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c© Birkhäuser Verlag, Basel, 2000
1424-0637/00/030405-38 $ 1.50+0.20/0 Annales Henri Poincaré

On the Extended Nature of Edge States of Quantum
Hall Hamiltonians

J. Fröhlich, G. M. Graf and J. Walcher

Abstract. Properties of eigenstates of one-particle Quantum Hall Hamiltonians lo-
calized near the boundary of a two-dimensional electron gas - so-called edge states
- are studied. For finite samples it is shown that edge states with energy in an
appropriate range between Landau levels remain extended along the boundary in
the presence of a small amount of disorder, in the sense that they carry a non-zero
chiral edge current. For a two-dimensional electron gas confined to a half-plane,
or to a domain in the plane satisfying a certain geometric condition, the Mourre
theory of positive commutators is applied to prove absolute continuity of the energy
spectrum well in between Landau levels, corresponding to edge states.

1 Introduction and summary of results

In this paper, we study two-dimensional electron gases in a uniform magnetic field
perpendicular to the plane, in the presence of a small amount of disorder. The
integer quantum Hall effect, discovered by von Klitzing [1], is the phenomenon
that when the Fermi energy of the electron gas is well in between two Landau
levels, the Hall conductance is equal to an integer multiple of e2/h.

Under the assumption of negligibly small electron-electron interactions, the
integer quantum Hall effect can be derived from a simple one-electron picture.
For an appropriate choice of sample geometry, described by a potential confining
the electrons to the sample, and for a small amount of disorder, one can analyze,
qualitatively, the energy spectrum of the corresponding one-particle Hamiltonian.
In particular, as we show in this paper, eigenenergies well in between Landau
levels correspond to eigenstates localized near, but extended along, the boundary
of the sample, so called edge states. Those edge states carry a non-zero chiral
edge current. Given a small voltage drop between two parallel components of the
boundary, the edge states corresponding to the two boundary components will
be filled somewhat asymmetrically with electrons. The result is a net Hall current
parallel to the boundary and proportional to the voltage drop. The proportionality
factor is the Hall conductivity. If the Fermi energy of the electron gas is well in
between two Landau levels, and if the voltage drop is small compared to the
energy gap between two adjacent Landau levels and to the Zeeman energy of the
magnetic moment of an electron, the spectral properties of the Hamiltonian yield
a Hall conductivity equal to e2/h times the number of Landau levels below the
Fermi energy, which is an integer. An argument of this sort, based on a clever use
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of gauge invariance, was first given by Laughlin [2] and subsequently refined by
many other people (see e.g. [3], [4]). The idea that the Hall current is supported
by edge states first appeared in a paper of Halperin [3]. The fundamental role
of edge currents in the integer and the fractional quantum Hall effect was later
understood in terms of a gauge anomaly cancellation mechanism in [5] and [6].
In this paper, we provide a rigorous analysis of one important detail underlying
Halperin’s argument, namely of the question whether, and in what sense, the edge
states are indeed extended states.

Because we neglect electron-electron interactions, the magnetic moment of
the electron turns out to be essentially irrelevant in our analysis, and we thus
neglect electron spin. The one-electron Hamiltonian is therefore given by

H =
1

2m
(~p− e ~A)2 + V . (1.1)

In (1.1), m is the mass of an electron, e is its charge, ~A is an electromagnetic
vector potential corresponding to a constant magnetic field ~B = curl ~A, and V =
V0 + gVd is an external potential consisting of an edge potential, V0, that confines
the electron to the sample, and a disorder potential, gVd, corresponding to the
presence of random impurities. The factor g, a “coupling constant”, is a measure
for the strength of the disorder. The potential V0 can be replaced by appropriate
boundary conditions in the definition of the covariant Laplacian, (~p− e ~A)2, which
prevent an electron from leaving the sample; see, for example, [17], and section 6
of the present paper.

The location of the energy spectrum of the one-particle Hamiltonian (1.1)
is indicated in figure 1. This spectrum consists of a part corresponding to “bulk
states” and a part corresponding to “edge states”. The former is located near the
Landau levels, which are broadened by the disorder potential. Most of the bulk
states are localized, but close to each Landau level, there are eigenvalues corre-
sponding to extended bulk states. It is well known that in order to observe quantum
Hall plateaux, one needs to have localized bulk states. The energy spectrum corre-
sponding to edge states is located in the intervals between the broadened Landau
levels. For a sample covering the entire plane, the intervals between the broadened
Landau levels would be spectral gaps.

The edge states of clean samples (g = 0) are well understood. For a bounded
sample and weak disorder, one may use analytic perturbation theory in the disorder
potential, gVd, in order to analyze the edge states. Unfortunately, as the sample
size increases, the spacing between eigenvalues of H corresponding to edge states
becomes smaller and smaller, and, as a consequence, the convergence radius of the
perturbation series in g becomes smaller and smaller. Perturbation theory cannot
be used in the limit of an infinitely large sample.

The relation between quantization of the Hall conductivity and the extended
nature of edge states is reviewed in section 2. Our definition of extended edge
states for bounded samples is that they carry a non-vanishing chiral current. It
is this property that plays an essential role in our analysis of the quantization of
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Figure 1: Bulk and edge spectrum ofH. The energy scale is the cyclotron frequency
~ωc = eB/m.

the Hall conductivity. In sections 4, 5, and 6 the extended nature of edge states is
established on the basis of arguments which are valid for sufficiently weak disorder,
i.e. for |g| < g∗, but our bounds on g∗ are uniform in the sample size. In sections
2 and 4, our sample has the original Laughlin cylinder geometry, but our proofs
can be adapted for other sample shapes, such as the Corbino disc geometry used
by Halperin [3], which we treat in an appendix.

For infinite samples, the natural definition of “extended states” is that they
correspond to absolutely continuous spectrum. In section 5, we consider the case of
a two-dimensional electron gas confined to a half-plane by a smooth but steep edge
potential, and prove that the energy spectrum well in between Landau levels is
absolutely continuous for weak disorder. It turns out that our bound on the allowed
strength of the disorder becomes smaller as the edge is made steeper. In section
6, we treat an “infinitely steep” edge directly by introducing Dirichlet boundary
conditions in the definition of the covariant Laplacian. We show that for weak
disorder, the edge states are again extended states. Our proofs can be extended to
more general domains than the half-plane, provided they satisfy a certain geometric
condition. The proofs in sections 5 and 6 are based on an application of the Mourre
theory of positive commutators [7], which is briefly presented in section 3.

For both finite and infinite samples, the extended nature of the edge states
is analyzed with the help of the so-called “guiding center” of cyclotron motion.
The commutator of the coordinate of the guiding center along the edge with the
Hamiltonian is given by the derivative of the potential in the direction perpen-
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dicular to the edge∗. The proofs are reduced to showing that this commutator is
positive on states with energy well in between Landau levels. Instead of the guid-
ing center, one can also use the coordinate of the particle itself along the edge as
conjugate operator in the sense of Mourre theory. For the problem with Dirichlet
boundary conditions, De Bièvre and Pulé [20] have shown that this allows to relax
the assumptions on the disorder potential. It turns out that a Mourre estimate for
one commutator is equivalent to a Mourre estimate for the other with the same
lower bound on the commutator, but the techniques used to prove the estimate
are different. In section 6, combining the two ideas, we use the coordinate of the
particle itself as conjugate operator in the sense of Mourre theory, but prove the
positivity of the commutator by considering the coordinate of the guiding center.

Recently, Macris, Martin, and Pulé (see [19]) have studied the half-plane
case by a somewhat different method. They rule out the existence of eigenvalues
between the broadened Landau levels by showing that the expectation value of
the derivative of the potential in the direction perpendicular to the edge would
be positive in an assumed eigenstate with energy between the broadened Landau
levels. This would contradict the fact that the expectation value of a commutator
with the Hamiltonian in an energy eigenstate must vanish by the virial theorem. To
prove the positivity of the commutator in an assumed eigenstate, for weak disorder,
they estimate the decay of edge state eigenfunctions into the edge with the help
of Brownian motion techniques. Our use of the conjugate operator method allows
us to exclude not only point spectrum, but also singular continuous spectrum.
Furthermore, whereas the estimates for smooth potentials tend to fail in the limit
of an infinitely steep edge, we also treat the problem with Dirichlet boundary
conditions, and for more general domains than the half-plane.

2 The Laughlin argument revisited

In this section, we review the argument leading to the integer quantization of
the Hall conductivity, motivating our interest for the extended nature of edge
states. In order to keep our analysis as simple as possible, we consider the cylinder
geometry used in the original Laughlin argument [2]. The Hall current flows along
the circumference and the Hall voltage is measured between two edge circles (see
figure 2). In addition to the homogeneous magnetic field perpendicular to the
surface of the cylinder, there is a “magnetic flux tube”, Φ, at the axis of the
cylinder.

The cylinder is characterized by two length scales, the radius, R, and the
distance, L, between the two edges. Both lengths play a role in the mathematical
analysis. Increasing R reduces the spacing between edge state eigenvalues of the
Hamiltonian, and thus limits the applicability of perturbation theory to analyze
the edge states. On the other hand, L influences the tunneling probability between
two edges. Physically, we expect that for weak disorder, the tunneling probability

∗This is in the case of an edge potential, for Dirichlet boundary conditions, see section 6.
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Figure 2: Cylinder geometry

per edge length for states with energy well in between Landau levels is suppressed
exponentially in L/lc, where lc is the cyclotron length. In this paper, we shall not
provide rigorous bounds on those tunneling rates, but only deal with the problem
connected to the spacing of eigenvalues. Possible tunneling between edges will be
avoided by considering only one edge, or, equivalently, taking one edge to infinity.

In the Corbino disc or annulus geometry introduced by Halperin [3], one
cannot completely eliminate the tunneling problem, because, even if one considers
only the outer edge of the annulus, the flux tube at the center is comparable to
having a second edge, in the sense that for generic Φ, there are eigenvalues between
Landau levels. Without precise estimates on tunneling probabilities between inner
and outer edge, we can only show that edge states are extended for small |Φ|. The
argument for the Corbino disc is carried out in appendix A.

The coordinate along the axis of the cylinder will be denoted by y, and the
coordinate perpendicular to it will be x = Rϕ, where 0 < ϕ ≤ 2π. The magnetic
field is pointing radially outward, and the vector potential is chosen in ϕ-direction
Aϕ = −By + Φ/2πR. Of course, the magnetic field can only be homogeneous on
the two-dimensional surface of the cylinder, since otherwise the Maxwell equations
would be violated. In these coordinates, the Hamiltonian is

H =
1

2m

(
−∂2

y +
(

1
iR
∂ϕ − e

(
−By +

Φ
2πR

))2
)

+ V (y, ϕ), (2.1)

in units where ~ = 1. We start with V = 0, that is, with a cylinder infinite
in y-direction and without disorder. The states can be labeled by the angular
momentum quantum number l and the Landau band index n. The energy depends
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only on n through En,l = (n + 1/2)ωc. In the y-direction, the eigenfunctions
are harmonic oscillator wave functions, localized near y0(l − eΦ/2π) = (−l +
eΦ/2π)/eBR. Changing Φ does not affect the energy of the states, but only their
position along the cylinder. In particular, a change of Φ by 2π/e maps states with
angular momentum l on those with angular momentum l−1. This “spectral flow”
produced by the change in Φ plays an important role in the following arguments.

For a symmetric confining potential V0 = V0(y), it is possible to continue
labeling the states by l and n and to qualitatively discuss the dependence of the
energy En,l(Φ) on l and Φ. The one-dimensional Hamiltonian for the motion in
y-direction that results after separating the angular momentum, is analytic in the
parameter l − eΦ/2π. Therefore, En,l(Φ) = En(l − eΦ/2π) are analytic functions,
and the spectral flow of eigenstates with changing Φ is preserved by a symmetric
V0,

En,l(Φ + 2π/e) = En,l−1(Φ). (2.2)

Furthermore, all eigenstates are well localized in the y-direction and the localiza-
tion position, y0(l − eΦ/2π), is also an analytic function, which is monotonically
decreasing as can be seen by inspection of the Hamiltonian (2.1). En,l(Φ) can lie
between Landau levels only if y0(l−eΦ/2π) comes close to an edge of the cylinder,
that is, only for edge states. For each n, it is possible to identify those l which
correspond to states at the left and right edge. Large positive l correspond to the
left edge, and large negative l to the right edge.

Consider the current carried by an (n, l)-state in ϕ-direction,

Iϕ,n,l = −dEn,l(Φ)
dΦ

. (2.3)

Under the assumption that V0 is monotonically increasing as one leaves the sample
on either edge of the cylinder, so that it correctly describes the confining of the
electron gas to the sample, it is easy to see that Iϕ,n,l has a definite sign for states
localized at either edge. Edge states carry a chiral edge current.

The main goal of our present work is to show that the edge states remain
extended in the sense that they carry a chiral edge current if the sample contains
a small amount of disorder. To motivate our interest for edge states, we now show
that the chirality of our edge states implies the integer quantization of the Hall
conductivity. Our argument is of a very general character and can be applied
independently of a labeling of states by angular momentum and Landau band
index. It is only to identify the integer ν = σH/(e2/h) as the number of Landau
levels below the Fermi energy that one must consider a situation where the Landau
band index is a good quantum number. In our general argument, edge states are
labeled by an index α, with corresponding energies Eα(Φ).

We are interested in calculating the Hall conductance, σH , when the Fermi
energy, EF , of the electron gas on the surface of the cylinder lies well in between
two Landau levels. We assume that the disorder is sufficiently small so that Landau
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bands are still well defined in the bulk, and that there is no bulk spectrum in the
vicinity of the Fermi energy. Experimentally, the Quantum Hall effect is observed
in macroscopic samples as plateaux in the Hall conductance as a function of the
magnetic field or carrier density. Therefore, the Fermi energy has to remain in
between Landau levels, such that σH is quantized, for a sufficiently wide range of
magnetic field or carrier density. This can only be achieved if there exist localized
bulk states at EF . This fact is very well known, but we shall not make the attempt
to solve the analytical problems connected with localized bulk states. For the rest
of the argument, assume that the only occupied energy levels near the Fermi
energy correspond to edge states. This edge spectrum will then be discrete. A
small voltage drop, 0 < eVH = µr − µl � ωc, between the left and right edge of
the sample is taken into account by assuming that states localized at the right edge
are occupied up to µr, and states localized the left edge up to µl. The Hall current
is the current induced by this asymmetrical filling of edge states, in excess of the
current carried by the electron gas in the ground state. If, for simplicity, we assume
that µl = EF , the Hall current is carried by electrons on the right edge only. We
denote by I the set of labels α of occupied edge states with µl ≤ Eα(0) ≤ µr. The
Hall current can then be written as

Iϕ =
∑
α∈I
−dEα(Φ)

dΦ
|Φ=0. (2.4)

As mentioned above, we shall neglect effects due to tunneling between the
edges. On physical grounds, we expect that the tunneling rates are suppressed
exponentially in L/lc, and tunneling will play no role when describing measure-
ments performed on laboratory scales. We therefore take the limit L→∞ in (2.4),
and consider only the right edge. The rigorous justification of this restriction to
a sample with only one edge is a rather difficult problem in localization theory
which is not considered here. The next step in our argument is then to replace the
expression (2.4), where dE/dΦ is evaluated at Φ = 0 by the average over a range
of 2π/e,

Iϕ =
∑
I
− e

2π

2π/e∫
0

dΦ
dEα(Φ)

dΦ
. (2.5)

It is this step which would fail in a sample with two edges at a finite distance
L from each other, because resonances would necessarily occur at intermediate
values of Φ. On physical grounds, expression (2.5) is a good approximation to
(2.4) (in the limit L → ∞) provided the number of contributing states, |I|, is
large, which is equivalent to a small spacing between successive eigenvalues, or to
a large radius R.

Because the spectrum of H is invariant under a change of Φ by 2π/e, there
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is a bijective map α 7→ β(α) with Eα(2π/e) = Eβ(α)(0). Then

Iϕ = − e

2π

( ∑
β(I)\I

Eα(0)−
∑
I\β(I)

Eα(0)
)
. (2.6)

Taking (2.6) as our expression for the Hall current, we now exploit the chiral-
ity of the edge states. For samples with only one edge, our analysis in subsequent
sections implies that states corresponding to an energy in between Landau levels
are localized near the edge of the sample and that the current they carry satisfies
an estimate of the form

C

R
≥ dEα(Φ)

dΦ
≥ C ′

R
, (2.7)

where C and C ′ are non-zero constants whose common sign depends upon whether
we consider a right or a left edge, the other being at infinity, and R is the size
of the sample. It is easy to see that (2.7) is satisfied in the situation of a clean
sample (g = 0) described above. These inequalities imply that C/R ≥

(
Eβ(α)(0)−

Eα(0)
)
e/2π ≥ C ′/R > 0, if α corresponds to an edge state at the right edge.

Therefore,

Eα(0) =

{
µr +O(1/R) if α ∈ β(I) \ I
µl +O(1/R) if α ∈ I \ β(I) .

(2.8)

Because β is bijective, |I \ β(I)| = |β(I) \ I|, and recalling that µr − µl = eVH ,
we obtain that

σH
(e2/h)

= |β(I) \ I| (1 +O(1/R)) (2.9)

is an integer, where σH = Iϕ/VH is the Hall conductance.
This argument goes back essentially to ideas of Laughlin [2] and Halperin [3].

In the form presented above, it completely clarifies the universal character of the
integer quantum Hall effect. The effect is not related to any particular geometry
or symmetry of the sample. Our argument rests on the identification of the Hall
current, as given by (2.5) or (2.6), and on the estimate (2.7), which we prove under
various hypotheses in subsequent sections.

Let us summarize the approximations made in the derivation: Taking the limit
L→∞ is justified by the exponential suppression of tunneling rates, and making
this rigorous requires localization theory techniques. Taking the “thermodynamic
limit” plays an important role also in the argument where the Hall conductance
is identified with a charge index (see [18]). Indeed, the charge index vanishes in
the generic situation with two edges. In our argument, the expression for the Hall
current simplifies when we average over Φ, and this averaging is still possible,
if more subtle, in a situation with two edges (I will in general depend on Φ).
Precise estimates of the tunneling rates would make the transition from (2.4)
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to (2.5) rigorous. After having taken the limit L → ∞, the averaging over Φ
and the replacement of Eα(0) with µr or µl for α ∈ β(I) \ I or α ∈ I \ β(I),
respectively, become increasingly good approximations as the spacing between
edge state eigenvalues decreases with increasing sample size, R. Here, finite size
corrections are in principle easier to estimate than the tunneling rates.

The definition of extended states as states whose energy increases (or de-
creases) monotonously when Φ is varied is consistent with the fact that an eigen-
function of H whose support does not surround the flux will, up to a phase factor,
not be affected by a change of Φ, since, in a simply connected region, the influence
of Φ can always be gauged away.

Before closing this section, we explain how the integer ν = σH/(e2/h) can be
identified as the number of Landau bands below the Fermi energy, if n and l are
good quantum numbers. For clean samples, this follows immediately from (2.2)
and (2.6). We now show that this identification is still possible after inclusion of a
small amount of disorder, gVd.

In the generic situation with only one edge, the eigenvalues of the clean sam-
ple, En,l(Φ), will be non-degenerate for all Φ. One may then appeal to analytic
perturbation theory to continue labeling the states by n and l in the presence of
disorder, with energies En,l(Φ, g) which are analytic functions in g, for |g| small
enough. By assumption, En,l(Φ, 0) = En,l(Φ). Because the eigenfunctions are also
analytic in g, labels (n, l) that correspond to edge states for g = 0 will also corre-
spond to states localized at the edge for |g| non-zero, but small. Thus, we propose
to show the analog of equation (2.2),

En,l(Φ + 2π/e, g) = En,l−1(Φ, g), (2.10)

which will imply the extended nature of the edge states and thereby the integer
quantum Hall effect, with ν equal to the number of Landau bands below the Fermi
energy (see figure 3).

The shift in energy due to the disorder, En,l(Φ, g)−En,l(Φ, 0), is of the order
of |g|, by the Feynman-Hellmann theorem, and (2.2) then immediately implies that
En,l(Φ+2π/e, g)−En,l−1(Φ, g) is also of the order of |g|. A change of Φ by 2π/e can
be compensated by a gauge transformation and does not change the spectrum at
all. Therefore, there must be an n′ and an l′ with En,l(Φ + 2π/e, g) = En′,l′(Φ, g).
But if, without disorder, the energies are sufficiently far apart and non-degenerate,
this is only possible for n′ = n and l′ = l − 1, for small |g|, i.e., for weak disorder.
This implies (2.10).

The perturbative argument for the spectral flow may break down when the
radius of the cylinder becomes very large, because the spacing between eigenval-
ues at g = 0 decreases with increasing R. But, as we have already noted, finite
size corrections become small at least inversely proportional to R. It is therefore
desirable to have an argument that establishes the spectral flow with a bound on
the allowed strength of the disorder that is uniform in R. Such an argument will
be provided in section 4. The rigorous proofs establishing the bounds in (2.7) are
contained in section 5.
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Figure 3: The spectral flow of edge states under variation of Φ. Each line represents
a Landau band with eigenvalues symbolized by a dot. µl and µr are the chemical
potentials on the left and right edge of the cylinder, respectively.

3 Methods and tools

3.1 The guiding center

It is well known that the classical cyclotron orbit of a charged particle in a homo-
geneous magnetic field drifts under the influence of an electrostatic potential. This
can be seen most simply by considering the “guiding center” of the motion, which
is the center of a circle with cyclotron radius r = v/ωc = v/(eB/m) that passes
through the position of the particle. The velocity, v, of the particle is given by

~v =
1
m

(~p− e ~A). (3.1)

This yields for the guiding center

~Z = ~r + (~p− e ~A)× B̂

B
, (3.2)

where B̂ is a unit vector in B-direction perpendicular to the plane.
It is easily established that the equation of motion of ~Z in a potential V is

~̇Z =
B̂

B
× gradV. (3.3)
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The separation of the motion of the guiding center from the cyclotronic mo-
tion will be used in section 4 and appendix A to get an estimable expression for
the azimuthal current carried by any eigenstate of the Hamiltonian. In sections
5 and 6, the coordinate of the guiding center along the edge is used to establish
estimates needed in Mourre theory, to which we turn now.

3.2 Positive commutators and absolutely continuous spectrum

If in a classical Hamiltonian system, one can show that for some orbit the Poisson
bracket of some coordinate K with the Hamiltonian H remains bounded away
from zero, K̇ = {K,H} ≥ α > 0, for all times, one can conclude that the motion
is extended along this coordinate. The quantum mechanical counterpart of this
simple statement is the following: Assume there exists a “conjugate operator”, A,
such that the commutator of A with the Hamiltonian is positive on some energy
interval ∆,

E∆(H) [H, iA]E∆(H) ≥ αE∆(H), (3.4)

with α > 0, and where E∆(H) denotes the spectral projector of H on ∆. Noting
that if ψ is an eigenstate of H, we have (ψ, [H, iA]ψ) = 0 by the virial theorem,
we can conclude from (3.4) that H can not have an eigenvalue in the interval ∆.
It was first proved by Mourre [7] that under additional regularity assumptions on
H and its commutators with A, the spectrum of H is actually purely absolutely
continuous on ∆. Equation (3.4) is termed a Mourre estimate.

The assumptions on H have been subsequently relaxed considerably ([8, 9,
10], see also [11]). For the treatment of the problem with a smooth, steep edge
potential in section 5, the original assumptions of Mourre can be verified. Those
are (see [7]):

(i) H and A are self-adjoint operators with domains D(H) and D(A). D(H) ∩
D(A) is a core for H.

(ii) The unitary group eiAa generated by A leaves D(H) invariant and for all
ψ ∈ D(H)

sup
|a|<1

∥∥HeiAaψ
∥∥ <∞.

(iii) The quadratic form [H, iA] which is defined on D(H) ∩ D(A), is bounded
below and closable; the associated self-adjoint operator admits a domain
containing D(H).

(iv) The quadratic form
[
[H, iA], iA

]
is form-bounded by |H|2.

Following Mourre’s work, the main efforts have gone in the direction of re-
ducing the regularity assumptions described in (iii) and (iv). A very complete
treatment of necessary and sufficient conditions for applicability of Mourre theory
can be found in [10].
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It is also possible to apply Mourre theory with a non self-adjoint conjugate
operator. Such situations are, for instance, treated in references [12], [13], and,
implicitly, also in [14]. However, a general treatment of Mourre theory with non
self-adjoint conjugate operator, in particular as regards the regularity assumptions,
is to our knowledge still missing. In the case of Dirichlet boundary conditions, the
coordinate of the guiding center is non self-adjoint. Still, it is possible to use it
as a conjugate operator to prove absolute continuity of the spectrum [15, 16]. In
section 6, we shall circumvent those technical difficulties, using ideas suggested in
[20].

3.3 Decay of edge state eigenfunctions

In the case of bounded samples, the decay of edge state eigenfunctions into the
bulk can be proved with the help of the equation

ψ = (E −H0 − Vd)−1V0ψ, (3.5)

where ψ is an eigenfunction of H with energy E in the gaps of the bulk spectrum,
and H0 = (~p− e ~A)2/2m, H = H0 + V0 + Vd.

The free resolvent (E−H0)−1 can be calculated explicitly in coordinate space
representation, and it has Gaussian decay. Using this decay, equation (3.5), and
the fact that V0ψ is supported at the edge, one can show that the eigenfunction
decays exponentially into the bulk of the sample.

More technical details can be found in appendix A.

4 Extended edge states in large cylindrical samples

In section 2, the notion of an “extended edge state” for arbitrarily large, bounded
samples was defined as one that carries a chiral edge current. The central estimate
needed for the derivation of the integer quantum Hall effect is (2.7). In the present
section, we show that if ψ is an eigenstate of the Hamiltonian H, with an energy
between Landau levels, and if the disorder is weak, the current carried by ψ is
non-vanishing and has a definite sign.

We assume the cylinder geometry described in section 2, with an edge po-
tential confining the electron to the region y < 0. The current in ϕ-direction can
be written as

Iϕ = −dE
dΦ

=
(
ψ,

2
2πR

(∂ϕ
iR
− Φ

2πR
+By

)
ψ

)
. (4.1)

Here and from now on, units are chosen in which m = 1/2 and e = 1. Because ψ
is an eigenstate of H, the expectation value of

[H, ipy] = −B
(∂ϕ

iR
− Φ

2πR
+By

)
− ∂yV (4.2)
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in ψ vanishes by the virial theorem. This yields the equation

Iϕ = − 1
2πBR

(
ψ, ∂yV ψ

)
. (4.3)

Equation (4.3) can be interpreted as saying that the current arises solely from the
motion of the guiding center, whereas the cyclotronic motion does not contribute
to the current when averaged over the whole cylinder.

It is now intuitively clear why the current is chiral and non-vanishing.(
ψ, ∂yV ψ

)
gets a positive contribution from the edge potential, and a contribu-

tion of indefinite sign from the disorder. If the disorder is weak, and because an
edge state is localized near the edge, the contribution from the edge potential
dominates the one from the disorder potential, so that the claim follows. The
calculations needed to rigorously establish the lower bound on

(
ψ, ∂yV ψ

)
can be

found in section 5 (proof of Theorem 1).
On the other hand (∂ϕ/iR − Φ/2πR + By)ψ is bounded in norm by the

Hamiltonian. Equations (4.1) and (4.3) therefore imply the estimate (2.7).

5 Steep edge potentials

In the one particle picture that is the basis for our arguments in section 2, the edge
of the sample can be naturally modelled by a smooth, but steep edge potential. In
this section, we shall consider a half-plane geometry. The magnetic field B points
in the z-direction, the sample is infinite in the x-direction, and the electron gas is
confined by a wall to the region y < 0.

The half-plane can be viewed as the limiting case R → ∞ of the cylinder
geometry with one edge. The spectrum of the Hamiltonian is not purely discrete
anymore and it is not possible to induce a spectral flow by changing a flux Φ.
The definition of extended states is that the corresponding spectrum is absolutely
continuous.

The edge potential, V0, is assumed to vanish for y < 0 and to rapidly increase
for y > 0. The total potential is V = V0 + Vd, and the Hamiltonian is

H = (~p− ~A)2 + V = H0 + V = H0 + V0 + Vd, (5.1)

where we have again chosen units with e = 1 and m = 1/2. The vector potential is
taken in the Landau gauge, Ax = −By, Ay = Az = 0. We show absolute continuity
for parts of the spectrum of H located between Landau levels, using Mourre theory
with the x-coordinate of the guiding center as conjugate operator.

The case V = V0, that is without disorder potential, is standard. In the
Landau gauge, the y-coordinate of the guiding center Zy = −px/B is a cyclic co-
ordinate. After a Fourier transformation in the x-direction, the problem splits into
one-dimensional Hamiltonians Hk indexed by the constant of motion k = −BZy.
Those have spectrum En(k), where n is the Landau band index. For k →∞, one
can easily establish En(k)→ (2n+ 1)B, while for k → −∞, we have En(k)→∞.
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Also En(k) is analytic as a function of k, so this implies that the spectrum of the
full Hamiltonian is absolutely continuous (see [23], Theorem XIII.16).

After introducing a disorder potential, it is worthwhile to first estimate the
changes in the location of the spectrum. If the disorder is a random potential sat-
isfying certain reasonable assumptions, it is known that the almost sure spectrum
of the full Hamiltonian contains the spectrum of the clean Hamiltonian as a subset
[24]. More details about this will be found in appendix B. The situation is of course
more complicated for an arbitrary deterministic potential, but the results about
continuity of the spectrum do not depend upon existence of spectrum.

In the chosen gauge, our conjugate operator is Π = BZx = py + Bx. The
commutator with H is [H, iΠ] = −∂yV , so that one rather has a “negative com-
mutator” than a positive one, but this does obviously not hinder the application
of Mourre theory.

In addition to establishing a Mourre estimate, we need to assume that the
edge potential allows the verification of conditions (i) to (iv) from section 3.2. We
shall not make the attempt to present the optimal conditions on V0, but simply
note that (iii) and (iv) are valid, for example, if the potential is an upper bound
for its own derivatives. Assumption (i) is trivially valid since the C∞ function with
compact support, C∞c , form a core for both H and Π. As for (ii), note that up to
a phase factor, the group generated by Π are the translations in y-direction. If the
edge potential V0 = V0(y) does not increase too fast, for example subexponentially,
so that an estimate of the form V0(y+α) ≤ CV0(y) holds uniformly in y, the domain
of V0 is invariant under those translations, and with it also the domain of H, since
the domain of the kinetic energy is trivially invariant. As noted above, extensions
of the Mourre theory allow the treatment of much more singular potentials.

For the following theorem, we assume an unbounded edge potential, vanishing
for y < 0, with V ′0(y) ≥ 0 for all y and inf {V ′0(y); y ≥ b} > 0 for all b > 0. We
discuss afterwards how the assumption that V0 is unbounded can be avoided.

Theorem 1 (Mourre estimate). Assume E /∈ σ(H0) = {(2n+ 1)B,n ∈ N0}. Then
there is a constant δ, such that if the disorder potential satisfies |Vd| ≤ δ, there is
an open interval ∆ 3 E and a positive constant α with

−E∆(H) [H, iΠ]E∆(H) ≥ αE∆(H). (5.2)

The strategy for the proof is clear: Since − [H, iΠ] = ∂yV0 + ∂yVd, one first
establishes the estimate considering only ∂yV0, but including Vd in the Hamiltonian.
This is the content of proposition 1, which yields a bound E∆(H)∂yV0E∆(H) ≥
α̃E∆(H). Then one estimates |∂yVd| on ∆ by E and δ, and Theorem 1 follows if
|E∆ ∂yVdE∆| < α̃. It is also possible to introduce another constant δ′ to control
the derivative |∂yVd| ≤ δ′ separately, so that (5.2) follows for δ′ < α̃. This allows a
somewhat more generous choice of δ.

We point out again that the proof of Theorem 1 can be transferred, without
any changes, to the cylinder geometry to prove that

(
ψ, ∂yV ψ

)
is positive if ψ is

an energy eigenstate with energy well in between Landau levels.
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Proposition 1. Assume E /∈ σ(H0). Then there is a constant δ, such that if the
disorder satisfies |Vd| ≤ δ, there is an open interval ∆ 3 E and a positive constant
α̃ with

E∆(H) ∂yV0E∆(H) ≥ α̃E∆(H). (5.3)

This proposition is at the heart of the matter, and its proof will be presented
in some detail.

We have to show that
(
ψ, V ′0ψ

)
≥ α̃ ‖ψ‖2 with α̃ > 0 holds for all ψ with

ψ = E∆(H)ψ†. Obviously
(
ψ, V ′0ψ

)
≥ 0 is non-negative. The intuition is that if(

ψ, V ′0ψ
)

goes to 0, then
(
ψ, V0ψ

)
is also small, whence ψ is supported in the bulk

and cannot be an edge state, so that ψ = E∆(H)ψ is impossible. The problem is
to estimate

(
ψ, V ′0ψ

)
in terms of

(
ψ, V0ψ

)
.

Proof of proposition 1. Let η = dist(E, σ(H0)), so that for all φ ∈ D(H0) in the
domain of H0, ‖(E −H0)φ‖ ≥ η ‖φ‖ holds. The condition we put on δ is η > δ.
Then E lies in the gaps of the bulk Hamiltonian H0 + Vd.

Choose an ε > 0 with η > ε > δ and a smooth “cutoff” function j = j(y)
with 1 ≥ j ≥ 0, j(y) = 1 for y ≤ b for some b > 0 and sup(|j(y)V (x, y)|) ≤ ε.
This is possible because of the assumptions on V0 and because of |Vd| ≤ δ < ε.
(see figure 4).

Vd ≤ δ

ε

0 ab

j

V0

y

Figure 4: The cutoff function j

†From now on, a ′ will denote a derivative with respect to y.
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We control j and its derivatives by introducing the following finite constants:

C1 = sup{1/V ′0(y)} : y ∈ supp(1− j)} ,
C2 = sup{(j′′(y))2/V ′0(y) : y ∈ supp(1− j)} ,
C3 = sup{(j′(y))2/V ′0(y) : y ∈ supp(1− j)} ,
C4 = sup{|j′(y)|}

(5.4)

Keeping track of these different constants will later allow to determine the depen-
dence of the estimates on the steepness of the potential. Now let ∆ 3 E be an
interval around E, and ψ = E∆(H)ψ. Then ψ̃ = jψ ∈ D(H0) and the assumption
on E yields the estimate

η ‖jψ‖ ≤ ‖(E −H0)jψ‖ ≤ ‖(E −H)jψ‖+ ‖V jψ‖︸ ︷︷ ︸
≤ ε ‖ψ‖ .

(5.5)

A bound of ‖jψ‖ in the other direction is obtained from

‖(1− j)ψ‖2 =
(
ψ, (1− j)2ψ

)
≤ C1

(
ψ, V ′0ψ

)
(5.6)

and is

‖jψ‖ ≥ ‖ψ‖ − ‖(1− j)ψ‖ ≥ ‖ψ‖ − C1/2
1

(
ψ, V ′0ψ

)1/2
. (5.7)

Hj = jH − 2i(py −Ay)j′ + j′′ yields

‖(E −H)jψ‖ ≤ ‖j(E −H)ψ‖+ 2 ‖(py −Ay)j′ψ‖+ ‖j′′ψ‖ . (5.8)

The terms on the right hand side can be controlled in terms of |∆| and
(
ψ, V ′0ψ

)
as follows:

‖j′′ψ‖2 =
(
ψ, (j′′)2ψ

)
≤ C2

(
ψ, V ′0ψ

)
,

‖j(E −H)ψ‖ ≤ |∆| ‖ψ‖ ,
(5.9)

‖(py −Ay)j′ψ‖2 =
(
ψ, j′(py −Ay)2j′ψ

)
≤
(
ψ, j′Hj′ψ

)
+ δ
(
ψ, (j′)2ψ

) (5.10)

because V + δ, (px − Ax)2 ≥ 0. Using j′Hj′ = (j′2H + Hj′
2)/2 + (j′′)2, the first

term on the right hand side of (5.10) can be further estimated as(
ψ, j′Hj′ψ

)
=

1
2
(
j′ψ, j′Hψ

)
+

1
2
(
j′Hψ, j′ψ

)
+
(
ψ, (j′′)2ψ

)
≤ ‖j′ψ‖ ‖j′Hψ‖+

(
ψ, (j′′)2ψ

)
.

(5.11)

Since

‖j′ψ‖2 ≤ C3
(
ψ, V ′0ψ

)
, (5.12)

‖j′Hψ‖ ≤ ‖j′(E −H)ψ‖+E ‖j′ψ‖ ≤ C4 |∆| ‖ψ‖+EC
1/2
3

(
ψ, V ′0ψ

)1/2
, (5.13)
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equations (5.10) and (5.11) imply

‖(py −Ay)j′ψ‖2 ≤
(
ψ, V ′0ψ

)
[EC3 + C2 + δC3] +

(
ψ, V ′0ψ

)1/2
C

1/2
3 C4 |∆| ‖ψ‖ ,

and thus

‖(py −Ay)j′ψ‖ ≤
(
ψ, V ′0ψ

)1/2[EC3 + C2 + δC3]1/2

+
(
ψ, V ′0ψ

)1/4
C

1/4
3 C

1/2
4 |∆|1/2 . (5.14)

We now combine (5.5), (5.7), (5.8), (5.9) and the last inequality to:

η
(
‖ψ‖ −C1/2

1

(
ψ, V ′0ψ

)1/2) ≤ η ‖jψ‖
≤ ‖(E −H)jψ‖+ ε ‖ψ‖

≤ |∆| ‖ψ‖+ ε ‖ψ‖+ C
1/2
2

(
ψ, V ′0ψ

)1/2 +

+ 2
(
ψ, V ′0ψ

)1/2[(E + δ)C3 + C2
]1/2

+ 2
(
ψ, V ′0ψ

)1/4
C

1/4
3 C

1/2
4 |∆|1/2 ‖ψ‖1/2

(5.15)

Abbreviating D1 = C
1/2
2 + 2

[
(E+ δ)C3 +C2

]1/2
, D2 = 2C1/4

3 C
1/2
4 and D3 = C

1/2
1 ,

the conclusion is that for all ψ = E∆(H)ψ:

(η − |∆| − ε) ‖ψ‖ ≤
(
ψ, V ′0ψ

)1/2(D1 + ηD3) +D2
(
ψ, V ′0ψ

)1/4 |∆|1/2 ‖ψ‖1/2
≤ 2
(
ψ, V ′0ψ

)1/2(D1 + ηD3) + (λ− 1) |∆| ‖ψ‖ ,
(5.16)

where λ−1 = D2
2/4(D1 +ηD3). Since η− ε > 0, and by making |∆| small enough,

one finally gets:

(
ψ, V ′0ψ

)
≥
[
η − λ |∆| − ε
2(D1 + ηD3)

]2

‖ψ‖2 =: α̃ ‖ψ‖2 . (5.17)

Proof of Theorem 1. The missing piece is the estimate of ∂yVd = −[Vd, ipy] on the
energy interval ∆.∣∣(ψ, [Vd, ipy]ψ

)∣∣ =
∣∣(ψ, [Vd, i(py −Ay)]ψ)∣∣

=
∣∣(Vdψ, (py −Ay)ψ)− ((py −Ay)ψ, Vdψ)∣∣

≤ 2δ ‖ψ‖ ‖(py −Ay)ψ‖ .
(5.18)



422 J. Fröhlich, G. M. Graf and J. Walcher Ann. Henri Poincaré

For ψ = E∆(H)ψ with ∆ 3 E,

‖(py −Ay)ψ‖2 =
(
ψ, (py −Ay)2ψ

)
≤
(
ψ, (H + δ)ψ

)
≤ (E + |∆|+ δ) ‖ψ‖2

(5.19)

so that ∣∣(ψ, [Vd, ipy]ψ
)∣∣ ≤ 2δ(E + |∆|+ δ)1/2 ‖ψ‖2 . (5.20)

With the additional condition on δ,

2δ(E + |∆|+ δ)1/2 < α̃, (5.21)

the proof is complete.

We now discuss the dependence of the estimate on the assumptions about
the disorder and edge potentials.

As mentioned above, one can relax the constraints on δ by introducing an-
other constant δ′ and imposing |V ′d| ≤ δ′ < α̃ with α̃ as in (5.17). It is actually
enough if V ′d is small near the edge, as one can easily show in a manner similar
to the above by introducing a partition of unity separating the regions where Vd
is smooth from those where it is rougher. The length scale is of course set by the
cyclotron length lc = 1/

√
B: If Vd varies strongly on a scale of lc, it is better to

use δ
√
E as in (5.21) to control |V ′d|. If Vd is smooth on this scale, the use of a δ′

is more appropriate.
In an alternative approach, using the x-coordinate of the particle itself as

conjugate operator, similarly to section 6, it is possible to avoid assumptions on
the derivative of the potential altogether. We will not make this explicit here.

We now turn to the dependence of the estimates on the edge potential. α̃ as
defined in (5.17) depends not only on the disorder potential via δ, but also on V0
via the constants in the denominator, which are constrained by |jV | < ε: Assume
V0 increases from 0 to ε on a length scale a. Then j must go from 1 to 0 on this
scale (see figure 4), and for small a, the constants vary as:

C1 ∼
a

ε
, C2 ∼

1
εa3 , C3 ∼

1
εa
, D2

1 ∼
1
εa3 , D2

3 ∼
a

ε
. (5.22)

Together with (5.17), small a or a steep potential implies α̃ ∼ (η − ε)2εa3. A
steeper edge thus seems to allow less disorder. This problem is unexpected, since in
the classical case also a hard wall leads to extended edge states. Using dimensional
analysis, one can argue that any direct estimate of

(
ψ, V ′0ψ

)
in terms of η, which

is roughly the same as
(
ψ, V0ψ

)
, will have a dependence on a that makes it fail

when a tends to zero.
Before we return to this problem in the next section by analyzing the problem

with Dirichlet boundary conditions, we indicate what must be changed in the case
of a bounded edge potential.
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j1 j2 j3

E0

V0

ε

y0

Figure 5: Partition of unity for bounded V0

We assume that the edge potential levels off above some height E0, but still
with V ′0 ≥ 0. Let η = min(dist(E, σ(H0)), E0−E), and choose δ < ε < η as above.
Introduce a partition of unity according to figure 5, satisfying sup(|j1V |) ≤ ε and
V0 ≥ E0 > E on supp j3. The condition inf{V ′0(y) : y ≥ b} > 0 for all b > 0 is
replaced by the condition inf{V ′0(y) : y ∈ supp(j2)} > 0.

From the proof of proposition 1, we know that for small |∆|,

η ‖j1ψ‖ ≤ ‖(E −H0)j1ψ‖

≤ λ |∆| ‖ψ‖+ ε ‖j1ψ‖+ C
(
ψ, V ′0ψ

)1/2
.

(5.23)

The constants C and λ might change subsequently, but are independent of ψ, δ,
and ε. Since η − ε ≤ V0 −E + Vd on supp(j3),

(η − ε) ‖j3ψ‖2 = (η − ε)
(
ψ, j2

3ψ
)

≤
(
ψ, j3(H −E)j3ψ

)
≤ ‖j3ψ‖ ‖j3(H −E)ψ‖+

(
ψ, (j′3)2ψ

)
≤ ‖j3ψ‖ |∆| ‖ψ‖+ ‖j3ψ‖C

(
ψ, V ′0ψ

)1/2
.

(5.24)
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Therefore,

η ‖j3ψ‖ ≤ |∆| ‖ψ‖+ ε ‖j3ψ‖+ C
(
ψ, V ′0ψ

)1/2
. (5.25)

Together with

‖ψ‖ ≤ ‖j1ψ‖+ ‖j2ψ‖+ ‖j3ψ‖ , (5.26)

‖j2ψ‖ ≤ C
(
ψ, V ′0ψ

)1/2
, (5.27)

equations (5.23) and (5.25) yield

η ‖ψ‖ ≤ ε ‖ψ‖+ λ |∆| ‖ψ‖+ C
(
ψ, V ′0ψ

)1/2 (5.28)

so that one gets an estimate of
(
ψ, V ′0ψ

)
as above.

6 Dirichlet boundary conditions

In this section, we analyze the problem of extended edge states with the smooth
edge potential replaced with Dirichlet boundary conditions. The fact that the
conjugate operator that was used in section 5 is not self-adjoint in this situation
makes special care necessary on the technical side. It is very likely that Mourre
theory can be extended in some generality to the case when the conjugate operator
is not self-adjoint. Elements of this theory can be found in [12, 13, 14]. That
Mourre theory can be used to show absolute continuity of the edge spectrum
with the x-coordinate of the guiding center, Zx, as conjugate operator, has been
demonstrated in the preprint version of this paper [16], see also [15], which contains
the first proof of absolute continuity of the spectrum as well as the first analysis of
Dirichlet boundary conditions. Here, we shall resolve the problem as follows, using
ideas suggested in reference [20]. We apply Mourre theory with the x-coordinate
of the particle itself along the edge as conjugate operator, which is manifestly self-
adjoint. The positivity of the commutator with the Hamiltonian, [H, ix] is reduced
to the positivity of the commutator [H, iZx]. Classically, only Zx is monotonically
increasing in time, but quantum mechanically, the positivity of either of the two
commutators is equivalent to the positivity of the other.

In comparison with section 5, the assumptions on the disorder potential can
be relaxed in that the boundedness of the derivative is not necessary. Furthermore,
the proof of the positivity of the commutator i[H,Zy] does not depend on having
the geometry of a half-plane, but can be extended to more general domains in the
plane satisfying a certain geometric condition which we state below.

This section is organized as follows: We first give precise definitions of the
occuring spaces and operators, and state the main theorems. We then prove the
theorems for the half-plane, since the ideas can be made more transparent in this
situation. We finally give the proofs for more general domains.
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6.1 Definitions and Theorems

Let Ω be a domain in R2. Ω may be the half-plane R2
− = R×R− or a more general

domain satisying a certain geometric assumption (GA) stated in section 6.3. To
convey an idea of the domains under consideration, we present three examples in
figure 6. (GA) allows for the domains (a, b), but not for (c).

β

(a)

Ω

Ω
Ω

(b): β = −π (c): β = π

Figure 6: Examples for domains. (a,b) satisfy (GA), (c) does not.

The Hamiltonian in this section will be again H0+Vd, where the unperturbed
Hamiltonian is

H0 = (−i∇−A)2 (6.1)

on L2(Ω) with Dirichlet boundary conditions, i.e., with domain D(H0) = W2(Ω, A)
∩W1

0(Ω, A), where the magnetic Sobolev spaces are defined using covariant deriva-
tives, e.g.,

W1(Ω, A) = {ψ ∈ L2(Ω) | (−i∂i −Ai)ψ ∈ L2(Ω), i = x, y} . (6.2)

Note that we do not specify the gauge at this point. We shall be working in Landau
gauge for the half-plane, but for more general domains this is not appropriate for
obvious geometrical reasons.

Theorem 2. Let E/B /∈ 2N0 + 1. For sufficiently small ‖Vd‖∞/B, the spectrum of
H on the half–plane R2

− is purely absolutely continuous near E.

Here, and below, ‘sufficiently small’ is meant depending only on quantities
explicitly mentioned. In particular, for Theorem 2, the bound is uniform in B.

In a classical picture, absolute continuity of the spectrum corresponds to the
guiding center of the electron jumping in a definite direction along the boundary,
∂Ω, of Ω = R2

−, each time the electron hits the wall. If the boundary is not
a straight line, then at each collision the guiding center moves forward in the
direction of the tangent vector to ∂Ω at the collision point. Yet, this may be a
backward motion with respect to the tangent vector at the next collision point,
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with the result that a classical edge trajectory can get trapped. No trapping is
possible, however, if the cyclotron radius of the electron is small compared to the
radius of curvature of ∂Ω (more precisely: compared to the radius of injectivity of
the tubular map associated with ∂Ω). Then the bouncing motion will result in an
effective progression along ∂Ω.

The generalization of Theorem 2 to more general domains reads as follows.

Theorem 3. Assume Ω satisfies (GA). Fix E/B /∈ 2N0 + 1 and let ‖Vd‖∞/B be
small enough. Then, the spectrum of H is purely absolutely continuous near E,
provided B is large enough.

Finally, no trapping is possible if Ω lies on one side of the graph of a function
f ,

Ω = {(x, y) ∈ R2 | y < f(x)} , (6.3)

with f ′ ∈ C2
unif(R).

Theorem 4. Let E/B /∈ 2N0 + 1, and B0 > 0. For sufficiently small ‖Vd‖∞/B,
the spectrum of H on the domain (6.3) is purely absolutely continuous near E,
provided B ≥ B0.

Under the scaling x → λx, B → λ−2B, V → λ−2V , we have H → λ−2H.
Without loss of generality we may thus set

B = 1

in Theorem 2, and the same is true for Theorem 3 if its last sentence is replaced by:
Then, the spectrum of H on λΩ is purely absolutely continuous near E, provided
λ > 0 is large enough. Similarly the conclusion of Theorem 4 is ... the spectrum of
H on the domain defined by fλ(x) = λf(x/λ) is purely absolutely continuous near
E, provided λ ≥ λ0 = B

1/2
0 . The Theorems will be proved in this form.

6.2 The half–plane

We begin the proof of Theorem 2 with some preliminaries (1.–3.):
1. We shall work in Landau gauge

A = (−y, 0) . (6.4)

2. Let p = −i∇. As mentioned above, the component py = −i∂y cannot be
defined self-adjointly on L2(Ω), a fact related to the integration by parts identity

(pyω, ρ)− (ω, pyρ) = i〈ω, ρ〉 , (ω, ρ ∈W1(Ω, A)) , (6.5)

where 〈·, ·〉 denotes the inner product on L2(∂Ω). Strictly speaking one should
write 〈Lω,Lρ〉 instead of 〈ω, ρ〉, where L is the boundary trace operator, which is
bounded as a map L : W1(Ω, A)→ L2(∂Ω). Below we shall need another, similar
statement (see e.g. [25], Theorem 8.3 or [26], Section 7.50),
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Theorem A. The map

L : W2(Ω, A)→W3/2(∂Ω)×W1/2(∂Ω)
ψ 7→ (ψ � ∂Ω, ∂yψ � ∂Ω)

(6.6)

is continuous, has kerL = W2
0(Ω, A), and admits a continuous right inverse R:

LR = 1.

Proof. The statement in [25, 26] refers to A = 0; to extend it to the present
situation, pick a function j ∈ C∞0 (−∞, 0] with j(y) = 1 for y near 0. Then L and
R can be replaced by Lj, and jR respectively. The claim now follows, since the map
ψ 7→ jψ is bounded as a map W2(Ω, A)→W2(Ω, 0), resp. W2(Ω, 0)→W2(Ω, A),
for the special gauge (6.4).

3. The proof of Theorem 2 is based again on Mourre theory [7, 8, 9, 10]. We
will here refer to the formulation given in [9], using the following pieces of notation:
B(H) is the algebra of bounded operators on the Hilbert space H, ρ(H) 3 z is
the resolvent set of H, on which R(z) := (H − z)−1, and E∆(H) is the spectral
projection for H onto ∆ ⊂ R.

Theorem B. Let H, A be self–adjoint operators on H, and E ∈ R. Assume:

(i) There is z ∈ ρ(H) such that the map

g : R→ B(H) , s 7→ eisAR(z)e−isA (6.7)

is of class C1+ε with 0+ ≤ ε ≤ 1 in the norm topology (with ε = 0+ meaning
that g′(s) is Dini continuous);

(ii) There is an open interval ∆ 3 E and an α > 0 such that

E∆(H)i[H,A]E∆(H) ≥ αE∆(H) . (6.8)

Then the spectrum of H is purely absolutely continuous near E.

According to Theorem 6.2.10 in [27], g ∈ C1 implies that [H,A], defined as a
quadratic form on D(H)∩D(A), extends to a bounded operator [H,A] : D(H)→
D(H)∗. In particular, the left hand side of (6.8) is a bounded operator on H.

We now compute the commutator of the non self-adjoint operator Π = −py−
x with H0, in the sense of quadratic forms.

Lemma 1. For ϕ,ψ ∈ D(H0) ∩ D(x) we have

i[(H0ϕ,Πψ)− (Πϕ,H0ψ)] = 〈pyϕ, pyψ〉 . (6.9)
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Proof. By density we may assume that ϕ,ψ are of compact support. The separate
contributions from the two terms in H0 = p2

y + (px + y)2 are

i[(p2
yϕ,Πψ)− (Πϕ, p2

yψ)] = 〈pyϕ, pyψ〉 , (6.10)

i[((px + y)2ϕ,Πψ)− (Πϕ, (px + y)2ψ)] = 0 . (6.11)

In fact, as (6.10) is concerned, the contribution of x to the commutator is, using
(6.5),

i[(pyϕ, pyxψ)− (pyxϕ, pyψ)] = 0 , (6.12)

whereas that of py is

i[(p2
yϕ, pyψ)− (pyϕ, p2

yψ)] = −〈pyϕ, pyψ〉 . (6.13)

To verify (6.11), we note that [px + y, py + x]ψ = 0. Hence(
(px + y)2ϕ, (py + x)ψ

)
=

=
(
(px + y)ϕ, (px + y)(py + x)ψ

)
=
(
(px + y)ϕ, (py + x)(px + y)ψ

)
=
(
(py + x)(px + y)ϕ, (px + y)ψ

)
=
(
(px + y)(py + x)ϕ, (px + y)ψ

)
=
(
(py + x)ϕ, (px + y)2ψ

)
,

(6.14)

where, in the third equality, we used (6.5) with (px + y)ϕ � ∂Ω = 0.

We now turn to the proof of the basic positivity estimate.

Lemma 2. Fix E /∈ 2N0 + 1. Then there is an open interval ∆ 3 E and an α > 0
such that

|||pyE∆(H0)ψ|||2 ≥ α‖E∆(H0)ψ‖2 , (6.15)

where we set ||| · |||2 = 〈·, ·〉.

Proof. We note that RLD(H0) ⊂ D(H0), and write for ψ ∈ D(H0)

(H0 −E)ψ = (H0 −E)(ψ −RLψ) + (H0 −E)RLψ . (6.16)

Since L(ψ−RLψ) = 0, the function ψ−RLψ ∈W2
0(Ω, A) can be extended to R2 by

0, and the Dirichlet boundary condition dropped. Hence ‖(H0−E)(ψ−RLψ)‖ ≥
dist(E, 2N0 + 1)‖ψ −RLψ‖. Denoting the r-th Sobolev norm by ‖ · ‖r, we obtain
from ‖(H0−E)RLψ‖ ≤ const ‖RLψ‖2 ≤ const (|||ψ|||3/2 + |||∂1ψ|||1/2) (Theorem A)
and ψ � ∂Ω = 0 that

‖(H0 −E)ψ‖ ≥ dist(E, 2N+ 1)‖ψ‖ − const |||∂1ψ|||1/2 . (6.17)
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For any ε > 0 we have

|||∂1ψ|||1/2 ≤ const (ε−1|||∂1ψ|||0 + ε|||∂1ψ|||1) ,

with |||∂1ψ|||1 ≤ const ‖ψ‖5/2 ≤ const ‖H5/4
0 ψ‖. Here we used the boundedness

of the map W5/2(Ω, A) → W1(∂Ω), ψ 7→ ∂1ψ � ∂Ω (see [25], Theorem 9.4
or [26], Theorem 7.58). We insert these estimates in equation (6.17) and use
‖H5/4

0 E∆(H0)ψ‖ ≤ (|E| + |∆|)5/4‖ψ‖ and ‖(H0 − E)E∆(H0)ψ‖ ≤ |∆|‖ψ‖. For
sufficiently small ε and |∆| we obtain the claim.

Following [20], we deduce absolute continuity of the spectrum using A = −x
as conjugate operator in the sense of Mourre theory (Theorem B), which in contrast
to Π is self–adjoint on its natural domain. The right hand side in

H(τ) = eiτxHe−iτx = p2
y + (px − τ + y)2 + Vd

extends from τ ∈ R to an entire analytic family of type A. Hence assumption (i)
of Theorem B is fulfilled. Assumption (ii) holds because of the following lemma.

Lemma 3. Let E /∈ 2N0 + 1. Then there is an open interval ∆ 3 E and an α > 0
such that

−E∆(H)i[H,x]E∆(H) ≥ αE∆(H) ,

provided ‖V ‖∞ is small enough.

Proof. We shall prove the statement in the case Vd = 0 first. Because of Lemmas 1
and 2, it suffices to show that the difference Π−(−x) = −py contributes arbitrarily
little to the commutator. In a state ψ = E∆(H0)ψ, this contribution is estimated
as

|(H0ψ, pyψ)− (pyψ,H0ψ)| = |
(
(H0 −E)ψ, pyψ

)
−
(
pyψ, (H0 −E)ψ

)
|

≤ 2‖(H0 −E)ψ‖‖pyψ‖ ≤ 2|∆|(|E|+ |∆|)1/2‖ψ‖2 ,

where the equality is justified by (6.5) and ψ ∈ D(H0). The right hand side can
be made arbitrarily small by letting |∆| → 0.

We next extend the result to H and note that H ′(0) = −i[H,x] = −i[H0, x],
which is relatively bounded with respect to H0, is unchanged. Let α > 0 and
∆ 3 E be as given by Lemma 2. We may assume ∆ to be centered on E. For
∆̃ 3 E, we split

E∆̃(H) = E∆(H0)E∆̃(H) + (1−E∆(H0))E∆̃(H) ,

and obtain

E∆̃(H)(H ′(0)− α)E∆̃(H) ≥ E∆̃(H)E∆(H0)(H ′(0)− α)E∆(H0)E∆̃(H)
− 2‖(H ′(0)− α)(1−E∆(H0))E∆̃(H)‖ .
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The first term on the right hand side is non-negative, and the second line can be
estimated by a constant times

‖H0(1−E∆(H0))(H0 −E)−1‖‖(H0 −E)E∆̃(H)‖
≤ (1 + 2|E||∆|−1)(|∆̃|+ ‖V ‖∞) .

Hence,

E∆̃(H)(H ′(0)− α)E∆̃(H) ≥ −α/2 ,

for |∆̃|+ ‖V ‖∞ small enough, and therefore E∆̃(H)H ′(0)E∆̃(H) ≥ (α/2)E∆̃(H).

Proof of Theorem 2. Application of Theorem B.

6.3 General domains

We now turn to the proof of Theorem 3. We first state precisely the geometrical
assumption made in Theorem 3.

Assumption. (GA) Let Ω ⊂ R2 be an open set.

(i) Ω has the uniform C3–property in the sense of [26];

(ii) Let ∂Ω consist of finitely many connected components γ, each parametrized
by its arclength s (with the induced orientation). Let there be a function
s ∈ C2(Ω) extending arclength from ∂Ω to Ω, i.e., s(γ(s′)) = s′ for s′ ∈ R,
satisfying

‖∂is‖∞ <∞ , ‖∂i∂js‖∞ <∞ . (6.18)

We note that, by (i), a bounded component of ∂Ω would be a closed curve,
but by (ii) no such curve is allowed. Hence Ω is simply connected and unbounded.
Also, (GA) is not affected by the ambiguity s 7→ s − s0 implicit in the definition
of arclength.

We illustrate (GA) with an example. Let Ω ⊂ R2 be a simply connected open
set with oriented boundary ∂Ω consisting of a single unbounded smooth curve
γ ∈ C3

unif(R), parametrized by arclength s ∈ R. For simplicity, we shall assume
that γ is asymptotically straight, i.e.,

γ̈ ∈ L1(ds) , (6.19)

with ˙= d/ds. The overall bending of γ is

β =

∞∫
−∞

γ̈(s)ds ,

and takes values in [−π, π].
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Example 1. If

β 6= π , (6.20)

then Ω as described satisfies (GA). In particular, the domains (a, b) in Figure 6
are allowed, but not (c).

Proof. Only part (ii) of (GA) requires proof. Because of γ ∈ C3
unif(R) and of

(6.19) we also have lims→±∞ γ̈(s) = 0. Elementary geometric considerations show
that, for large enough r > 0, the equation |γ(s)| = r has exactly two solutions
s = s±(r), with s±(r) → ±∞, (r → ∞). We define functions ϕ±(r) through
γ(s±(r)) = r(cosϕ±(r), sinϕ±(r)) in such a way that ϕ±(r) are continuous and
that ϕ−(r)−ϕ+(r) ∈ (0, 2π). Their limiting values ϕ∞± = limr→∞ ϕ±(r) exist and
satisfy β + (ϕ∞− − ϕ∞+ ) = π. Condition (6.20) implies

ϕ∞− − ϕ∞+ > 0 . (6.21)

Under our assumptions,

ds±
dr
→ ±1 ,

d2s±
dr2 → 0 , r

dϕ±
dr
→ 0 , r

d2ϕ±
dr2 → 0 , (6.22)

as r →∞. For R > 0 large enough we define s(x, y) on

Ω ∩ {(x, y) | |(x, y)| > R}
= {(x, y) = r(cosϕ, sinϕ) | r > R, ϕ+(r) ≤ ϕ ≤ ϕ−(r)}

by linear interpolation along arcs, |(x, y)| = r, i.e., by

s(x, y) = s−(r)
ϕ− ϕ+(r)

ϕ−(r)− ϕ+(r)
+ s+(r)

ϕ−(r)− ϕ
ϕ−(r)− ϕ+(r)

;

we then smoothly extend s further to the compact complement Ω∩ {x | |x| ≤ R}.
Now (6.18) follows from (6.21, 6.22).

To prove Theorem 3, we will just address the changes required for the gen-
eralization from the proof of Theorem 2. For notational simplicity in intermediate
results, we first consider the Hamiltonian on Ω. The required scaling Ω→ λΩ (see
the end of Section 6.1) will be done later.

We define the components of the velocity as πi = −i∂i − Ai (i = x, y) with
domain W1(Ω, A); see equation (6.2). We introduce the matrix ε with entries εxy =
−εyx = −1, εxx = εyy = 0. which represents a rotation by π/2, and define the
outer unit normal n = n(s) = −εγ̇(s), with components ni. For ω, ρ ∈ W1(Ω, A)
we then have the integration by parts identity

(πiω, ρ)− (ω, πiρ) = i〈ω, niρ〉 , (6.23)

Also, H0ψ = (π2
x + π2

y)ψ for ψ ∈ D(H0).
We next extend the trace theorem (Theorem A) to the present setting.
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Theorem C. The map

L : W2(Ω, A)→W3/2(∂Ω, A · γ̇)×W1/2(∂Ω, A · γ̇) (6.24)
ψ 7→ (ψ � ∂Ω, π · nψ � ∂Ω) (6.25)

is continuous, has kerL = W2
0(Ω, A), and admits a continuous right inverse R:

LR = 1. The norms of L and R depend only on the C3–regularity data of Ω.

Proof. The uniform C3–property is associated with a cover {Uj} of ∂Ω and corre-
sponding diffeomorphisms (of class C3) Ψj : B = {(x, y) ∈ R2 | |(x, y)| < 1} → Uj ,
such that Ψj(B∩{y < 0}) = Ω∩Uj ; see [26], Section 4.6 for details. The statement
for A = 0 is [26], Theorem 7.53 (see also Section 4.29 allowing for unbounded ∂Ω;
or [27], Theorem 5.9). The proof makes use of a partition of unity for ∂Ω subordi-
nate to {Uj}, with the effect of reducing the statement to the analogous restriction
property from B− := B ∩ {y < 0} to B0 := B ∩ {y = 0}. Similarly, in our case
(A 6= 0) matters are reduced to the same statement, (6.25), with the replacements
Ω → B−, ∂Ω → B0, A→ Ã = Ψ∗jA and A · γ̇ → Ãx, where Ã is the pull–back of
A under Ψj, in the sense of 1–forms. The claim so left to prove is gauge covariant,
and we may choose the special gauge

Ã(x, y) =
(
−

y∫
0

ω̃(x, ξ)dξ, 0
)
,

where ω̃(x, y)dx∧dy = Ψ∗j (dx∧dy) is the pull–back of the area 2–form on Uj . We
note that ω̃, Ã ∈ C2(B−), with bounded derivatives. Moreover, Ã = 0 on B0. Now
the claim again follows from the case Ã = 0, since the norms of W2(B−) and of
W2(B−, Ã) are equivalent.

Remark. As in the proof of Lemma 2, we shall also need the boundedness of the
map W5/2(Ω, A) →W1(∂Ω, A · γ̇), ψ 7→ π · nψ � ∂Ω. The same argument applies
and, in fact, it is only here that a uniform C2–property does not suffice.

In the context of Theorem 3, a formal candidate for a conjugate operator is
Π = s(Z), where s is arclength as given by (GA), and Z is the guiding center, which
we can write as ~Z = ~x − ε~π. This definition is unsuitable, because p = −i∇ and
hence Z are not self–adjoint (vector) operators, and because the two components
of Z do not commute. Instead, we formally linearize s(Z) in ~Z − ~x and set

Π = s(~x)−∇s · ε~π = s(~x)− ε~π · ∇s , (6.26)

which is a well–defined (non self–adjoint) operator. The second expression follows
from εij [πj , ∂is] = −iεij∂j∂is = 0. Here, and in the following, the summation
convention is understood.



Vol. 1, 2000 Extended Edge States of Quantum Hall Hamiltonians 433

Lemma 4. Let s satisfy (6.18). For ϕ,ψ ∈ D(H0) ∩ D(s) we have

i[(H0ϕ,Πψ)− (Πϕ,H0ψ)] = (ϕ, πi(mij +mji)πjψ) + 〈πiϕ, (γ̇j∂js)πiψ〉 , (6.27)

where mij(~x) = εjk∂k∂is.

The last term in (6.27) can also be written as 〈(π ·n)ϕ, (γ̇ ·∇s)(π ·n)ψ〉, since
πiψ = ni(π · n)ψ on γ for ψ ∈ D(H0). If, as in (GA), s is equal to arclength on γ
we have γ̇ · ∇s = 1 by definition.

Proof. We first claim that for ϕ ∈ D(H0) ∩ D(s), ρ ∈W1(Ω, A) ∩ D(s) we have

i[(πiϕ,Πρ)− (Πϕ, πiρ)] = (πjϕ,mijρ) . (6.28)

Indeed, the contribution from s in (6.26) is

i[(πiϕ, sρ)− (sϕ, πiρ)] = i(ϕ, [πi, s]ρ) = (ϕ, ∂isρ) , (6.29)

by using (6.23) and ϕ ∈ D(H0), which makes the boundary term vanish. To
compute the other contribution we note that

i[(πiϕ, πjρ)− (πjϕ, πiρ)] = −i([πi, πj ]ϕ, ρ) + 〈πiϕ, njρ〉 − 〈πjϕ, niρ〉
= εij(ϕ, ρ) ,

since πiϕ = ni(π · n)ϕ on ∂Ω. Hence, for fj = εkj∂ks,

i[(πiϕ, fjπjρ)− (fjπjϕ, πiρ)]

= i[(πiϕ, πjfjρ)− (πjϕ, πifjρ)]− (πiϕ, ∂jfjρ) + (πjϕ, ∂ifjρ)
= (ϕ, ∂isρ)− (πjϕ,mijρ) ,

(6.30)

because of εijfj = ∂is, ∂jfj = 0 and of ∂ifj = −mij . Subtracting (6.30) from
(6.29) yields (6.28), which can also be written as

i[(πiω,Πψ)− (Πω, πiψ)] = (ω,mijπjψ) , (6.31)

for ω ∈W1(Ω, A) ∩ D(s). Moreover, (6.23) yields

i[(Πω, ρ)− (ω,Πρ)] = 〈ω, εji∂jsniρ〉 = 〈ω, γ̇i∂isρ〉 . (6.32)

Writing the left hand side of (6.27) as

i[(π2
i ϕ,Πψ)− (Ππiϕ, πiψ) + (Ππiϕ, πiψ)− (πiϕ,Ππiψ)

+ (πiϕ,Ππiψ)− (Πϕ, π2
i ψ)] .

and using (6.31, 6.32, 6.28) with ω = πiϕ and ρ = πiψ, respectively, concludes the
proof if ω, ρ ∈ D(s). By density this suffices.
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Proof of Theorem 3. Statement and proof of Lemma 2 hold true with the replace-
ment py → π · n, with ∆, α depending only on the regularity data for Ω. These
data are inherited by λΩ with λ ≥ 1. On the other hand λΩ satisfies part (ii) of
(GA) with sλ(~x) = λs(~x/λ), and correspondinglymλ(~x) = λ−1m(~x/λ) in equation
(6.27). There, the first term on the right hand side is then estimated in absolute
value for ϕ = ψ = E∆(Hλ)ψ by a constant times

λ−1‖πE∆(Hλ)ψ‖2 ≤ λ−1(|E|+ |∆|)1/2‖ψ‖2 .

As a result, the positivity of the commutator (6.27) on E∆(Hλ) obtains for large
λ > 0. As to the regularity assumption, the conjugate operator A = s(x) gives rise
to the analytic family

H(τ) = eiτsHe−iτs = H − τ(∇s · π + π · ∇s) + τ2(∇s)2 . (6.33)

Statement and proof of Lemma 3 are changed accordingly, with Π−s(x) = −επ·∇s
replacing py. In (6.33) we have suppressed the subscript λ. One should, however,
notice that the relative bound of H ′(0) = ∇s · π + π · ∇s with respect to H is
independent of λ.

We finally come to the

Proof of Theorem 4. We set s(x, y) = −x, i.e., Π = −πy − x. Then, in (6.27),
mij = 0 and γ̇ · ∇s = (1 + f ′(x)2)−1/2 ≥ δ for some δ > 0 and all x ∈ R. Upon
scaling, f ′λ(x) = f ′(x/λ) has C2

unif(R)–norm which can be bounded independently
of λ ≥ λ0. In particular, bounds on the norms associated with (6.25), as well as δ,
are independent of λ ≥ λ0.
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A Corbino disc geometry

In this appendix, we adapt the arguments of section 4 to the Corbino disc geometry
(see figure 7).

In polar coordinates and with a suitable gauge, the Hamiltonian is

H =
1

2m

(
−∂2

r −
1
r
∂r +

(
1
ir
∂ϕ − e

(
Br

2
+

Φ
2πr

))2
)

+ V (r, ϕ). (A.1)

For V = 0, the spectrum and eigenfunctions of H can be obtained by ele-
mentary methods. For Φ = 0, the spectrum consists only of the Landau levels,
with energy (n + 1/2)ωc. In contrast to the case of the cylinder, there is here a
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Figure 7: Corbino disc geometry

restriction on the angular momentum, l ≥ −n. The states are localized in radial
direction near r0(l) =

√
2 |l| /eB. If Φ 6= 0, 0 < Φ ≤ 2π/e, the localization of

the states is shifted from r0(l) to r0(l − eΦ/2π). The energy of the states with
l−eΦ/2π ≥ 0 remains unchanged, but the energy of the states with l−eΦ/2π < 0
is changed to (n+ eΦ/2π+ 1/2)ωc. It is convenient to change the definition of the
index n and to introduce functions En,l(Φ) in such a way that the spectral flow
can be written as in equation (2.2),

En,l(Φ + 2π/e) = En,l−1(Φ). (A.2)

The energies are En,l(Φ) = (n + 1/2)ωc if l − eΦ/2π ≥ 0 and En,l(Φ) = (n −
l + eΦ/2π + 1/2)ωc if l − eΦ/2π < 0. With this definition of n, l is unrestricted,
but the bands for fixed n are bent upwards when l− eΦ/2π is negative. Thus, the
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flux Φ has effects similar to an edge at the center of the disc. Besides considering
only one edge, we also need to restrict the analysis to Φ = 0 in order to avoid
resonances.

The discussion with included edge potential, V0, and weak disorder potential,
gVd, is completely parallel to the case of the cylinder geometry and we do not repeat
it here.

We now derive the expression for the azimuthal current corresponding to
equation (4.3) of section 4. In the Corbino disc geometry, the azimuthal current
carried by a state, ψ, is

Iϕ = −∂E
∂Φ

=
(
ψ,

2
2πr

(∂ϕ
ir
− Φ

2πr
− Br

2

)
ψ

)
=
(
ψ,
B̂ × ~r
2πr2 [H, i~r]ψ

)
.

(A.3)

Note here that B̂ × ~r/r is a unit vector pointing in the azimuthal direction, and
that the commutator [H, i~r] gives the velocity (m = 1/2 and e = 1). Now replace
~r in the commutator with the guiding center, ~r = ~Z− (~p− ~A)× B̂/B, and use the
equation of motion for ~Z, [H, i~Z] = B̂/B × gradV . This yields

Iϕ =
(
ψ,

1
2πBr

∂rV ψ
)
−
(
ψ,

B̂ × ~r
2πBr2 [H, i(~p− ~A)× B̂]ψ

)
. (A.4)

Using the fact that the expectation value of a commutator with H in an energy
eigenstate vanishes, the second term in (A.4) is equal to

(
ψ,

1
2πB

[
H, i

B̂ × ~r
r2

]
(~p− ~A)× B̂ψ

)
. (A.5)

A straightforward calculation in polar coordinates then shows that the azimuthal
current carried by an eigenstate of H can be written as

Iϕ =
(
ψ,

2
2πr

(~p− ~A)ϕψ
)

=
(
ψ,

1
2πBr

∂rV ψ
)

+
2

2πB
(1
r
∂rψ,

1
r
∂rψ

)
− 1

2πB
(
ψ,

2
r2 (~p− ~A)2

ϕψ
)
.

(A.6)

This expression is similar to (4.3), with correction terms due to the circular ge-
ometry. The first term in (A.6) is positive for weak disorder, and decays inversely
proportional to the size R of the sample. The second term is always positive, while
the third term is negative, but bounded, and decays as 1/R2. Thus Iϕ|Φ=0 is pos-
itive for an eigenstate of H with energy between Landau levels, if the sample is
large, and the disorder weak.

The rest of this appendix is devoted to making the estimates in this argument
rigorous. To deal with the singularity at r = 0, it will be useful to know that
edge states eigenfunctions are exponentially small near the origin. We start by
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considering the spatial decay of the free resolvent (E −H0)−1 (for Φ = 0). This
free resolvent for a homogeneous magnetic field Hamiltonian in two dimensions
can be calculated using an expansion in eigenfunctions of H0, which are known
explicitly in terms of Laguerre polynomials. See [21] and [22] for more details. The
result contains the confluent hypergeometric function called Ψ in the notation of
[29],

R0(x, y;E) = (E −H0)−1(r1e
iϕ1 , r2e

iϕ2)

= − 1
4π
eiπζΓ(−ζ)eir1r2 sin(ϕ1−ϕ2)e−

B
4 |x−y|

2
Ψ
(
−ζ, 1;

B

4
|x− y|2

)
.

(A.7)

Here, ζ is related to the energy by E = (2ζ + 1)B, so that R0 has singularities
at Landau band energies. Ψ(−ζ, 1; z) has a logarithmic singularity at z = 0 and
behaves for large |z| as |z|ζ . This implies a Gaussian decay for large |x− y|. We
will, however, only use an estimate of the form

|R0(x, y;E)| ≤ Ce−|x−y|/ξ |ln(|x− y| /ξ)| , (A.8)

with a decay length scale ξ on the order of the magnetic length
√
B
−1

.
We now include the disorder potential and claim the following

Lemma 5. Let V0 be a not too fast increasing edge potential that describes the
Corbino disc with varying sample size R. Let further Vd be bounded by a constant
sufficiently small compared to the magnetic field. Let finally ∆ be an energy interval
in the spectral gaps of H0 + Vd. Whenever a < R, there are positive constants C
and λ, such that an eigenfunction ψ of H = H0 + V0 + Vd with energy E ∈ ∆
satisfies

|ψ(x)| ≤ Ce−(R−a)/λ ‖ψ‖ (A.9)

for |x| ≤ a, uniformly in the sample size R and the energy E ∈ ∆.

Proof. Use the equation

ψ(x) =
∫

(E −H0 − Vd)−1(x, y)V0(y)ψ(y)dy (A.10)

and expand the resolvent in a Neumann-series.

(E −H0 − Vd)−1 =
∞∑
n=0

(
(E −H0)−1Vd

)n
(E −H0)−1. (A.11)

Consider a fixed n, and use the estimate (A.8) for each free resolvent. This results
in the following integrals to be estimated:∫ ( n∏

i=1

C |ln(|zi−1 − zi| /ξ)| e−|zi−1−zi|/ξVd(zi)
)
×

C |ln(|zn − y| /ξ)| e−|zn−y|/ξV0(y) |ψ(y)| dz1 . . . dzndy, (A.12)
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with z0 = x, zn+1 = y. Taking out Vd out of the integrals, and splitting the
exponentials in 3, this is estimated by

(C ‖Vd‖∞)n sup
z1,...zn+1

exp(−
n+1∑
i=1

|zi−1 − zi| /3ξ)×(∫
e−|w|/3ξ |ln(|w| /ξ)|

)n
sup

z1,...zn

∫
e−|zn−y|/3ξ |ln(|zn − y| /ξ)| ×

exp(−
n+1∑
i=1

|zi−1 − zi| /3ξ)V0(y) |ψ(y)| dy. (A.13)

Now infz1,...zn
∑n+1
i=1 |zi−1 − zi| ≥ |x− y| and, applying the Schwarz inequality to

the last integral, the bound moves to

(C̃ ‖Vd‖∞)ne−|x−R|/3ξ
(∫

e−2|w|/3ξ |ln(|w| /ξ)|2 dw
)1/2

×(∫
e−2|x−y|/3ξ(V0(y))2 |ψ(y)|2 dy

)1/2
. (A.14)

If the potential does not increase too fast, the integral containing V0 converges
and is bounded by E ‖ψ‖, and after summing over n, making the bound on the
disorder small enough, the claim follows.

With the help of Lemma 5, we now prove the positivity of the current from
the expression (A.6),

Iϕ =
(
ψ,

2
2πr

(~p− ~A)ϕψ
)

=
(
ψ,

1
2πBr

∂rV ψ
)

+
2

2πB
(1
r
∂rψ,

1
r
∂rψ

)
− 1

2πB
(
ψ,

2
r2 (~p− ~A)2

ϕψ
)
.

(A.15)

The first step is to eliminate the singularity at r = 0 by replacing ψ with jψ,
where j is a cutoff at radius a > 0 near the origin. We want to show that the error
introduced by this replacement,

(
ψ,

1
r

(p−A)ϕψ
)
−
(
jψ,

1
r

(p−A)ϕjψ
)

=(
(1− j)ψ, 1

r
(p−A)ϕjψ

)
+
(
jψ,

1
r

(p−A)ϕ(1− j)ψ
)

+(
(1− j)ψ, 1

r
(p−A)ϕ(1− j)ψ

)
, (A.16)
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is small for large R. Consider bounding the term∣∣∣∣((1− j)ψ, 1
r

(p−A)ϕ(1− j)ψ
)∣∣∣∣ ≤ ‖ 1

r3/4ψ‖a ‖
1
r1/2 (p−A)ϕψ‖a

≤ Ce−R/λa1/4 ‖ψ‖ ‖1
r
ψ‖1/2a

∥∥(p−A)2
ϕψ
∥∥1/2
a

≤ Ce−3R/2λa1/2 ‖ψ‖2

(A.17)

where ‖ · ‖a has its obvious meaning, and we have taken advantage of the fact the
r commutes with (p−A)ϕ and that ‖(~p− ~A)2

ϕψ‖ can be bounded by the energy‡.
The other terms in (A.16) similarly decay exponentially with the sample size.

The replacement of ψ with jψ introduces additional terms, because in the
derivation of (A.6), we used that ψ was an eigenstate of H, whereas jψ is not.
Those additional terms are

(
jψ,

1
2πB

i
B̂ × ~r
r2 (~p− ~A)× B̂[H, j]ψ

)
+
(
ψ, [H, j]

1
2πB

i
B̂ × ~r
r2 (~p− ~A)× B̂jψ

)
=
(
jψ,

1
2πBr

(−∂r)[H, j]ψ
)

+
(
ψ, [H, j]

1
2πBr

(−∂r)jψ
)

(A.18)

[H, j] = −2j′∂r − j′′ − j′/r has support for r near a. Organize the various terms
so that either no radial derivative is acting on ψ, or one radial derivative, or the
expression 1

r∂rr∂r. Terms with one radial derivative are estimated, for example,
as ∣∣∣∣(jψ, j′′ 1r ∂rjψ)

∣∣∣∣ ≤ ‖j′′ 1r j′ψ‖a ‖∂rψ‖
≤ C

a4 e
−(R−a)/λ ‖ψ‖2 ,

(A.19)

where C contains the energy as bound for ‖∂rψ‖. The terms with two radial
derivatives, such as (

j′j
1
r
ψ,

1
r
∂rr∂rψ

)
, (A.20)

are estimated similarly. Terms without radial derivative acting on ψ are even easier.
Cutting off with j thus introduces error terms that decay exponentially with

the sample size.
From (A.6) with jψ instead of ψ, we now estimate∣∣∣∣(jψ, 1

r2 (~p− ~A)2
ϕjψ

)∣∣∣∣ ≤ ‖ 1
r2 jψ‖

∥∥∥j(~p− ~A)2
ϕψ
∥∥∥ . (A.21)

‡This Kato estimate for (~p− ~A)2
ϕ is not trivial, since radial and azimuthal part of the kinetic

energy do not commute. The same kind of estimate in the half-plane geometry was needed in
section 6.
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The second factor is bounded by the energy. The first is split into a part with the
radial coordinate between a and R/2, so that it decays as e−R/2λ/a2, and a part
from R/2 to ∞ which decays as 1/R2. The positivity of

(
jψ,

1
r
∂rV jψ

)
(A.22)

is proved in a fashion very similar to the one in section 5 by introducing another
cutoff function at the edge r = R§. The lower bound for the expression decays as
1/R. If the sample is large and the disorder weak, the current is positive.

B Random potentials and almost sure spectrum

Consider a Hamiltonian H1 on H = L2(R2) which is invariant in x-direction. Let
σ(H1) be the spectrum of H1. Add to H1 a disorder in the form of a random
potential Vd,ω, where ω ∈ Ω, and (Ω, P ) is a probability space. Assume three
things about (Ω, P ):

(i) For every ω ∈ Ω, Vd,ω is bounded by a constant δ which is independent of ω.

(ii) The group G(x) of translations in x-direction acts measure-preserving and
ergodically on (Ω, P ). This allows one to speak of an almost sure (a.s.) spec-
trum of Hω = H1 + Vd,ω, denoted by Σ(Hω).

(iii) For every measurable compact set Λ ⊂ R2 and every ε > 0 the probability

P
{
ω; |Vd,ω(x, y)| < ε ∀(x, y) ∈ Λ

}
(B.1)

is positive.

Those assumptions are, for example, satisfied in an Anderson model for the dis-
order. Assumption (i) is added for consistency with the proofs in sections 5 and
6. As mentioned in section 3, it can very likely be replaced by boundedness of the
variance of Vd,ω. Assumptions (ii) and (iii) allow the proof of the following:

Lemma 6. Let notation be as introduced and assumptions (i) to (iii) be satisfied.
Then

σ(H1) ⊂ Σ(Hω) ⊂ σ(H1) + [−δ, δ] . (B.2)

For a proof, see [24].

§The cutoff at r = a does not significantly perturb the argument of section 5 because ψ is
exponentially small near the center.
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