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Abstract: The Hausdorff approximation of the impulse function σ
∗∗(t) by sigmoidal func-

tions based on the extended Chen’s and Pham’s cumulative functions are studied and an

expression for the error of the best approximation is found. The received results are of inde-

pendent significance in the study of issues related to neural networks and impulse technics.

Using programming environment Mathematica we give results of many numerical examples

which confirm the theory presented here. We give also real examples with data provided in

[4] using extended Chen’s software reliability model and extended Pham’s deterministic soft-

ware reliability model. Dataset included [5] Year 2000 compatibility modifications, operating

system upgrade, and signaling message processing. Some direct comparisons are made.
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1. Introduction

An important role within the hierarchical models in the procedure for quanti-
fying the quality of software products is played by the so-called computational
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method based on the theoretical and empirical dependencies (usually at an
early stage in their development), statistical data accumulated during tests,
exploitation and the accompaniment of the program product.

An important measure of reliability assessment (completeness, accuracy and
consistency) is the so-called metric (asymptotic metrics).

There are two main approaches to testing: structured and functional.

Many studies have been devoted to this overarching theme. We will only
note that, depending on the test data selected and the expected results, testing
is divided into: deterministic testing and stochastic testing.

Detailed description of all elements in the area of debugging theory may be
found in the following books [1]–[3].

For some degradation models with applications to reliability and survival
analysis, see [6].

In the book [7], we pay particular attention to both deterministic approaches
and probability models for debugging theories.

A Hausdorff metric was chosen to evaluate the test data which are fitted to
the sigmoid models proposed in this book.

Some of the existing cumulative distributions (Gompertz–Makeham, Yamada-
exponential, Yamada–Rayleigh, Yamada–Weibull, transmuted inverse expo-
nential, transmuted Log-Logistic, Kumaraswamy–Dagum and Kumaraswamy
Quasi Lindley) are considered in the light of modern debugging and test theo-
ries.

Some software reliability models, can be found in [8]–[32].

In a number of cases, these results have independent significance in the
study of issues related to neural networks and impulse technics (see, for instance
[33]–[39], [40]–[52]).

In this note we study the Hausdorff approximation of the impulse function
σ∗∗(t) by sigmoidal functions based on the extended Chen’s [53] and Pham’s
cumulative functions.

We propose a software modules (intellectual properties) within the pro-
gramming environment CAS Mathematica for the analysis.

The models have been tested with real-world data.

2. Preliminaries

The typical example of impulse function from antenna feeder technique has the
following shape (see, Fig. 1):
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Figure 1: The signal of σ∗∗(t) – type.

σ∗∗(t) =







1, t ∈ [−∞,−1) ∪ (1,+∞)

0, t ∈ [−1, 1].
(1)

Many probability distributions haven been introduced to analyze real datasets
with bathtub failure rates.

Definition 1. The extended Chen [53] software reliability model is given
as follows (see, Chaubey and Zhang [57]):

M(t) = ω

(

1− eλ(1−et
β
)

)α

(2)

where λ > 0, α > 0, β > 0.
For other extensions of the Chen distribution, see [54] – [57].

Definition 2. [5] The extended deterministic Pham’s software reliability
model is given as follows:

M1(t) = N ∗

(

1−
β

β + (at)b

)α

(3)

where a > 0, b > 0, α > 0, β > 0.

Definition 3. [58] The Hausdorff distance (the H–distance) ρ(f, g) be-
tween two interval functions f, g on Ω ⊆ R, is the distance between their com-
pleted graphs F (f) and F (g) considered as closed subsets of Ω × R. More
precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB , xB) in R
2 is

||A−B|| = max(|tA − tB|, |xA − xB |).
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3. Main Results

3.1. A Note on the Extended Chen’s Function

We consider the following sigmoid:

M∗(t) =

(

1− eλ(1−et
β
)

)α

, (4)

with ω = 1, β - is an even number and

t0 =

(

ln

(

1−
1

λ
ln
(

1− 2−
1
α

)

))
1
β

; M∗(t0) =
1

2
. (5)

The one–sided Hausdorff distance d between the function σ∗∗(t) and the
sigmoid ((4)–(5)) satisfies the relation

M∗(t0 − d) = d. (6)

The following theorem gives upper and lower bounds for d
Theorem 1. Let

p =
1

2
,

q = −1−

(

1−
1

λ
ln
(

1− 2−
1
α

)

)

(

1− 2−
1
α

)

(

1

2

)
α−1
α

×

(

ln

(

1−
1

λ
ln
(

1− 2−
1
α

)

))
β−1
β

αβλ.

For the one–sided Hausdorff distance d between σ∗∗(t) and the sigmoid
((4)–(5)) the following inequalities hold for:

−2.1q > e1.05

dl =
1

−2.1q
< d <

ln(−2.1q)

−2.1q
= dr. (7)

Proof. Let us examine the function:

F (d) = M∗(t0 − d)− d. (8)

We see that q < 0. From F ′(d) < 0 we conclude that function F is decreasing.
Consider the function

G(d) = p+ qd. (9)
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Figure 2: The functions F (d) and G(d).

From Taylor expansion we obtain G(d) − F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 2).

In addition G′(d) < 0.

Further, for −2.1q > e1.05 we have G(dl) > 0 and G(dr) < 0.

This completes the proof of the theorem.

3.2. Numerical Examples

1. Hausdorff approximation of the impulse function σ∗∗(t) by sig-
moidal function based on the extended Chen’s [53] cumulative func-
tion.

The model ((4)–(5)) for β = 6, α = 0.95, λ = 10, t0 = 0.631995 is visualized
on Fig. 3.

From the nonlinear equation (6) and inequalities (7) we have: d = 0.142801,
dl = 0.110996 and dr = 0.243998.

2. Application in the field of antenna–feeder technique.

After the substitution t = kr cos θ + a, where

– k = 2π
l
, l is the wave length;

– a is the phase difference;

– θ is the azimuthal angle;

– r is the distance between the emitters (r = l
2 is fixed),

the function M∗(t) for λ > 0, α > 0, β > 0 (or emitting chart of antenna factor)
can be written in the form:
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Figure 3: The model ((4)–(5)) for β = 6, α = 0.95, λ = 10, t0 =
0.631995; H–distance d = 0.142801, dl = 0.110996, dr = 0.243998.

M∗(θ) =

(

1− eλ(1−e(π cos θ+a)β )

)α

. (10)

Typical emitting chart is visualized on Fig. 4.
Of course, the question of the practical realization of the activation functions

which are generated as emitting charts remains open.
The mathematical apparatus proposed in the article can be successfully

used for imitation and simulation of such charts.
3. Application in the field of debugging and test theory.
We give real examples with data provided in [4].
The operating time of the software is 167,900 days. 115 failures are detected

for these days which contain 71 unique failures.
Table 1 shows the failures data which are united for each of the 13 months.
Dataset included [5] Year 2000 compatibility modifications, operating sys-

tem upgrade, and signaling message processing.
The fitted model

M(t) = ω

(

1− eλ(1−et
β
)

)α

based on the data of Table 1 for the estimated parameters:

ω = 110; λ = 0.026895; β = 0.816531; α = 0.457081

is plotted on Fig. 5.
In conclusion, we will note that the determination of compulsory in area of

the Software Reliability Theory components, such as confidence intervals and
confidence bounds, should also be accompanied by a serious analysis of the
value of the best Hausdorff approximation - the subject of study in the present
paper.
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Figure 4: Typical emitting chart (M∗(θ)) for β = 2; a = 0.01; α = 0.99;
λ = 0.01.

We hope that the results will be useful for specialists in this scientific area.

3.3. A Note on the Extended Deterministic Pham’s Software
Reliability Model

In this Section we study the Hausdorff approximation of the shifted Heaviside
function
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Month
Index

System
Days
(Days)

System
Days (Cu-
mulative)

Failures Cumulative
Failures

1 961 961 7 7

2 4170 5131 3 10

3 8789 13,920 14 24

4 11,858 25,778 8 32

5 13,110 38,888 11 43

6 14,198 53,086 8 51

7 14,265 67,351 7 58

8 15,175 82,526 19 77

9 15,376 97,902 17 94

10 15,704 113,606 6 100

11 18,182 131,788 11 111

12 17,760 149,548 4 115

13 18,352 167,900 0 115

Table 1: Field failure data [4].

ht0(t) =











0, if t < t0,

[0, 1], if t = t0

1, if t > t0

(11)

by sigmoidal function based on the extended Pham’s cumulative function

M∗
1 (t) = N ∗

(

1−
β

β + (at)b

)α

(12)

with N = 1, b = β, without loosing of generality and

t0 =
1

a



β





1

1−
(

1
2

)
1
α

− 1









1
β

; M∗
1 (t0) =

1

2
. (13)

The one–sided Hausdorff distance d between the Heaviside step function
ht0(t) and the sigmoid M∗

1 (t) satisfies the relation

M∗
1 (t0 + d1) = 1− d1. (14)

The following theorem gives upper and lower bounds for d1
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Figure 5: An example of the usage of dynamical and graphical repre-
sentation for the function M(t).

Theorem 2. Let

p1 = −
1

2
,

q1 = 1 +



β





1

1−
(

1
2

)
1
α

− 1









β−1
β
(

1

2

)
α−1
α

(

1−

(

1

2

)
1
α

)2

aα.

For the one–sided Hausdorff distance d1 between ht0 and the sigmoid M∗
1 (t)

the following inequalities hold for:

2.1q1 > e1.05

dl1 =
1

2.1q1
< d1 <

ln(2.1q1)

2.1q1
= dr1 . (15)

Proof. Let us examine the functions:

F1(d1) = M∗
1 (t0 + d1)− 1 + d1. (16)
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Figure 6: The functions F1(d1) and G1(d1).

G1(d1) = p1 + q1d1. (17)

From Taylor expansion we obtain G1(d1)− F1(d1) = O(d21).
Hence G1(d1) approximates F1(d1) with d1 → 0 as O(d21) (see Fig. 6).
In addition G′(d1) > 0.
Further, for 2.1q1 > e1.05 we have G1(dl1) < 0 and G(dr1) > 0.
This completes the proof of the theorem.
For the parameters of the function M∗

1 (t) at fixed t0 we get α = 0.95;
a = 3.9; β = 4 and from the nonlinear equation (14) and inequalities (15) we
have: d1 = 0.172737, dl1 = 0.126554 and dr1 = 0.261598 (see, Fig. 7).

For other software reliability models, see [59]–[65]. A new class activation
functions with application in the theory of impulse technics is being discussed
in [52].
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Figure 7: The function M∗
1 (t) for α = 0.95; a = 3.9; β = 4; H–distance

d1 = 0.172737, dl1 = 0.126554, dr1 = 0.261598.

Figure 8: The function M∗
1 (t) for α = 0.99; a = 7.5; β = 5; t0 =

0.183451; H–distance d1 = 0.100876, dl1 = 0.061107, dr1 = 0.170802.

References

[1] S. Yamada, Software Reliability Modeling: Fundamentals and Applications, Springer
(2014).

[2] S. Yamada, Y. Tamura, OSS Reliability Measurement and Assessment, In: Springer Series



1064 N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev

in Reliability Engineering (H. Pham, Ed.), Springer International Publishing Switzerland
(2016).

[3] H. Pham, System Software Reliability, In: Springer Series in Reliability Engineering,
Springer–Verlag London Limited (2006).

[4] D.R. Jeske, X. Zhang, Some successful approaches to software reliability modeling in
industry, J. Syst. Softw., 74 (2005), 85–99.

[5] K. Song, H. Pham, A Software Reliability Model with a Weibull Fault Detec-
tion Rate Function Subject to Operating Environments, Appl. Sci., 7 (2017), 983;
doi:10.3390/app7100983, 16 pp.

[6] Advances in Degradation Modeling. Applications to reliability, survival analysis and fi-

nance (M. Nikulin, N. Limnios, N. Balakrishnan, W. Kahle and C. Huber–Carol, Editors),
Birkhauser (2010).

[7] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Ap-

proximation and modeling aspects, LAP LAMBERT Academic Publishing (2018), ISBN:
978-613-9-82805-0.

[8] K. Ohishi, H. Okamura, T. Dohi, Gompertz software reliability model: Estimation algo-
rithm and empirical validation, J. of Systems and Software, 82 (2009), 535–543.

[9] D. Satoh, A discrete Gompertz equation and a software reliability growth model, IEICE
Trans. Inform. Syst., E83-D (2000), 1508–1513.

[10] D. Satoh, S. Yamada, Discrete equations and software reliability growth models, in: Proc.
12th Int. Symp. on Software Reliab. and Eng., (2001), 176–184.

[11] S. Yamada, A stochastic software reliability growth model with Gompertz curve, Trans.
IPSJ, 33 (1992), 964–969. (in Japanese)

[12] P. Oguntunde, A. Adejumo, E. Owoloko, On the flexibility of the transmuted inverse
exponential distribution, Proc. of the World Congress on Engineering, July 5–7, 2017,
London, 1 (2017).

[13] W. Shaw, I. Buckley, The alchemy of probability distributions: Beyond Gram–Charlier
expansions and a skew–kurtotic–normal distribution from a rank transmutation map,
(2009), Research report.

[14] M. Khan, Transmuted generalized inverted exponential distribution with application to
reliability data, Thailand Statistician, 16 (2018), 14–25.

[15] A. Abouammd, A. Alshingiti, Reliability estimation of generalized inverted exponential
distribution, J. Stat. Comput. Simul., 79 (2009), 1301–1315.

[16] I. Ellatal, Transmuted generalized inverted exponential distribution, Econom. Qual. Con-

trol, 28 (2014), 125–133.

[17] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling

Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN 978-3-659-
76045-7.

[18] A. Iliev, N. Kyurkchiev, S. Markov, A note on the new activation function of Gompertz
type, Biomath Communications, 4 (2017).

[19] N. Kyurkchiev, A. Iliev, S. Markov, Some techniques for recurrence generating of activa-

tion functions, LAP LAMBERT Academic Publishing (2017), ISBN 978-3-330-33143-3.



ON THE EXTENDED CHEN’S AND PHAM’S SOFTWARE... 1065

[20] E. P. Virene, Reliability growth and its upper limit, in: Proc. 1968, Annual Symp. on

Realib., (1968), 265–270.

[21] S. Rafi, S. Akthar, Software Reliability Growth Model with Gompertz TEF and Opti-
mal Release Time Determination by Improving the Test Efficiency, Int. J. of Comput.

Applications, 7 (2010), 34–43.

[22] F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, H. Efendic, Residua–based fault detec-
tion using soft computing techniques for condition monitoring at rolling mills, Informa-

tion Sciences, 259 (2014), 304–320.

[23] S. Yamada, M. Ohba, S. Osaki, S–shaped reliability growth modeling for software error
detection, IEEE Trans, Reliab., R–32 (1983), 475–478.

[24] S. Yamada, S. Osaki, Software reliability growth modeling: Models and Applications,
IEEE Transaction on Software Engineering, SE–11 (1985), 1431–1437.

[25] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, A new class of Gompertz–type software
reliability models, [International Electronic Journal of Pure and Applied Mathematics,
12 (2018), 43–57.

[26] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, Some deterministic reliability growth
curves for software error detection: Approximation and modeling aspects, International
Journal of Pure and Applied Mathematics, 118 (2018), 599–611.

[27] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the Yamada–exponential
software reliability model, International Journal of Pure and Applied Mathematics, 118
(2018), 871–882.

[28] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on The ”Mean Value” Software
Reliability Model, International Journal of Pure and Applied Mathematics, 118 (2018),
949–956.

[29] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the generalized inverted
exponential software reliability model, International Journal of Advanced Research in

Computer and Communication Engineering, 7 (2018), 484–487.

[30] A. L. Goel, Software reliability models: Assumptions, limitations and applicability, IEEE
Trans. Software Eng. SE–11 (1985), 1411–1423.

[31] J. D. Musa, Software Reliability Data, DACS, RADC, New York (1980).

[32] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Transmuted inverse exponential software
reliability model, Int. J. of Latest Research in Engineering and Technology, 4 (2018)
(accepted).

[33] N. Kyurkchiev, A. Iliev and S. Markov, Some techniques for recurrence generating of

activation functions, LAP LAMBERT Academic Publishing (2017), ISBN 978-3-330-
33143-3.

[34] V. Kyurkchiev, N. Kyurkchiev, A family of recurrence generated functions based on Half-
hyperbolic tangent activation functions, Biomedical Statistics and Informatics, 2 (2017),
87–94.

[35] N. Guliyev, V. Ismailov, A single hidden layer feedforward network with only one neuron
in the hidden layer san approximate any univariate function, Neural Computation, 28
(2016), 1289-1304.

[36] D. Costarelli, R. Spigler, Approximation results for neural network operators activated
by sigmoidal functions, Neural Networks, 44 (2013), 101-106.



1066 N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev

[37] D. Costarelli, G. Vinti, Pointwise and uniform approximation by multivariate
neural network operators of the max-product type, Neural Networks, (2016),
doi:10.1016/j.neunet.2016.06.002

[38] D. Costarelli, R. Spigler, Solving numerically nonlinear systems of balance laws by mul-
tivariate sigmoidal functions approximation, Computational and Applied Mathematics,
(2016), doi:10.1007/s40314-016-0334-8

[39] D. Costarelli, G. Vinti, Convergence for a family of neural network operators in Orlicz
spaces, Mathematische Nachrichten, (2016), doi: 10.1002/mana.20160006

[40] N. Kyurkchiev, A. Andreev, Approximation and antenna and filter synthesis: Some mod-

uli in programming environment Mathematica, LAP LAMBERT Academic Publishing,
Saarbrucken (2014), ISBN 978-3-659-53322-8.

[41] N. Kyurkchiev, Bl. Sendov, Approximation of a class of functions by algebraic polynomi-
als with respect to Hausdorff distance, Ann. Univ. Sofia, Fac. Math., 67 (1975), 573–579.
(in Bulgarian)

[42] N. Kyurkchiev, S. Markov, On the Hausdorff distance between the Heaviside step function
and Verhulst logistic function, J. Math. Chem., 54 (2016), 109–119.

[43] A. Andreev, N. Kyurkchiev, Approximation of some impulse functions - implementation
in programming environment MATHEMATICA, Proceedings of the 43 Spring Conference

of the Union of Bulgarian Mathematicians, Borovetz, April 2-6, (2014), 111–117.

[44] N. Kyurkchiev, S. Markov, On the numerical approximation of the ”cross” set, Ann.

Univ. Sofia, Fac. Math., 66 (1974), 19–25. (in Bulgarian)

[45] N. Kyurkchiev, A. Andreev, Hausdorff approximation of functions different from zero at
one point - implementation in programming environment MATHEMATICA, Serdica J.

of Computing, 7 (2013), 135–142.

[46] N. Kyurkchiev, A. Andreev, Synthesis of slot aerial grids with Hausdorff–type direc-
tive patterns – implementation in programming environment Mathematica, C.R. Acad.
Bulgare Sci., 66 (2013), 1521–1528.

[47] N. Kyurkchiev, Synthesis of slot aerial grids with Hausdorff type directive patterns, PhD
Thesis, Department of Radio-Electronics, VMEI, Sofia (1979). (in Bulgarian)

[48] Bl. Sendov, H. Schinev, N. Kjurkchiev, Hausdorff-synthesis of aerial grids in scanning
the directive diagram, Electropromishlenost i Priboroostroene, 16 (1981), 203–205. (in
Bulgarian)

[49] H. Schinev, N. Kjurkchiev, M. Gachev, Experimental investigations of slot aerial grids
with Hausdorff type directive patterns, Electropromishlenost i Priboroostroene, 14 (1979),
223–224. (in Bulgarian)

[50] H. Shinev, N. Kyurkchiev, M. Gachev, S. Markov, Application of a class of polynomials
of best approximation to linear antenna array synthesis, Izv. VMEI, Sofia, 34 (1975),
1–6. (in Bulgarian)

[51] A. Golev, T. Djamiykov, N. Kyurkchiev, Sigmoidal functions in antenna-feeder technique,
Int. J. of Pure and Appl. Math., 116 (2017), 1081–1092.

[52] N. Kyurkchiev, A new class activation functions with application in the theory of impulse
technics, Journal of Mathematical Sciences and Modelling (2018), ID 421392. (accepted)

[53] Z. Chen, A new two–parameter lifetime distribution with bathtub shape or increasing
failure rate function, Stat. and Prob. Letters, 49 (2000), 155–161.



ON THE EXTENDED CHEN’S AND PHAM’S SOFTWARE... 1067

[54] M. Xie, Y. Tang, T. Goh, A modified Weibull extension with bathtub–shaped failure rate
function, Reliability Eng. and System Safety, 76 (2002), 279–285.

[55] M. Khan, A. Sharma, Generalized order statistics from Chen distribution and its char-
acterization, J. of Stat. Appl. and Prob., 5 (2016), 123–128.

[56] S. Dey, D. Kumar, P. Ramos, F. Louzada, Exponentiated Chen distribution: Properties
and Estimations, Comm. in Stat.–Simulation and Computation, (2017), 1–22.

[57] Y. Chaubey, R. Zhang, An extension of Chen’s family of survival distributions with
bathtub shape or increasing hazard rate function, Comm. in Stat.–Theory and Methods,
44 (2015), 4049–4069.

[58] B. Sendov, Hausdorff Approximations, Kluwer, Boston (1990).

[59] A. Pandey, N. Goyal, Early Software Reliability Prediction. A Fuzzy Logic Approach, In:
Studies in Fuzziness and Soft Computing (J. Kacprzyk, Ed.), vol. 303, Springer, London
(2013).

[60] N. D. Singpurwalla, S. P. Wilson, Statistical Methods in Software Engineering. Reliability

and Risk, In: Springer Series in Statistics (P. Bickel, Adv.), Springer, New York (1999).

[61] M. Bisi, N. Goyal, Artificial Neural Network for Software Reliability Prediction, In: Per-
formability Engineering Series (K. Misra and J. Andrews, Eds.), John Wiley & Sons,
Inc., New Jersey (2017).

[62] P. K. Kapur, H. Pham, A. Gupta, P. C. Jha, Software Reliability Assessment with OR

Applications, In: Springer Series in Reliability Engineering, Springer-Verlag, London
(2011).

[63] P. Karup, R. Garg, S. Kumar, Contributions to Hardware and Software Reliability, World
Scientific, London (1999).

[64] M. Lyu (Ed. in Chief), Handbook of Software Reliability Engineering, IEEE Computer
Society Press, The McGraw-Hill Companies, Los Alamitos (1996).

[65] M. Ohba, Software reliability analysis models, IBM J. Research and Development, 21
(1984).



1068


