a language in PSPACE. Let

L ∈PSPACE and let M be a single tape deterministic Turing machine that accepts L in
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space p(n) for some polynomial p where n is the length of its input. Without loss of gen-

erality, let M = (Q,Σ,Γ, B, δ, q0, qa, qr), where Q is a finite set of control states; Σ,Γ are

the input and tape alphabets respectively, such that Σ ( Γ; B ∈ Γ \Σ is the blank symbol;

δ : Q×Γ → Q×Γ×{−1, 1} is the transition function, with −1 denoting moving the tape

head left, and 1 denoting moving the tape head right; q0 ∈ Q is the initial state; qa ∈ Q
is the unique accepting state, i.e., if x ∈ L then M on input x eventually reaches control

state qa; qr ∈ Q is the unique rejecting state, i.e., if x 6∈ L then M on input x eventually

reaches qr. Let c = |Γ| + |(Γ × Q)|, m = p(n) and k = cm. Without loss of generality,

we can make the following simplifying assumptions about M .

1. M cannot take any further steps once its control state is either qa or qr. Thus, qa and qr

are halting states of the machine M .

2. When started in any configuration, M reaches one of the halting states qa or qr within

k steps.

Let Config = Γ∗(Γ × Q)Γ∗. A configuration of M on an input of length n is a string

of length m = p(n) in Config, where the unique symbol in Γ × Q indicates the head

position as well as the control state. For a configuration s = s1s2 · · · sm ∈ Config, st(s)
denotes the control state in s, pos(s) denotes the position of the head, and sym(s) denotes

the input symbol being scanned. More formally, if i = pos(s) then si = (st(s), sym(s)).
Let Σn = {1, . . . p(n)} × (Γ × Q). For a configuration s, strip(s) will denote the triple

(pos(s), (sym(s), st(s))) ∈ Σn and for a sequence of configurations ρ = s1, s2, . . . sℓ,

strip(ρ) ∈ Σ∗
n is the word strip(s1)strip(s2) · · · strip(sℓ).

Recall that a valid computation of M starting from a configuration s is a sequence of

configurations s1, s2, . . . sℓ such that s = s1 and for each i < ℓ, si+1 follows from si

by one step of M . The initial configuration on an input of size n is of the form (Σ ×
{q0})Σ

n−1Bm−n. We will say that a word u ∈ Σ∗
n is valid from configuration s iff there

is a valid computation ρ starting from s such that u = strip(ρ); observe that because M is

deterministic there is at most one valid computation ρ such that u = strip(ρ). Finally we

will say u ∈ Σ∗
n is valid, if it is valid from some configuration s.

Let σ = σ1σ2 · · ·σn be an input of length n to M . We will construct an RatFPM Cσ

such that R<1(Cσ) 6= ∅ (and R≤0(Cσ) 6= ∅) if and only if σ ∈ L. Formally, Cσ =
(QC , qCs , qCr , δC) will be a RatFPM over the alphabet ΣC = Σn ∪ {τ}. The set of states

QC = {qCs , qCr } ∪ ({1, . . . ,m} × Γ×Q) ∪ ({1, . . . ,m} × Γ). Thus, a state of Cσ is either

qCs , or qCr , or of the form (i, a), where 1 ≤ i ≤ m and a ∈ Γ ∪ (Γ × Q). Intuitively, Cσ in

state (i, a) denotes that ith element of the current configuration of the computation of M
has value a.

Before defining the transitions of Cσ , we define some concepts that we find useful. Con-

sider any symbol (i, (b, q)) ∈ Σn. Note that such a triple can either be an input symbol or a

state of Cσ . Let δ(q, b) = (q′, c, d). For such a pair (i, a), we define next state(i, (b, q))
and next val(i, (b, q)) to be q′ and c, respectively. We also define next pos(i, (b, q)) to

be i + d. Given two such triples (i, (b, q)) and (i′, (b′, q′)), we say that (i′, (b′, q′)) is a

successor of (i, (b, q)) iff i′ = next pos(i, (b, q)) and q′ = next state(i, (b, q)).
The transitions of Cσ are defined as follows. From the initial state qCs , on input τ , there

are transitions to the states (i, ui) , for each i ∈ {1, ...,m} where u1 = (1, (σ1, q0)), and

for 1 < i ≤ n, ui = (i, σi), and for n < i ≤ m, ui = (i, B); the probability of each of

these transitions is 1
m

. Thus the input τ “sets up” the initial configuration when Cσ is in the

initial state qCs . From every other state on input τ there is a transition to the reject state qCr
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with probability 1. Also, from the state qCs , on every input other than τ there is a transition

to qCr with probability 1. From qCr , on every input there is a transition back to itself with

probability 1.

We now define the transitions on the input symbols in Σn. Consider an input symbol x
of the form (i, (b, q)). Intuitively, such an input denotes strip(s) of the next configuration

s in the computation; thus, it denotes the new head position, new state, and the new symbol

being scanned. If q = qr, then from every state there is a transition to the reject state qCr
with probability 1 on input x. We have the following transitions on input x for the case

when q = qa. From every state, of Cσ , of the form (j, c), where c ∈ Γ, there is a transition

to qCs with probability 1. From every state of the form (j, (c, q′)), there is a transition to

qCs with probability 1 if x is a successor of (j, (c, q′)); otherwise there is a transition to

qCr from (j, (c, q′)) with probability 1. Intuitively, these transitions allow the automaton

to start from the initial state again, if the computation described by the input symbols is

accepting. Next, we describe the transitions when q /∈ {qa, qr}. From a state of the form

(j, c), where c ∈ Γ, transitions on input x = (i, (b, q)) are defined as follows. If j = i
and b 6= c then there is a single transition with probability 1 to the reject state qCr ; this

means the contents of the cell specified by x does not match with the one specified by the

state. If j = i and c = b then there is a single transition with probability 1 to the state

(i, (b, q)). If j 6= i then there are two transitions each with probability 1
2 to the states

(j, c) and (i, (b, q)). Note that the former transition is a self loop denoting that the contents

of the cell did not change; the later, called cross transition, is to the state denoting new

head position and control state. Transitions from a state of the form (j, (c, q′)) on input

x = (i, (b, q)), where q 6= qa, qr, are defined as follows. If x is a successor of the pair

(j, (c, q′)) then there are two transitions, each with probability 1
2 , to the states (j, d) and

(i, (b, q)), where d = next val(j, (c, q′)). If the above condition does not hold then there

is a single transition to the reject state qCr with probability 1.

Before proving the correctness of the reduction, we formally spell out some properties

Cσ satisfies. These properties capture the intuition behind the correctness. Consider an

input sequence u ∈ Σ∗
n such that u does not contain τ and does not contain any symbol of

the form (i, (b, qa)) or of the form (i, (b, qr)) for any i, b.

A. Let ρ be a valid computation starting from configuration s and ending in configuration

s′ such that u = strip(ρ). Suppose further that the jth symbol of s is a ∈ Γ∪ (Γ×Q).
Then on input u from state (j, a), Cσ has a non-zero probability of reaching the state

e ∈ QC iff e = (i, b) for some i ∈ {1, ...,m}, b ∈ Γ ∪ (Γ × Q) and the ith symbol of s′

is b, and either i = j or u contains a symbol of the form (i, (c, q′)) for some c, q′. This

is because of the cross transitions. One consequence of this is that, on input u from state

(j, a), Cσ has probability zero of reaching the rejecting state qCr .

B. If u is not valid starting from any configuration then from any state (j, a), on input u,

Cσ reaches the reject state qCr with probability at least 1
2|u| where |u| is the length of u.

The above property is proven to hold as follows. Since u is not valid from any config-

uration, it can be shown that one of the following two conditions is satisfied: (i) there

exist two input symbols x, y appearing consecutively in that order in u such that y is not

a successor of u; (ii) there exist two input symbols x = (i, (b, q)), y = (i, (c, r)) such

that x appears sometimes before y in u, no other symbol of the form (i, (c′, q′)), for

any c′, q′, appears in between them and c 6= next val(i, (b, q)). Let u′ be the smallest

prefix of u that violates condition (i) or (ii). We show that qCr is reachable from (j, a)
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on input u′ by a sequence of transitions of Cσ . The lower bound on the probability fol-

lows since probability of each of the transitions is at least 1
2 . Assume that u′ violates

condition (i). Then, u′ = u′′xy. The state x is reachable from (j, a) on input u′′x and

there is a transition from state x to qCr on input y and hence qCr is reachable from (j, a).
Now assume that u′ violates condition (ii). In this case u′ = vxwy where v, w are input

sequences and x, y are input symbols as given in (ii). It should be easy to see that the

states x, (i, next val(x)), respectively, are reachable from (j, a) on the input sequences

vx, vxw. From this, we see that qCr is reachable from (j, a) on input u′ since there is a

transition from (i, next val(x)) on the input symbol y to qCr , as c 6= next val(x).

C. Let s0 be the initial configuration, i.e., s0 = (σ1, q0), σ2, ..., σn. Let u ∈ Σ∗
n be such

that it is not valid from s0. Then, the finite string τu is rejected by Cσ with probability

greater than or equal to ( 1
2 )|u|.

We will now show that our construction of Cσ satisfies the following property. If ρ is the

accepting computation of M on σ then µacc
Cσ, α = 1, where α = (τstrip(ρ))ω. On the other

hand, if M does not accept σ then µrej
Cσ, α = 1 for every α ∈ Σω

C . Based on this property,

R≤0(Cσ) 6= ∅ and R<1(Cσ) 6= ∅ iff M accepts σ, which proves the PSPACE-hardness of

the non-emptiness problem. We now prove that our claim holds.

Let ρ be the accepting computation of M on σ. Observe that on input (i, (b, qa)), Cσ

goes to the initial state qCs with probability 1 from every state except the reject state qCr .

This coupled with property A above, ensures that δCu(qCs , qCs ) = 1, where u = τstrip(ρ).
Thus, uω is accepted with probability 1 by Cσ .

Now we prove the more difficult part of the claim, namely, that if M rejects σ, Cσ rejects

every input sequence with probability 1. The proof is by cases on the form of the input

word α to Cσ . Observe that if α is not of the right form, i.e., does not begin with τ or does

not have a τ immediately following a symbol of the form (i, (b, qa)) or every τ (except

the first one) is not preceded by a symbol of the form (i, (b, qa)) then α is rejected with

probability 1. Next if α contains any symbol of the form (i, (b, qr)) then also α is rejected

with probability 1.

Let us now consider the case when α has infinitely many symbols of the form (i, (b, qa)).
Since Cσ will reject any input in which such symbols are not immediately followed by τ ,

we can assume without loss of generality that α = τu1τu2τ · · · , where ui ∈ Σ∗
n and ends

with a symbol of the form (i, (b, qa)). Now, since σ is rejected by M , for every i ≥ 1, we

have the following properties. The sequence ui is not valid from the initial configuration.

Hence from property C, Cσ , on input τui, reaches the reject state with probability at least

( 1
2 )|ui|. From the simplifying assumption 2, we have |ui| ≤ k, and hence the probability

of rejection of τui is at least ( 1
2 )k. Hence, µrej

Cσ, α = 1.

Finally, suppose α has only finitely many symbols of the form (i, (b, qa)) (each of which

is followed by τ ) and no symbols of the form (i, (b, qr)). Observe that we may also assume

that every τ symbol (except the first) is immediately preceded by a symbol of the form

(i, (b, qa)) (as otherwise α will be rejected with probability 1). Thus α = u′τβ, where

β ∈ Σω
n and does not contain any symbol of the form (i, (b, qa)) or (i, (b, qr)). Let us

divide β into sequences of length k, i.e., β = u1u2 · · · , where |ui| = k. Based on the

simplifying assumption 2, made about M , we can conclude that each ui is not valid (from

any configuration). Let S0 be the set of states of Cσ reached after the input sequence u′τ ,

and for j ≥ 1, let Sj be the set of states of Cσ reached after the input sequence u′τu1...uj .

From the property B, we see that for j ≥ 1, from every state p′ in Sj−1, the automaton

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 27

state qCr is reachable on the input sequence uj with probability at least 1
2k . Hence we see

that α is rejected with probability 1.

MSC: We will show that the emptiness problem for MSC is co-R.E.-hard. The proof

will rely on co-R.E.-hardness of the emptiness problem for Probabilistic Finite Automata

(PFA). Therefore, before presenting our proof, we recall the basic definitions associated

with such automata. Formally, a PFA over alphabet Σ is M = (Q, qs, F, δ), where Q
is a finite set of states, qs ∈ Q is the initial state, F ⊆ Q are the final states, and δ :
Q×Σ×Q → [0, 1] is the probabilistic transition function that satisfies the same properties

as the one for FPMs. Given x ∈ [0, 1], L>x(M) = {u ∈ Σ∗ |
∑

q∈F δu(qs, q) > x}. The

main result that we will use is the following.

THEOREM 5.7 CONDON-LIPTON [CONDON AND LIPTON 1989]. Given a PFA M over

alphabet Σ the problem of determining if L> 1
2
(M) = ∅ is co-R.E.-complete.

Using this result we can show,

THEOREM 5.8. For a FPM M over an alphabet Σ, and rational x ∈ (0, 1) the problem

of determining if R<x(M) = ∅ is co-R.E.-hard.

PROOF. We will actually prove this result for the case when x = 1
2 ; Lemma 3.10 will

then allow us to conclude for any x ∈ (0, 1). The proof of co-R.E.-hardness relies on a

reduction from the emptiness problem of PFAs. Let M = (Q, qs, F, δ) be a PFA over the

alphabet Σ. We will construct a FPM M′ such that L> 1
2
(M) = ∅ iff R< 1

2
(M′) = ∅.

Pick a new symbol τ 6∈ Σ and let Σ′ = Σ∪ {τ}. Formally M′ = (Q′, qs, qr, δ
′) will be

an FPM over alphabet Σ′. The set of states Q′ = Q∪{qa, qr}, where qa, qr will be assumed

to be new states not in Q. δ′ will be defined as follows. First we describe transitions out

of the new states qa and qr: for every a ∈ Σ′, δ′(qa, a, qa) = δ′(qr, a, qr) = 1. Next

we describe the transitions on the new symbol τ : if q ∈ F then δ′(q, τ, qa) = 1 and if

q ∈ Q \ F then δ; (q, τ, qr) = 1. Finally, for all the old states q ∈ Q, on all the input

symbols a ∈ Σ, we will define transitions as follows:

δ′(q, a, q′) =

{

1
3 if q′ = qa or q′ = qr
1
3δ(q, a, q′) if q′ ∈ Q

We will now prove the correctness of the above reduction. On any string α ∈ Σω

(i.e., when α does not have any τ symbols), we have µrej
M′, α =

∑∞
i=1(

1
3 )i = 1

2 . Thus,

R< 1
2
(M′) ∩ Σω = ∅. Let us now consider α ∈ (Σ′)ω \ Σω. Such a word can be written

as: α = uτα′, where u ∈ Σ∗. Let ρ =
∑

q∈F δu(qs, q), i.e., the acceptance probability of

u in M. Now, suppose ρ > 1
2 . Then

µacc
M′, α ≥ (

∑|u|
i=1(

1
3 )i) + ( 1

3 )|u|ρ
= 1

2 (1 − ( 1
3 )|u|) + ( 1

3 )|u|ρ > 1
2

By a symmetric argument, if ρ ≤ 1
2 , then µrej

M′, α ≥ 1
2 . Thus, a word of the form uτα′ is in

R< 1
2
(M′) iff u ∈ L> 1

2
(M). Hence, R< 1

2
(M′) = ∅ iff L> 1

2
(M) = ∅.

MNC: We will show that the emptiness problem for MNC is R.E.-hard. The proof will

be a higly non-trivial modification of the proof of co-R.E.-hardness of emptiness of PFA

[Condon and Lipton 1989].
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THEOREM 5.9. For a FPM M and rational x ∈ (0, 1) the problem of determining if

R≤x(M) = ∅ is R.E.-hard.

PROOF. It suffices to show that the problem of determining whether R≤ 1
2
(M) is non-

empty is co-R.E.-hard. This is exhibited by a reduction from the problem of non-termination

of a deterministic two-counter machine on an empty input. The reduction is carried in two

steps.

The first step of the construction is a modification of the PFA used in proof of co-R.E.-

hardness of emptiness of PFA. Given a deterministic 2-counter machine C we construct

a monitor M as follows. The monitor M has an absorbing accept state qa and an ab-

sorbing reject state qr (by a absorbing state q, we mean that probability of transitioning

from q to q is 1 for every input symbol). The input alphabet of M is the set of control

states of C, left bracket (, right bracket ), 0, 1, a and b. The constructed monitor checks

whether a given sequence of inputs determine a valid computation of C. The computations

of C is represented as a sequence of consecutive configurations of C. A configuration of C
represented by the tuple (q, i, i′) is input as left bracket (; followed by a control state q;

followed by two bits which indicate whether the two counters are zero or not (the bit 0 a

counter value of 0 and the bit 1 represents a non-zero counter value); followed by the input

sequence aibi′ which represent the counter values in unary; and ending in right bracket ).
If qs is the initial state of M, the construction will ensure that for any word α and j ∈ N,

δα[1:j](qs, qr) ≥ δα[1:j](qs, qa). If a word α represents a valid infinite computation then

δα[1:j](qs, qr) = δα[1:j](qs, qa) for all j ≥ 1. If a word α does not represent a valid infi-

nite computation then there would be a j0 such that δα[1:j](qs, qr) > δα[1:j](qs, qa) for all

j ≥ j0.
The machine M checks if in the first input configuration, the control state is the start

state of C and both the counter values are 0. Otherwise, it rejects the input with probability

1 (i.e., makes a transition to qr with probability 1). Similarly, if ever the monitor M
receives an input symbol of the wrong kind (for example, if the monitor receives a state q
when it is expecting a or b) then M rejects the rest of the input with probability 1.

The monitor M also has to check that consecutive input configurations, say (q, i, i′) and

(q′, j, j′), are in accordance with the transition function of the 2-counter automaton. If

there is no transition from q to q′ in the C or if one the counter values j, j′ is zero (or, non-

zero) when it is not supposed to be, then the rest of the input is rejected with probability 1.
The main challenge is in checking the counter values across the transition using only finite

number of states. This problem reduces to checking whether two strings have equal length

using only finite memory of the monitors. For the case of PFA’s, this is accomplished by a

weak equality test described in [Condon and Lipton 1989; Freivalds 1981] as follows. We

recall the equality test described there. Suppose we want to check that for two strings ai

and aj , i = j. Then while processing ai

(1a). Toss 2i fair coins and note if all of them turned heads.

(2a). Toss a separate set of i fair coins and note if all of them turned heads.

(3b). Toss yet another set of i fair coins and note if all of them turned heads.

While processing aj

(1b). Toss 2j fair coins and note if all of them turned heads.

(2b). Toss a separate set of j fair coins and note if all of them turned heads.
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(3b). Toss yet another set of j fair coins and note if all of them turned heads.

As in [Condon and Lipton 1989], we define event A as either all coins turn up heads in (1a)

or all coins turn up heads in (1b). We define event B as either all coins turn up heads in

(2a) as well as (2b) or all coins turn up heads in (4a) as well as (4b). We reject (that is make

a transition to qr with probability 1) if event A is true and B is not true and accept (that

is make a transition to qa with probability 1) if B is true and A is not true. If i = j then

as explained in [Condon and Lipton 1989], the probability of acceptance and rejection

is equal (note each of them may be less than 1
2 ), otherwise probability of transitioning

to reject state is strictly larger than probability of acceptance. We shall slightly modify

this test. The main problem in using this test directly is that the input configuration may

have an unbounded number of a’s and in that case we never make a transition to either

qa or qr. Hence, in this case, we will not be able to guarantee that there is a j0 such that

δα[1:j](qs, qr) > δα[1:j](qs, qa) for each j > j0.
We modify the weak equality test as follows. We will still conduct the experiments (1a),

(2a), (3a), as above. Let A0 be the event such that all coins turn up heads in (1a). Now,

when we process aj we will still conduct experiments (1b), (2b) and (3b) but take certain

extra actions while scanning the input as described below.

—Assume first the case that event A0 is true. Now, while scanning aj , we check if both of

the following events happen- at least one coin turns up tails in (2a) or (2b), and at least

one coin turns up tails in (3a) or (3b). If both of the above events are true then we reject

the input. Note that if j is unbounded, this rejection will happen with probability 1 given

that A0 is true. Also note that if j is bounded and if all the above three events happened,

then the input would have been rejected anyways in the original weak equality test. If

j is bounded and we have not rejected the input, then at the end of scanning of aj we

check for events A and B as above. If A is true and B is false, we reject the input. If A
is false and B is true, then we accept the input. Otherwise we continue processing the

rest of the input.

—Assume now that A0 is false. Now, while scanning aj , again check if both of the follow-

ing events happen- at least one coin turns up tails in (2a) or (2b), and at least one coin

turns up tails in (3a) or (3b). If both of the above events are true then we start accepting

(that is transiting to qa) and rejecting (that is transiting to qr) the succeeding input with

probability 1
3 each until we detect the end of aj . Note if j is unbounded, then with prob-

ability 1 all three events will happen and asymptotically we will accept and reject with

probability 1
2 . If j is bounded, then at the end of scanning of aj we check for events A

and B as above (note if the above three events happen at some point while scanning aj

then both A and B are going to be false). If A is true and B is false, we reject the input.

If A is false and B is true, then we accept the input. Otherwise we continue processing

the rest of the input.

These tests ensure that if j is unbounded, then the probability of transitioning to the

reject state is > 1
2 . In the case j is bounded and i = j then probability of transitioning to

accept state qa is exactly equal to the probability of transitioning to reject state qr. If j is

bounded and i 6= j then probability of transitioning to accept state qa is strictly less than

the probability of transitioning to reject state qr.
Finally, while checking the input, the monitor M rejects if the state of the current con-

figuration is a halting state. Let qs be the start state of the monitor M and δ the tran-
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sition function of M. For α, let δα(qs, qa) = limj→∞ δα[1:j](qs, qa) and δα(qs, qr) =
limj→∞ δα[1:j](qs, qr). It is easy to see that for the monitor M, a finite word u and an

infinite word α, the following facts are true–

(1) δu(qs, qr) ≥ δu(qs, qa).

(2) If u represents a valid finite computation of the counter machine C, u does not contain

the halting state and u ends in the symbol ) then δu(qs, qr) = δu(qs, qa) < 1
2 .

(3) If u contains a halting state then δu(qs, qr) > 1
2 .

(4) If the input α does not represent a valid infinite computation then there is some j0 such

that δα[1:j](qs, qr) > δα[1:j](qs, qa) for all j > j0.

(5) If there is some unbounded counter in some input configuration, then δα(qs, qr) > 1
2 .

In particular, if α does not contain an infinite number of states of the counter machine

C then δα(qs, qr) > 1
2 . Furthermore, if word α does not contain an infinite number of

states of the counter machine then δα(qs, qa) + δα(qs, qr) = 1.

(6) If the input α represents a valid infinite computation then δα(qs, qr) = δα(qs, qa).
Furthermore, if α[j] =) then δα[1:j](qs, qr) = δα[1:j](qs, qa).

Now, we obtain M1 by modifying M as follows. Whenever we processing the control

state in a new input configuration, we accept (that is make a transition to qa) and reject

(that is make a transition to qr) with probability 1
3 . It is easy to see that for M1 and word

α, we have that

(1) If α contains a halting state or represents an invalid computation then µrej
M1, α > 1

2 .

(2) If the input α represents a valid infinite computation then µrej
M1, α

1
2 .

Thus, R≤ 1
2
(M1) is non-empty iff C has an infinite computation.

5.3 Universality Problem: Upper Bounds

In this section, we will establish upper bounds for the universality problem of RatFPM’s.

MSA: The universality problem for MSA is easily seen to be in NL.

THEOREM 5.10. For a RatFPM M on alphabet Σ, the problem of checking the uni-

versality of R≤0(M) is in NL.

PROOF. Let M = (Q, qs, qr, δ) and let Σ be the alphabet. Consider the direct graph

G = (V,E) constructed (in log-space) as follows. The set of vertices V is Q and (q1, q2) ∈
E iff there exists an a ∈ Σ such that δ(q1, a, q2) > 0. It is easy to see that R≤0(M) is

not universal iff there is a directed path from qs to qr in G. The latter problem is known to

NL-complete.

MWA: We will show that the universality problem for MWA is in PSPACE. The proof

depends on showing that the set R=1(M) = {α ∈ Σω|µrej
M, α = 1} contains an ultimately

periodic word.

LEMMA 5.11. Given a FPM M = (Q, qs, qr, δ), a state q ∈ Q and a finite word u ∈
Σ+, let post(q, u) = {q′ ∈ Q | δu(q, q′) > 0}. The set R=1(M) = {α ∈ Σω|µrej

M, α = 1}

is non-empty iff there are u, v ∈ Σ+ such that the following conditions hold–

—post(qs, u) = post(qs, uv)
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—For each q ∈ post(qs, u), qr ∈ post(q, v).

PROOF. (⇒). Fix α such that µrej
M, α = 1. For each integer j > 0, let Qj = post(qs, α[1 :

j]). Now since Qj ⊆ Q and Q is a finite set, there exists an infinite sequence of natural

numbers 1 < j1 < j2 < j3, . . . such Qjr
= Qjs

for all r, s ∈ N. Let u = α[1 : j1]. As

µrej
M, α = 1, it must be the case that for each q ∈ post(qs, u) there is some kq ≥ 1 such that

δα[j1+1,j1+kq ](q, qr) > 0. Pick jr such that jr ≥ j1 + kq for each q ∈ post(qs, u). Let

v = α[j1 + 1, jr]. Clearly u, v are the required words.

(⇐). Suppose that u, v are such that post(qs, u) = post(qs, uv) and for each q ∈
post(qs, u), qr ∈ post(q, v). From post(qs, u) = post(qs, uv), we have that post(qs, u) =
post(qs, uvj) for all j ∈ N. Let Q0 = post(qs, u) = post(qs, uvj).

Consider the word α = uvω. We show that uvω ∈ R=1(M). Note that we have

µrej
M, α = limj→∞ δuvj (qs, qr) = 1 − limj→∞ δuvj (qs, Q0 \ {qr}). Thus, it suffices to

show that limj→∞ δuvj (qs, Q0 \ {qr}) = 0. Observe that–

(1) δu(qs, Q0 \ {qr}) ≤ 1.

(2) Let x = minq∈Q0
(δv(q, qr)). We have that x > 0. It is easy to see that δuvj+1(qs, Q0 \

{qr}) ≤ (1 − x)δuvj (qs, Q0 \ {qr}).

Thus, by induction δuvj (qs, Q0 \ {qr}) ≤ (1 − x)j . As x > 0, we get that

lim
j→∞

δuvj (qs, Q0 \ {qr}) = 0.

We get as an immediate corollary that there is an ultimately periodic word in R=1(M) =
{α ∈ Σω|µrej

M, α = 1}.

COROLLARY 5.12. Let M = (Q, qs, qr, δ) be a FPM on an alphabet Σ. Then R=1(M) =
{α ∈ Σω|µrej

M, α = 1} is non-empty iff there are u, v ∈ Σ+ such that uvω ∈ R=1(M).

THEOREM 5.13. For a RatFPM M on alphabet Σ, the problem of checking the uni-

versality of R<1(M) is in PSPACE.

PROOF. Let M = (Q, qs, qr, δ). The PSPACE algorithm actually checks the non-

universality for R<1(M) by appealing to Lemma 5.11. The algorithm proceeds by first

guessing u incrementally and storing the “current” value of post(qs, u). After the guess is

complete, it stores post(qs, u) in its memory and starts guessing v incrementally. While

guessing v incrementally, it stores post(q, v) for each q ∈ post(qs, u). After its stops

guessing v it checks that a) qr ∈ post(q, v) for each q ∈ post(qs, u) and b) post(qs, u) =
∪q∈post(q,u)(post(q, v)) (note that post(qs, uv) = ∪q∈post(q,u)(post(q, v))).

MNC: The universality problem for MNC is easily seen to be in co-R.E..

THEOREM 5.14. For a RatFPM M on alphabet Σ and rational x ∈ (0, 1), the problem

of checking the universality of R≤x(M) is in co-R.E..

PROOF. Let M = (Q, qs, qr, δ). Now R≤x(M) is not universal iff there is a word

α such that µrej
M, α > x. The latter is true iff there is a finite word u ∈ Σ∗ such that

δu(qs, qr) > x. The result now follows.

MSC: The universality problem for MSC is in Π1
1.
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THEOREM 5.15. For a RatFPM M on alphabet Σ and rational x ∈ (0, 1), the problem

of checking the universality of R<x(M) is in Π1
1.

PROOF. Let M = (Q, qs, qr, δ). Now R<x(M) is not universal iff there is a word

α ∈ Σω such that µrej
M, α ≥ x. Now,

(µrej
M, α ≥ x) ⇔ ∀n > 0.∃k > 0.(δα[1:k]

(qs, qr) > x − 1/n).

Thus, we get

R<x(M) = Σω ⇔ ∀α.∃n > 0.∀k > 0.(δα[1:k]
(qs, qr) ≤ x − 1/n).

Fro this, it is easy to see that the problem of checking the non-universality of R<x(M) is

in Π1
1.

5.4 Universality Problem: Lower Bounds

In this section, we will show that the upper bounds proved in Section 5.3 for the various

classes of monitors are tight.

MSA: The NL-hardness of the universality problem for MSA is proved by a reduction from

graph reachability problem.

THEOREM 5.16. For a RatFPM M, the problem of checking the universality of R≤0(M)
is NL-hard.

PROOF. The proof is by a reduction from the reachability in directed graphs. Let G =
(V,E) be a directed graph with V as the set of vertices and E as the set of edges. Given

v1, v2 ∈ V the reachability problem is the problem of determining whether there is a

directed path from v1 to v2. For the reachability problem, we can assume that for any

v ∈ V , the set Ev = {v′ ∈ V | (v, v′) ∈ E} is non-empty.

We reduce (in log-space) the reachability problem to the universality problem of MSA as

follows. We pick a symbol a and let Σ = {a}. We construct a monitor M = (V, v1, v2, δ)
where δ is defined as follows–

δ(v, a, v′) =







1 if v = v′ = v2
1

|Ev| if (v, v′) ∈ E

0 otherwise

It is easy to see that R≤0(M) = Σω iff there is no directed path from v1 to v2 in G.

MWA: The PSPACE-hardness of the universality problem for MSA is proved by a reduc-

tion from the universality problem of Finite State Machines.

THEOREM 5.17. For a RatFPM M, the problem of checking the universality of R<1(M)
is PSPACE-hard.

PROOF. We reduce the problem of universality of Finite State Machines to the univer-

sality of R<1(M). Given a finite state machine A = (Q,∆, qs, F ) over the alphabet Σ,

q ∈ Q and a ∈ Σ, let ∆q,a = {q′ | δ(q, a, q′) ∈ ∆}. Please note that for universality

problem, we can assume that ∆q,a is non-empty, i.e., |∆q,a| > 0.
We reduce (in polynomial-time) the universality problem of A to the universality prob-

lem of MWA as follows. Pick a new symbol τ /∈ Σ and two new states qa, qr /∈ Q, and
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construct a RatFPM M = (Q ∪ {qa, qr}, qs, qr, δ) over Σ ∪ {τ} where δ is defined as

follows–

δ(q, a, q′) =























1 if q = q′, q ∈ {qa, qr} and a ∈ Σ ∪ {τ}
1 if q ∈ F, q′ = qa and a = τ
1 if q ∈ Q \ F, q′ = qr and a = τ
1

|∆q,a| if q, q′ ∈ Q and (q, a, q′) ∈ ∆

0 otherwise

For any word α over the alphabet Σ ∪ {τ}, the following are easy to check–

(1) If α does not contain τ then µrej
M, α = 0.

(2) If α = uτβ and u does not contain τ , then µrej
M, α = 1 iff u is not accepted by A.

Thus A is universal iff R<1(M) is universal. The result now follows.

MNC: The co-R.E.-hardness of determining the emptiness of L> 1
2
(M) yields the co-

R.E.-hardness of the universality problem for MNC.

THEOREM 5.18. For a RatFPM M on an alphabet Σ and x ∈ (0, 1), the problem of

checking the universality of R≤x(M) is co-R.E.-hard.

PROOF. We can assume without loss of generality that x = 1
2 . Given a PFA M′ =

(Q, qs, F, δ) over the alphabet Σ, pick two new states qa, qr /∈ Q and a new symbol τ /∈ Σ.

Now, construct a monitor M = {Q∪{qa, qr}, qs, qr, δ
′} over Σ∪{τ} where δ′ is defined

as follows–

δ′(q, a, q′) =















1 if q = q′, q ∈ {qa, qr} and a ∈ Σ ∪ {τ}
1 if q ∈ F, q′ = qr and a = τ
1 if q ∈ Q \ F, q′ = qa and a = τ

δ(q, a, q′) otherwise

For any word α over the alphabet Σ ∪ {τ}, the following are easy to check–

(1) If α does not contain τ then µrej
M, α = 0.

(2) If α = uτβ and u does not contain τ , then µrej
M, α =

∑

q′∈F δu(qs, q
′).

Thus, the language L> 1
2
(M′) is empty iff R≤ 1

2
(M) is universal. The result follows.

MSC: We now show that the universality problem for MSC is Π1
1-hard.

THEOREM 5.19. For a RatFPM M on alphabet Σ and x ∈ (0, 1), the problem of

checking the universality of R<x(M) is Π1
1-hard.

PROOF. The following problem is known to be Π1
1-complete.

Problem: Given a non-deterministic two-counter machine C and a control state q on C
check whether all computations of C visit q only a finite number of times.

Given a non-deterministic two-counter machine C a state q, we will construct a RatFPM

such that R< 1
2
(M) is universal iff computations of C visit q only a finite number of times.

This monitor is constructed in two steps. For the first step, we construct a monitor which
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is a small modification of the monitor M1 constructed in the proof of co-R.E.-hardness of

emptiness of R≤ 1
2

(see Theorem 5.9). Observe that in that construction, given a determin-

istic two-counter machine C1 we constructed a monitor M1 = (Q1, qs, qr, δ
1) with the

following properties–

(1) The alphabet Σ of M1 consists of (, ), the states of C, 0, 1, a and b.

(2) M1 has two absorbing states – an absorbing accept state qa and an absorbing reject

state qr.

(3) For all finite strings u on Σ, δ1
u(qs, qa) < 1

2 .

(4) For any infinite word α, limj→∞ δ1
α[1:j](qs, qa) = 1

2 iff α represents an infinite valid

computation of C1. The infinite computation is represented as a sequence of configu-

rations (q0, 0, 0)(q1, i1, j1)(q2, i2, j2) . . . .

Now, given a non-deterministic two-counter machine C, let t1, t2, . . . tk be the set of all

the possible transitions of C. We choose new symbols τ i for each ti. The modified mon-

itor M2 has as an alphabet Σnew = Σ ∪ {τ1, τ2, . . . , τk}. M2 works almost exactly

as M1 except that it has to learn which transition is being used to go from (ql, il, jl)
to (ql+1, il+1, jl+1). This is done by assuming that the input computation is given in the

form (q0, 0, 0)τ0(q1, i1, j1)τ1(q2, i2, j2) . . . . Here τl ∈ {τ1, τ2, . . . τk} and “informs” M2

which transition to check while processing the new configuration. Of course, if in between

configurations, M2 does not receive such a symbol, M2 rejects the rest of the input with

probability 1. It is easy to see that M2 = (Q2, qs, qr, δ
2) satisfies the following properties–

(1) M2 has two absorbing states – an absorbing accept state qa and and an absorbing

reject state qr.

(2) For all finite strings u on Σ, δ2
u(qs, qa) < 1

2 .

(3) For any infinite word α, limj→∞ δ2
α[1:j](qs, qa) = 1

2 iff α represents an infinite valid

computation of C.

Now, we construct M as follows. The alphabet of M will be Σnew. For the states,

we will pick a new state qnew /∈ Q2 and set Q = Q2 ∪ qnew. The state qnew will be the

reject state of M. The state qs is the start state of M. The transition function δ of M is

obtained by modifying δ2 as follows. The accept state qa of M2 is no longer absorbing.

From qa we will make a transition to qnew with probability 1
2 whenever we see the input

symbol q (which is the given state in the Π1
1-hard problem). With probability 1

2 we will

remain in qa on the input symbol q. In other words δ(qa, q, qnew) = δ(qa, q, qa) = 1
2 .

δ(q2, c, q
′
2) = δ2(q2, c, q

′
2) for all q2, q

′
2 ∈ Q2, c ∈ Σnew except when q2 is qa and c is the

input symbol q. Also, δ(qnew, c, qnew) = 1 for all c ∈ Σnew. For all other possible states

and symbols, the transition probability is 0.

It is easy to see that for any word α, limj→inf δα[1:j](qs, qnew) ≤ 1
2 . Furthermore,

limj→inf δα[1:j](qs, qnew) = 1
2 iff α represents a valid infinite computation of C and visits

q infinitely often. Thus R< 1
2
(M) is universal iff all computations of C visit q only finitely

may times.

6. CONCLUSIONS

In this paper, we investigated the power of randomization in finite state monitors. We have

classified the languages defined by FPMs based on the rejection probability and proved a
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number of results characterizing these classes. Interestingly, some of these classes allow us

to go beyond safety and ω-regularity, but be within almost safety. We have also presented

complexity results on the problem of checking emptiness and universality of languages de-

fined by FPMs. In the future, we would like to explore applying the techniques developed

here for practical monitoring needs.
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