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Abstract 

Feature logics are the logical basis for so-called unification grammars 

studied in computational linguistics. We investigate the expressivity of 

feature terms with negation and the functional uncertainty construct 

needed for the description of long-distance dependencies and obtain 

the following results: satisfiability of feature terms is undecidable, sort 

equations can be internalized, consistency of sort equations is decid

able if there is at least one atom, and consistency of sort equations is 

undecidable if t here is no atom. 
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1 Introd uction 

Feature constraint grammars, also known as unification grammars, have be

come the predominant family of declarative grammar formalisms in Compu

tational Linguistics [10, 6, 18, 17, 14J. The common assumption of these for

malisms is that linguistic objects can be described by means of their features, 

which are functional attributes. Figure 1, for instance, shows the description 

of a linguistic object that may represent the sentence "John sings a song". 

The features appear as edges of the graph. The terminal nodes are atoms 

representing primitive linguistic objects. 

Kasper and Rounds [9 , 15J were the first to capture the relation between 

feature descriptions and linguistics objects in terms of a logic. Subsequently, 

Johnson [5] and Smolka [19, 20] realized that feature logics can be modeled 

straightforwardly in Predicate Logic. In this approach, which underlies the 

present paper, a domain of linguistic objects is called a feature algebra and 

is simply a structure that interprets atoms as pairwise distinct individuals 

and features as unary partial functions that are undefined on atoms. In 

addition, one can have sorts, which are interpreted as sets of individuals . 

Dorre and Rounds [4] relate feat ure algebras to term algebras und show the 

undecidability of the semiunification problem. 

One popular syntax for feature descriptions are so-called feature terms 

[9, 15, 20], which are expressions denoting sets in feature algebras. The basic 

feature term forms are given by 

5 ----t a I A I p: 5 I p 1 q I 5 n 5' I 5 U 5' I -,5, 

where a stands for atoms, A stands for sorts, and p and q stand for words over 

features. Given a feature algebra, a denotes the singleton consisting of the 

atom a, p: 5 denotes the inverse image of 5 under p (where p is interpreted 

as unary partial function obtained as the composition of its features), p 1 q 

denotes the set of all individuals for which p and q are defined and agree, 

5 n 5' denotes the intersection of 5 and 5', 5 U 5' denotes the union of 5 and 

5', and -,5 denotes the complement of 5. For applications it is important 

to decide whether a feature term is satisfiable, that is, whether it denotes a 

nonempty set in some feature algebra. The satisfiability problem for feature 

terms as given above is NP-complete [20J. 

A sort equation is a pair 5 == 5' consisting of two feature terms. A feature 

algebra is a model of a set of sort equations if for every equation both sides 

denote the same set. 
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Figure 1: A feature graph. 

Grammar rules in Functional Unification Grammar [10] and the more 

recent HPSG [14] are stated by means of sort equations. Figure 2 shows a 

simple grammar in this style (sorts start with capital letters ), which generates 

the single sentence "John sings a song", provided the right assumptions on 

word order are made. The basic idea is that in a model of the grammar 

the elements of a sort are the linguistic objects of the syntactic category 

expressed by the sort. Note that the graph in Figure 1 describes an element 

of the sort 5 in some model of the grammar in Figure 2. 

In this paper we investigate the expressivity of an additional feature term 

form that is known as functional uncertainty [7, 8] and was invented for the 

convenient description of so-called long-distance dependencies in the gram

.mar formalism LFG [6]. It takes the form 

3L(5), 

where L is a finite description of a regular set of words over features and 5 
is a feature term. A feature term 3L(5) denotes the set of all individuals d 
such that there exists a word pEL such that d is in the inverse image of 5 

under p. One can think of 3L(5) as the possibly infinite union 

PI: 5 U P2: 5 U P3: 5 U ... , 

w here PI, P2, P3, . .. are the words in L. Note that the form p: 5 can be 

expressed with 3L(5) if one takes for L the singleton consisting of the word p. 
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5 ..:... (subj: NP) n VP 

NP ..:... (D n N) U Name 

VP ..:... Vn(obj:NP) 

D ..:... (num: sg) n (spec: a) 

N ..:... (num: sg) n (pred: song) 

Name ..:... (num: sg) n (person: 3rd) n (pred:john) 

V ..:... (subj num: sg) n (subj person: 3rd) n (pred verb: sing) n 

(tense: present) n (pred agentlsubj) n (pred patientlobject) 

Figure 2: A simple grammar. 

So far, the decidability of the satisfiability of feature terms with func

tional uncertainty has been an open problem. In this paper we show that 

it is undecidable, even if there are no atoms. However, our result depends 

crucially on the presence of the negation -,5. Thus the problem is still open 

if only feature terms built with the forms a, pLq, 5 n 5', and 3L(5) are con

sidered. This restricted problem is addressed in [7], where a partial solution 

involving an acyclicity condition is given. 

There is a surprising connection between functional uncertainty and sort 

equations. We will exhibit an algorithm that, given a finite set £ of sort equa

tions and a feature term 5, produces finitely many feature terms 51, ... , 5n 

such that 5 is satisfiable in a model of £ if and only if 51, ... , 5n are satisfiable 

in some (arbitrary) feature algebra. This result says that, in the presence of 

functional uncertainty and negation, sort equations can be internalized and 

thus do not yield additional expressivity with respect to satisfiability. Since 

it is known that satisfiability with respect to sort equations is undecidable 

[20], this result immediately implies that satisfiability of feature terms with 

functional uncertainty and negation is undecidable. 

As an interesting byproduct of the internalization result for sort equa

tions, we will show that, somewhat surprisingly, it is decidable whether a 

finite set of sort equations has a model, provided there is at least one atom. 

However, if we do not assume atoms, the consistency of sort equations be

comes undecidable, even if we disallow feature terms with functional uncer

tainty. 

The paper is organized as follows. Section 2 defines feature algebras, 

feature terms and sort equations and states basic properties. Section 3 shows 
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that to decide satisfiability of feature terms it suffices to consider only 

the roots of rooted feature algebras, an auxiliary result on which the rest 

of the paper depends. Section 4 shows how sort equations can be expressed 

wi th functional uncertainty (our first main result). Section 5 shows that 

consistency of sort equations is decidable if there is at least one atom while 

it is undecidable if there is no atom (o~r second main result). Section 6 shows 

that satisfiability of feature terms with functional uncertainty and negation 

is undecidable (our third main result). Section 7 concludes. 

2 Feature Algebras and Feature Terms 

We assume three pairwise disjoint, possibly empty sets of symbols: atoms 

(denoted by a, b, c), sorts (denoted by A, B, C), and features (denoted 

by f, g, h). In the following, let A denote the set of all atoms, S the set of 

all sorts, and F the set of all features. We assume that there is at least one 

symbol, that is, A U S U F =I- 0. 

A feature algebra is a pair (DI, .I) consisting of a nonempty set DI 

(the domain of I) and an interpretation function .I assigning to every 

atom a an element aI E DI , to every sort A a subset AI ~ D I , and to 

every feature f a set of ordered pairs fI ~ DI X DI such that the following 

conditions are satisfied: 

1. if (d, e) and (d, e') are in fI, then e = e' (features are functional) 

2. if a =I- b, then aI =I- bI (unique name assumption) 

3. if f is a feature and a is an atom, then there exists no dEDI such 

that (aI, d) E fI (atoms are primitive). 

Note that we can see features equivalently either as functional binary 

relations or as unary partial functions. In place of (d, e) E fI we shall 

equivalently use the notation e = dfI, which means that the partial function 

fI, if applied to d, yields the value e. If there exists no e such that (d, e) E 

fI we say that dfI is undefined. We use suffix notation for application of 

partial functions because we want to write composition of binary relations 

and partial functions from left to right, that is, fI gI will mean apply first 

fI and then gI. 

A path is a word in F", that is, a finite, possibly empty sequence of 

features. We shall use the letters p, q, and r for paths. Let I be a feature 
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algebra and p = 11 ... In (n ~ 0) be a path. The empty path c is interpreted 

as the identity on DT. For n ~ 1, p is interpreted as the functional binary 

relation r which is obtained by composition of the functional binary relations 

j{, ... , I!, that is, 

(d, e) E (It ... In)T {:::::::} :ldo, ... ,dn: d = do /\ dn = e 

/\ (do,d1 ) E If /\ ... /\ (dn - 1 ,dn ) E I~. 

As for single features, we shall often write e = d(ll ... In)T instead of (d, e) E 

(11 . .. In)T, and shall say d(ll ... In)T is undefined if there exists no such e. 

Regular sets of paths can be specified by finite means, for instance, by 

regular expressions over the alphabet of all features. The letter L will always 

denote a finite description of a regular set of paths, and we write pEL if 

the path p is in the regular set specified by L. As usual, we shall take 0 as 

description of the empty set of paths, and for a path, p as description of the 

singleton {p}. 

Feature terms are descriptions that denote sets in feature algebras. Here 

is the abstract syntax of feature terms: 

S,T --t a 

A 

p:S 

plq 

~ 

T 

SnT 
SUT 
-,S 

S-T 
:lL(S) 

VL(S) 

atom 

sort 

selection 

agreement 

bottom 

top 

intersection 

unlOn 

negation 

difference 

existential path quantification 

universal path quantification. 

Because of the symmetry with universal path quantification we prefer to call 

the functional uncertainty construct existential path quantification. We will 

see that universal path quantification can be expressed with existential path 

quantification and negation. 

It is important to note that our feature term language is parameterized 

with respect to the three alphabets of atoms, sorts and features, and that 

each of these alphabets may be empty. 
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Given a feature algebra I, the denotation SI of a feature term S in I 

is a subset of DI defined inductively as follows: 

(al 

(p: S)I 

(plql 

.iI 

TI 

(S n T)I 

(S U T)I 

(...,S)I 

(S - T)I 

(:JL(S)l 

(\/L(S))I 

{aI} 

{d E DI l:Je E SI: (d,e) E pI} 

{d E DI l:Je E DI: (d,e) E pI n l} 
o 
DI 

SI nTI 

SIUTI 

DI _SI 

SI _TI 

{d E DI l:Jp E L :J(d, e) E pI: e E SI} 

{d E DI I \/p E L \/(d, e) E pI: e E SIlo 

Note that if a feature term S is a sort, SI is given directly by the feature 

algebra I. 

Two feature terms Sand T are equivalent (written S rv T) if SI = TI 

for every feature algebra I. 

Many of the introduced feature term forms are redundant. By rewriting 

with the equivalences 

p:S 

\/L(S) 

.1 

T 

SuT 

rv :Jp(S) 

rv -,:JL( ...,S) 

:J0(S) (where S is an arbitrary feature term) 

rv \/0(S) (where S is an arbitrary feature term) 

...,(...,S n ...,T) 

S -T rv Sn...,T 

the forms appearing as the left hand sides can be eliminated. Obviously, the 

equivalences for T and ...L can only be used to eliminate these forms if there 

exists a feature term S containing neither T nor ...L. This is in fact the case 

since we assumed A U S U F to be nonempty. 

Proposition 2.1 For every feature term one can compute in linear time an 

equivalent feature term containing only the forms a, A, p 1 q, :JL( S), S nT, 

and ...,S. 
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A feature term S is called satisfiable if there exists a feature algebra 

I such that SI =f 0. Due to the presence of negation, unsatisfiability and 

equivalence of feature terms are linear-time reducible to each other: 

S unsatisfiable {==> S rv 1-

S rv T {==> (S - T) U (T - S) unsatisfiable. 

Until now we have defined satisfiability, equivalence and inclusion of fea

ture terms with respect to all feature algebras. One can also use axioms to 

specify classes of feature algebras with respect to which satisfiability, equiv

alence and inclusion should be considered. As axioms we use so-called sort 

equations which take the form S == T, where Sand T are feature terms. 

A feature algebra I satisfies a sort equation S == T iff SI = TI. A feature 

algebra I is a model of a set E of sort equations iff it satisfies every sort 

equation in E. A set of sort equations is called consistent iff it has at least 

one model. We say that a feature term S is satisfiable w.r.t. a set E of sort 

equations iff there exists a model I of E such that SI =f 0. As for the case 

without sort equations, unsat isfiability, inclusion, and equivalence of feature 

terms w.r.t. a set of sort equations are linear-time reducible to each other. 

Finitely many sort equation s can always be equivalently expressed by a 

single sort equation of the form S == 1-. In fact, a feature algebra I satisfies 

a sort equation S == T iff it satisfies (S - T) U (T - S) == 1-; and I satisfies 

the sort equations S1 == 1-, ... , Sn == 1- iff it satisfies S1 U ... U Sn == 1-. 

3 Rooted Feature Algebras 

Let S be a satisfiable feature term, and let the feature algebra I together 

with the element dEDI be a witness for the satisfiability of S, that is, let 

d E SI. Then DI may contain "unreachable" elements that are not needed 

to verify d E SI. In this section we will show that, to decide satisfiability of 

feature terms, it suffices to consider only the roots of rooted feature algebras. 

This fact will be used in the next section to show that sort equations can be 

internalized. 

Let I be a feature algebra and let d be an element of DI. We define 

gen(d):= {e E DI I there exists a path p with dpI = e} 

and say that an element of gen(d) is generated by d. Obviously, dE gen(d), 

and e E gen (d) implies that gen (e) ~ gen (d). 

9 



Our intention is now to restrict the domains of feature algebras to such 

sets gen(d). However, we must keep in mind that atoms must always be 

interpreted somehow. Thus, if some elements of A I = {a I I a E A} are not 

contained in gen (d) we cannot really restrict the domain to gen (d), but only 

to gen(d) U AI. 

We say that a feature algebra I is rooted iff there exists dEDI such 

that DI = gen(d) U AI. In this case, d is called a root of I. 

In order to show that it is sufficient to consider such rooted feature alge

bras when interested in satisfiability of feature terms, we need the following 

weak notion of restriction of a feature algebra. Let I be a feature algebra 

and let M be a subset of DI. Then a feature algebra .:J is called a quasi

restriction of I to the subset M iff it satisfies the following properties: 

2. a:r = aT for all atoms a, 

3. A:r n M = AI n M for all sorts A, and 

4. f:r = fT n M x M for all features f. 

For a given feature algebra I and a subset M of DI there may exist more 

than one quasi-restriction of I to M. These quasi-restrictions may differ in 

the behavior of elements of AI - M with respect to sorts. Nevertheless, we 

shall often use the name IIM for such a quasi-restriction. We call .:J quasi

restriction of I and not restriction because usually one has that restrictions 

are unique. However, defining the notion "quasi-restriction to a set M" in 

this non-unique way is necessary for the proof of Corollary 3.4, which in turn 

is important for the proofs of Lemma 4.1 and Theorem 4.4. 

Lemma 3.1 Let IIM be a quasi-restriction of I to the subset M of DI. For 

all feature terms S and all elements d of DI satisfying gen (d) ~ M we have 

d E SI {:::::::} d E SIIM. 

Proof. The lemma is proved by induction on the structure of S. Without 

loss of generality we may assume that S contains only the forms a, A, p 1 q, 

~L(T), Tl n T2 , ,T. 

1. S = a for an atom a. Since IIM is a quasi-restriction of I to M we 

have aIIM = aI, and thus dE SI iff dE SIIM is trivially satisfied. 
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2. S = A for a sort A. We have AIIM n M = AI n M since IJM is a 

quasi-restriction of I to M, and dE M since gen(d) ~ M. This yields 

dE SI iff dE SIIM. 

3. S = plq for paths p, q. Let p = fl .. .Jk and q = gl ... g/. 

Assume that d E (p 1 q)T, that is, dr and dqT are both defined and 

equal. To be more precise, that means there exist dl , ••• , dk , el, ... , 

e/ in DT such that (d, dt) E ff, (dt, d2) E fi,···, (dk-t, dk) E fl, 

(d, ed E gi, (et, e2) E gf, ... , (e/-l, e/) E gT, and dk = e/. Obviously, 

dl , ... , dk, el, ... , e/ are all elements of gen(d), and thus of M. But then 

dpIIM = dk = e/ = dqIIM, which shows d E (p 1 q VIM. 

Conversely, assume that d E (p 1 q )TIM, that is, dpTIM = e = dqIIM for 

an element e E DTIM. Obviously, this implies dpT = e = dqT, and thus 

dE (plq)T. 

4. S = :JL(T) for a feature term T and a description L of a regular set of 

paths. 

Assume that d E (:JL(T) )T, that is, there exists a path pEL and 

an element e E TT such that dpI = e. As above, dpT = e implies 

dpTIM = e. In addition, e E gen(d) yields gen(e) ~ gen(d) ~ M. Thus 

we can apply the induction hypothesis to T and e, and get e E TTIM. 

This shows d E (:JL(T))TIM. 

The other di rection can be proved in a similar way. 

5. S = Tl n T2. By induction, we have for i = 1,2 that d E T{ iff d E 

TiT1M . This yields d E (Tl n T2V iff d E (Tl n T2)TIM . 

6. S = ...,T. By induction, we have d E TT iff d E TIIM. This yields 

dE (...,T)T iff dE (...,TVIM. 

This completes the proof of the lemma. o 

If we take M = gen (d ) in this lemma we get 

Theorem 3.2 Let I be a feature algebra, d be an element of DT, and S be 

a feature term. Then 

provided that Ilgen (d ) is a quasi-restriction of I to gen(d). 

The theorem shows that one can restrict the attention to rooted feature 

algebras if one is interested in the satisfiability of a feature term. 
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Corollary 3.3 A feature term 5 is satisfiable if and only if there exists a 

rooted feature algebra I with root dEDI such that d E 5 I . 

As another consequence of Theorem 3.2 one gets that the behavior of an 

atom with respect to feature terms only depends on its behavior with respect 

to sorts. 

Corollary 3.4 Let b be an atom, and let I and :J be feature algebras such 

that bI E AI if and only if b:T E A:T holds for all sorts A. Then we have 

bI E 5 I if and only if b:T E 5:T for all feature terms 5. 

Proof. For an atom b the set gen(bI ) is always a singleton set consisting of 

the element lJI alone. Thus any quasi-restriction Ib of a feature algebra I to 

gen(bI ) has the set AI as its domain. By the definition of quasi-restrictions 

all the features are interpreted as empty relations in I b• For all sorts A we 

have bI E AI iff bIb E AIb, but the behavior of elements aIb for a =I b with 

respect to sorts is arbitrary. Together with Theorem 3.2 this observation 

c.ompletes the proof of the corollary. 0 

As already pointed out earlier this corollary will be important for the 

proofs of Lemma 4.1 and Theorem 4.4. 

4 Internalizing Sort Equations 

As mentioned above it is sufficient to consider only one sort equation of the 

form 5 == ~. Recall that we denote by F* the set of all paths, that is, the 

set of all words over F. 

Lemma 4.1 The feature term T is satisfiable w. r. t. the sort equation 5 == ~ 
if and only if the feature term T n VF*( -,5), and the feature terms -,5 n a 

for all atoms a are satisfiable. 

Proof. Assume that I is a feature algebra such that 5 I = ~ I = 0 and 

TI =I 0. Obviously, 5 I = 0 means that all the elements of DI are in (-,5)I. In 

particular, we have aI E (-,5)I for all atoms a. This shows. that (-,5na)I =I 0. 

Let dEDI be such that d E TI. In order to prove that d E 

(T n VF*( -,5))I it is enough to show that d E (VF*( -,5)? Let p E F* 
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and e E DT be such that dpT = e. Since all the elements of DT are in (-,S)T 

we have e E (-,S)T, which completes the proof of the "only-if" part of the 

lemma. 

Conversely, assume that the feature term Tn 'v'F*( -,5) and the feature 

terms -,5 n a for all atoms a are satisfiable. Let T be a feature algebra such 

that (T n 'v'F*( -'S)? =I 0, and for all atoms a let Ta be a feature algebra such 

that (-,5 n a)T =I 0. Let d E DT be such that d E (T n 'v'F* (-,S))T. We want 

to define a quasi-restriction Tlgen(d) of T to gen (d) which satisfies the sort 

equation 5 == ~ and interprets the feature term T as nonempty set. For that 

purpose we have to fix the interpretation of the sorts on RA := AT - gen(d) 

in an appropriate way. This can be done as follows: For all sorts A we define 

ATlgen(d) := (AT n gen(d)) U {aT I aT E RA and aTa E ATa}. 

By Theorem 3.2 we have d E (T n 'v'F*( -,5) )Tlgen(d) since d E 

(T n 'v'F*(-'S)? In particular, this yields d E TTlgen(d). It remains to be 

shown that STlgen(d) = 0. Assume that there exists e E DTlgen(d) = gen (d)URA 

such that e E STlgen(d). 

If e E gen(d) then there exist a path p E F* such that e = dpT. But then 

e E STlgen(d) contradicts d E ('v'F*( -,5) )Tlgen(d). 

Assume that e ERA, that is , e = aT for an atom a such that aT rf. gen(d). 

We have defined Tlg en(d) such that e = aT1gen(d) E ATlgen(d) iff aTa E ATa holds 

for all sorts A. By Corollary 3.4 we get e = aTlgen(d) E (-,5 n a )Tlgen(d) since 

aTa E (-,5 n a )Ta. This is a contradiction to our assumption that e E STlgen(d). 

o 

Let us now consider the following condition more closely. 

Condition 4.2 Fo r all atoms a the f eature term -,5 n a is satisfiable. 

If there are no atoms, that is, if A = 0, then this condition is void. This 

yields 

Theorem 4.3 Assume that A = 0. Then the f eature term T is satisfiable 

w. r. t. the sort equation 5 == ~ if and only if the feature term T n 'v'F*( -,5) 

is satisfiable. 

Now assume that there exists at least one atom. In this case, Condi

tion 4.2 characterizes the consistency of the sort equation 5 ==== ~. 
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Theorem 4.4 Assume that A =1= 0. Then the sort equation S == ..1 is con

sistent if and only if for all atoms a the feature term -,S n a is satisfiable. 

Proof. Let I be a model of the sort equation S ==..1. This means that 

SI = 0, and thus (-'S)I = DI. Consequently, we have for a~y atom a that 

aI E DI = (-'S)I. But then aI E (-,S n al, which shows that this feature 

term is satisfiable. 

On the other hand, assume that for any atom a there is a feature algebra 

Ia such that (-,S n a )Ia =1= 0. This means that for any atom a we have 

aIa E (-,S)Ia. We define a new feature algebra I as follows: DI := {a I I 
a is an atom} where the aI are assumed to be different individuals; for all 

features f we define fI := 0; and for all sorts A we define AI := {a I I aIa E 

AIa}. Obviously, I is a feature algebra. By Corollary 3.4 we get for all atoms 

a that aI E (-'S)I because aIa E (-,S)Ia. This shows that (-,Sl = D I , and 

thus SI = 0. 0 

This theorem together with the lemma yields 

Theorem 4.5 Assume that A =1= 0. Then the feature term T is satisfiable 

w. r. t. the sort equation S == ..1 if and only if the sort equation S == ..1 is 

consistent and the feature term Tn VF*( -,S) is satisfiable. 

5 Consistency of Sort Equations 

Assume that A =1= 0, that is, there is at least one atom. Then Theorem 4.4 

yields a decision criterion for consistency of sort equations of the form S == ..1 , 

and thus for consistency of arbitrary finite sets of sort equations. 

Theorem 5.1 Assume that A =1= 0, and let £ be a finite set of sort equations. 

Then it is decidable whether £ is consistent or not. 

Proof. The first problem is that, if the set of atoms is infinite, we should 

have to consider infinitely many terms of the form -,S n a in order to check 

Condition 4.2. However, the sort equations contain only finitely many atoms. 

It is easy to see that it is enough to consider these finitely many atoms, and 

only one of the other atoms as specimen. Thus it remains to be shown that 

one can decide satisfiability of feature terms of the form -,S n a. But this is 

an easy consequence of the next lemma since satisfiability of feature terms 

not containing path quantifications is decidable [20J. 0 
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Lemma 5.2 Let T be a feature term and a be an atom. Then there exists a 

feature term T' without path quantifications such that T n a '" T' n a. 

Proof. It is easy to see that a term of the form V L(T1) n a or 3L(T1) n a 

is equivalent to the term Tl n a if the empty word c is in L. If c rt L, then 

V L(T1) n a is equivalent to Tn a and 3L(T1 ) n a is equivalent to ..1 n a. Using 

this fact, the lemma can easily be proved by induction. Please note that, 

if T starts with a negation, then this negation can be pushed into the term 

with the help of de Morgan's rules and the fact that -,VL(5) '" :3L(-,5) and 

-,:3L(5) '" VL(-,5). 0 

If A = 0, that is, there is no atom, then consistency of sort equations may 

become undecidable, even if the terms occurring in the sort equations do not 

contain path quantifications. We shall prove this result by a reduction of the 

word problem for groups. To this purpose we rephrase the word problem in 

such a way that it fits into our framework. 

Let E be a nonempty set of symbols, E* be the set of words over E, and 

c be the empty word. Under concatenation of words, E* is a monoid whose 

neutral element is c. A congruence is an equivalence relation", on E* such 

that p '" q implies rpr' '" rqr' for all p, q, 1', 1" E E*. If '" is clear from 

the context, we use p to denote the equivalence class of a word p E E* with 

respect to "'. The quotient E" / '" is again a monoid under the operation 

pq:= pq. 

A Thue equation over E is a set {p, q} consisting of two words p, q E E*. 

A Thue system over E is a finite set T of Thue equations over E. Every 

Thue system T over E defines a binary relation f-tT on E* by 

u f-tT v : ~ :3 W l , W2 E E* :3 {p, q} E T: u = WIPW2 1\ v = WI qW2. 

We use "'T to denote the reflexive and transitive closure of f-tT on E*. It is 

easy to see that "'T is a congruence on E". To be more precise, "'T is the 

least congruence'" such that p '" q for every Thue equation {p, q} in T. 

It is known that there exists a Thue system T consisting of seven equations 

over a two-element alphabet such that it is undecidable for two words p, q 

whether p "'T q holds or not (see, for instance, [2]). In the following we shall 

need a stronger version of this undecidability result, which is due to Novikov 

and Boone (see [13, 2, 21]): there is a finite set of symbols E and a Thue 

system G = { {Pl, c}, ... , {Pn, c}} such that 

1. for every fEE there is some q E E" such that G contains the Thue 

equation {fq, c} 
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2. the set of words p with p fG e is not recursively enumerable. 

In particular, it is undecidable whether p "'G c or not. Note that property (1) 

implies that E* / "'G is a group. 

Theorem 5.3 Assume that A = 0, that is, there is no atom. Then there 

exists a feature term S of the form 

such that the set of paths p for which the sort equation 

S n .(ple) == T 

is consistent is not recursively enumerable. In particular, it is undecidable 

whether the sort equation S n .(p 1 c) == T is consistent or not. 

Proof. Suppose that E is a set of symbols and G = { {pI, e}, ... , {Pn, e}} a 

Thue system over E with the properties stated in the theorem by Novikov 

and Boone. We regard elements of E as features and words over E as paths. 

Let S be the feature term 

To prove our claim it suffices to show that for every p E· E* the sort equation 

S n .(p 1 e) == T is consistent if and. only if p fG e. 

"::::}" Suppose p fG e. We construct a feature algebra I satisfying 

S n .(p 1 c) == T as follows: 

DI E* /"'G 
q fI q f for every fEE and q E E*. 

Since "'G is the congruence generated by G, we have Pi = "£ for every Thue 

equation {pi, c} in G. This implies q pf = qPi = qe = q for every q E DI. 

Hence, I satisfies S == T. 

Assume that I does not satisfy .(p 1 c) == T. Then there is some q E DI 

such that qpI = q, which implies that q = qp = qp. Since E* / 'VG is a group, 

the element q has an inverse q'. Then p = q'qp = q'q = "£, that is p 'VG e. We 

thus have obtained a contradiction to the fact that p fG c. Hence, q pI =I- q 

for all q E D I
, which implies that I satisfies .(p 1 c) == T. Since I satisfies 

S == T and .(p 1 c) == T, it follows that I satisfies S n .(p 1 c) == T. 

16 



"{=" Suppose P "'G c. Assume there is a feature algebra I that satisfies 

S n -,(p 1 c) == T. We define an equivalence relation", on ~* by 

q '" q' : {::::::} I satisfies q 1 q' == T. 

Since I satisfies S n -'(p 1 c) == T, it follows that I satisfies Pi 1 c == T for 

every Thue equation {pi'c} in G. By property (1) of G, for every f E ~ 
there is some q E ~* such that I satisfies f q 1 c == T . This means that for 

every d E D T we have dfT qT = d. Hence, every fT is a total function on 

DT. We conclude that for all q, q', r, r' E ~* the feature algebra I satisfies 

rqr'l rq'r' == T if I satisfies q 1 q' == T. Thus, '" is a congruence. 

For every Thue equation {pi, c} in G, the feature algebra I satisfies 

pd c == T, which implies Pi '" c. By definition, "'G is the least congru

ence with this property. Therefore, P "'G c implies P '" c, that is, I satisfies 

P 1 c == T . This contradicts our assumption that I satisfies -,(p 1 c) == T. We 

conclude that S n -,(p 1 c) == T is unsatisfiable. 0 

6 Satisfiability is Undecidable 

As an easy consequence of Theorem 5.3 we get that satisfiability of feature 

terms w.r.t. sort equations is undecidable, if we have no atoms. In fact, the 

feature term T is satisfiable w.r.t. a finite set of sort equations £ if and only 

if £ is consistent. 

We have seen that consistency of sort equations is decidable, if we have 

at least one atom. But satisfiability of feature terms w.r.t. sort equations is 

nevertheless undecidable in this case. This is shown in [20] in the presence of 

three features, two atoms and one sort. The sort equations and the feature 

term constructed in [20] do not contain path quantifications. 

Taking the two results together we thus have 

Theorem 6 .1 Satisfiability of feature terms w. r. t. sort equations is undecid

able. This holds even if path quantifications are disallowed, and it does not 

depend on whether A = 0 or A =I- 0. 

In the light of Section 4, this theorem shows that satisfiability of feature 

terms with path quantifications is undecidable, independently on whether we 

have atoms or not . 
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Theorem 6.2 Satisfiability of feature terms with path quantification zs un

decidable. This result does not depend on whether A = 0 or A =I- 0. 

Proof. Assume that satisfiability of feature terms with path quantifications 

is decidable. Then the characterizations of satisfiability of feature terms 

w.r.t. sort equations given in Theorem 4.3 (for A = 0) or Theorem 4.5 (for 

A =I- 0) would yield a decision criterion for satisfiability w.r.t. sort equations. 

This is a contradiction to Theorem 6.l. 0 

7 Conclusion 

We have studied the expressivity of functional uncertainty in a feature term 

language with negation and obtained two main results: satisfiability is unde

cidable and sort equations can be internalized. For practical applications in 

grammar formalisms this language is probably too expressive since general 

negation is not needed. Thus it would be interesting to find out whether 

satisfiability of feature terms built from the forms a, A, p 1 q, :lL(S), and 

S n 5' is decidable. 

Feature logics are closely related to terminological logics [3, 11, 12, 17], 

which are employed in knowledge representation and grew out of research in 

semantic networks and frame systems. The essential difference between these 

two formalisms is that in terminological logics attributes can be nonfunctional 

while they must be functional in feature logics. 

Baader [1] studies a terminological logic that can be obtained from the 

feature logic in this paper by three changes: disallow atoms and agreements, 

and admit also interpretations that interpret features as nonfunctional binary 

"relations. He shows that in this logic satisfiability of "feature terms" (which 

are called concept terms in this context) is decidable. Since concept equations 

(i.e., the equivalent of the sort equations of the present paper) can also be 

internalized with the help of path quantifications, the algorithm given in [1] 

also yields a decision procedure for satisfiability w.r.t. concept equations. 

Baader's algorithm can easily be adapted to the case where one allows only 

functional binary relations. This means that the feature logic of the present 

paper becomes decida.ble if agreements and atoms are disallowed. 

Similar results for terminological logics have independently been obtained 

by Schild [16] as byproducts of the correspondence he exhibits between termi

nologicallogics and dynamic logics. In addition, he shows tha.t this correspon

dence also yields complexity results for the terminological logic considered 
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by Baader, and for our feat ure logic if agreements and atoms are disallowed. 

In both cases, one has an EXPTIME-complete satisfiability problem. 
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